CONTENTS

Foreword	iii
PREFACE	υ
A NOTE FOR THE TEACHER	x

CHAPTER 1

PHYSIC	AL WORLD	
1.1	What is physics ?	1
1.2	Scope and excitement of physics	2
1.3	Physics, technology and society	5
1.4	Fundamental forces in nature	6
1.5	Nature of physical laws	10

CHAPTER 2

UNITS AND MEASUREMENTS

2.1	Introduction	16
2.2	The international system of units	16
2.3	Measurement of length	18
2.4	Measurement of mass	21
2.5	Measurement of time	22
2.6	Accuracy, precision of instruments and errors in measurement	22
2.7	Significant figures	27
2.8	Dimensions of physical quantities	31
2.9	Dimensional formulae and dimensional equations	31
2.10	Dimensional analysis and its applications	32

CHAPTER 3

MOTION IN A STRAIGHT LINE

3.1	Introduction	39
3.2	Position, path length and displacement	39
3.3	Average velocity and average speed	42
3.4	Instantaneous velocity and speed	43
3.5	Acceleration	45
3.6	Kinematic equations for uniformly accelerated motion	47
3.7	Relative velocity	51

CHAPTER 4

MOTION IN A PLANE

4.1	Introduction	65
4.2	Scalars and vectors	65
4.3	Multiplication of vectors by real numbers	67
4.4	Addition and subtraction of vectors – graphical method	67
4.5	Resolution of vectors	69

xii

AC		71
4.0	vector addition – analytical method	/1
4.7	Motion in a plane	72
4.8	Motion in a plane with constant acceleration	75
4.9	Relative velocity in two dimensions	76
4.10	Projectile motion	77
4.11	Uniform circular motion	79

CHAPTER 5

LAWS OF MOTION

5.1	Introduction	89
5.2	Aristotle's fallacy	90
5.3	The law of inertia	90
5.4	Newton's first law of motion	91
5.5	Newton's second law of motion	93
5.6	Newton's third law of motion	96
5.7	Conservation of momentum	98
5.8	Equilibrium of a particle	99
5.9	Common forces in mechanics	100
5.10	Circular motion	104
5.11	Solving problems in mechanics	105

CHAPTER 6

WORK, ENERGY AND POWER

6.1	Introduction	114
6.2	Notions of work and kinetic energy : The work-energy theorem	116
6.3	Work	116
6.4	Kinetic energy	117
6.5	Work done by a variable force	118
6.6	The work-energy theorem for a variable force	119
6.7	The concept of potential energy	120
6.8	The conservation of mechanical energy	121
6.9	The potential energy of a spring	123
6.10	Various forms of energy : the law of conservation of energy	126
6.11	Power	128
6.12	Collisions	129

CHAPTER 7

System of Particles and Rotational Motion 7.1 Introduction 141 **7.2** Centre of mass 144 7.3 Motion of centre of mass 148 7.4 Linear momentum of a system of particles 149 7.5 Vector product of two vectors 150 7.6 Angular velocity and its relation with linear velocity 1527.7 Torque and angular momentum 154 7.8 Equilibrium of a rigid body 158 **7.9** Moment of inertia 163 7.10 Theorems of perpendicular and parallel axes 164

xiii

7.11	Kinematics of rotational motion about a fixed axis	167
7.12	Dynamics of rotational motion about a fixed axis	169
7.13	Angular momentum in case of rotations about a fixed axis	171
7.14	Rolling motion	173

CHAPTER 8

GRAVITATION

8.1	Introduction	183
8.2	Kepler's laws	184
8.3	Universal law of gravitation	185
8.4	The gravitational constant	189
8.5	Acceleration due to gravity of the earth	189
8.6	Acceleration due to gravity below and above the surface of earth	190
8.7	Gravitational potential energy	191
8.8	Escape speed	193
8.9	Earth satellite	194
8.10	Energy of an orbiting satellite	195
8.11	Geostationary and polar satellites	196
8.12	Weightlessness	197

			~ ~ ~
	DEA	11.11	CULC
AL			

ANS	w	чĸ	5

203 219

T