




















Note to the Students

The IIT-JEE is one of the hardest exams to crack for students, for a very simple 

reason – concepts cannot be learned by rote, they have to be absorbed, and IIT 

believes in strong concepts. Each question in the IIT-JEE entrance exam is meant 

to push the analytical ability of the student to its limit. That is why the questions 

are called brainteasers!

Students find Mathematics the most difficult part of IIT-JEE. We understand that 

it is difficult to get students to love mathematics, but one can get students to love 

succeeding at mathematics. In order to accomplish this goal, the book has been 

written in clear, concise, and inviting writing style. It can be used as a self-study 

text as theory is well supplemented with examples and solved examples. Wher-

ever required, figures have been provided for clear understanding.

If you take full advantage of the unique features and elements of this textbook, 

we believe that your experience will be fulfilling and enjoyable. Let’s walk 

through some of the special book features that will help you in your efforts to 

crack IIT-JEE.

To crack mathematics paper for IIT-JEE the five things to remember are:

1. Understanding the concepts 

2. Proper applications of concepts 

3. Practice 

4. Speed 

5. Accuracy 

About the Cover Picture

The Mandelbrot set is a mathematical set of points in the complex plane, 

the boundary of which forms a fractal. It is the set of complex values of c 

for which the orbit of 0 under iteration of the complex quadratic polynomial  

zn+1 = zn
2 + c remains bounded. The Mandelbrot set is named after Benoît 

Mandelbrot, who studied and popularized it.



Special attention has been paid to present 

an engaging, clear, precise narrative in the 

layout that is easy to use and designed to 

reduce math anxiety students may have.

CLEAR, CONCISE, AND INVITING WRITING

Every new topic or concept starts with de-

fining the concept for students. Related ex-

amples to aid the understanding follow the 

definition.

DEFINITIONS

4.1 | Quadratic Expressions and Equations

In this section, we discuss quadratic expressions and equations and their roots. Also, we derive various properties 
of the roots of quadratic equations and their relationships with the coefficients.

DEFINITION 4.1  A polynomial of the form ax bx c2 + + ,  where a, b and c are real or complex numbers and 
a ¹ 0, is called a quadratic expression in the variable x. In other words, a polynomial f (x) 
of degree two over the set of complex numbers is called a quadratic expression. We often 
write f x ax bx c( ) º + +2  to denote a quadratic expression and this is known as the standard 
form. In this case, a and b are called the coefficients of x2 and x, respectively, and c is called 
the  constant term. The term ax2 is called the quadratic term and bx is called the linear term.

DEFINITION 4.2  If f x ax bx c( ) º + +2  is a quadratic expression and a is a complex number, then we write 
f (a) for a b ca a2 + + . If f (a) = 0, then a is called a zero of the quadratic expression f (x). 

(1)  Let f (x) º x2 - 5x - 6. Then f (x) is a quadratic expres-
sion and 6 and –1 are zeros of f (x). 

(2)  Let f (x) º x2 + 1. Then f (x) is a quadratic expression 
and i and –i are zeros of f (x). 

(3)  Let f x x ix( ) º - +2 12  be a quadratic expression. In 
this case i and −i/2 are zeros of f (x). 

(4)  The expression x2 + x is a quadratic expression and 
0 and –1 are zeros of x2 + x.

Examples

DEFINITION 4.3  If f (x) is a quadratic expression, then f (x) = 0 is called a quadratic equation. If a is a zero 
of f  (x), then a is called a root or a solution of the quadratic equation f (x) = 0. In other 
words, if f x ax bx c a( ) , ,º + + ¹2 0  then a complex number a  is said to be a root or a solution 
of f (x) = 0, if aa 2 + ba + c = 0. The zeros of the quadratic expression f (x) are same as the roots 
or solutions of the quadratic equation f (x) = 0. Note that a is a zero of f (x) if and only if x − a 
is a factor of f (x).

Examples

(1)  0 and –i are the roots of x ix2 + = 0.

(2)  2 is the only root of x x2 4 4 0- + = .

(3)  i and –i are the roots of x2 1 0+ = .

(4)  i is the only root of x ix2 2 1 0- - = .

Each chapter starts with an opening vignette, defini-

tion of the topic, and contents of the chapter that give 

you an overview of the chapter to help you see the 

big picture.
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A polynomial equation of 
the second degree having 
the general form

ax2 + bx + c = 0

is called a quadratic equation. 
Here x represents a variable, 
and a, b, and c, constants, 
with a ¹ 0. The constants a, b, 
and c are called, respectively, 
the quadratic coefficient, the 
linear coefficient and the 
constant term or the free 
term.

The term “quadratic”  comes 
from quadratus, which is the 
Latin word for “square”. 
Quadratic equations can be 
solved by factoring, completing 
the square, graphing, Newton’s 
method, and using the 
quadratic  formula (explained 
in the chapter).
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Examples pose a specific problem 

using concepts already presented 

and then work through the solution. 

These serve to enhance the students' 

understanding of the subject matter.

EXAMPLESExample     4.1   

Find the quadratic equation whose roots are 2 and –i.

Solution: The required quadratic expression is

( )[ ( )] ( )( ) ( )x x i x x i x i x i- - - = - + = + - -2 2 2 22

Hence the equation is x i x i2 2 2 0+ - - =( ) .

Example     4.2   

Find the quadratic equation whose roots are 1 + i and 
1 – i and in which the coefficient of x2 is 3.

Solution: The required quadratic expression is

3 1 1 3 1 1

3 1 1

3 6

2

2

[ ( )]( ( )) [( ) )][( ) ]

[( ) ]

x i x i x i x i

x

x

- + - - = - - - +

= - +

= - xx + 6

Hence the equation is 3x2 - 6x + 6 = 0.

Example     4.3   

If a and b are roots of the quadratic equation ax bx2 + +   
c = 0 and z is any complex number, then find the quadratic 
equation whose roots are z za band .

Solution: We have 

a b ab+ =
-

=
b

a
c
a

and

The equation whose roots are z za band  is

0

2

2 2

2

= - -

= - + + ´

= + - + +

= +

( )( )

( )

[ ( )]

x z x z

x z z x z z

x z x z

x z
b
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a b

a b a b

a b ab

ææ
èç

ö
ø÷

+x z
c
a

2

that is,

ax zbx z c2 2 0+ + =

Example     4.4   

If a and b are the roots of a quadratic equation 
ax bx c2 0+ + = , then find the quadratic equation whose 
roots are a b+ +z zand ,  where z is any given  complex 
number.

Solution: We have 

Therefore, the required equation is

0

2

= - + ´ - +

= + - + - + + + +

=

a x z x z

ax a z z x a z z

ax

[ ( )] [ ( )]

[ ( ) ( )] ( )( )

a b

a b a b

22 22+ -æ
èç

ö
ø÷

+ - +æ
èç

ö
ø÷

a
b
a

z x a
c
a

b
a

z z

Relevant theorems are provided along 

with proofs to emphasize conceptual un-

derstanding rather than rote learning.

THEOREMS THEOREM 4.5 If a, b and c are real numbers and a ¹ 0, then ( )/4 42ac b a-  is the maximum or  minimum value of 
quadratic equation of f x ax bx c( ) º + +2  according as a a< >0 0or ,  respectively.

PROOF We have

f x ax bx c a x
b
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If a < 0, then

f x
ac b

a
f

b
a

( ) £
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 for all x Î�

Hence ( )/4 42ac b a-  is the maximum value of f x( ).
If a > 0, then

f
b
a

ac b
a

f x
-æ

èç
ö
ø÷

=
-

£
2

4

4

2

( ) for all x Î�

Hence ( )/4 42ac b a-  is the minimum value of f x( ). ■

Some important formulae and con-

cepts that do not require exhaustive 

explanation, but their mention is im-

portant, are presented in this section. 

These are marked with a magnifying 
glass.

QUICK LOOKQUICK LOOK 2

Let f x ax bx c( ) º + + =2 0  be a quadratic equation and  
a band  be its roots. Then the following hold good.

1.  f (x - z) = 0 is an equation whose roots are  a + z and 
b + z, for any given complex number z.

2.  f x z( / ) = 0 is an equation whose roots are z za band   
for any non-zero complex number z.

3. f x( )- = 0 is an equation whose roots are -a and -b.

4.  If ab ¹ ¹0 0and c ,  f(1/x) = 0 is an equation whose 
roots are 1 1/ / .a band

5.  For any complex numbers z1 and z2 with z1 0¹ ,  
f x z z[( )/ ]- =2 1 0 is an equation whose roots are 

z z z z1 2 1 2a b+ +and .



Within each chapter the stu-

dents would find problems 

to reinforce and check their 

understanding. This would 

help build confidence as one 

progresses in the chapter. 

These are marked with a 

pointed finger.

TRY IT OUT

At the end of every 

chapter, a summary is 

presented that organ-

izes the key formulae 

and theorems in an 

easy to use layout. The 

related topics are indi-

cated so that one can 

quickly summarize a 

chapter.

SUMMARY

Try it out Verify the following properties:

1. ((a, b) + (c, d)) + (s, t) = (a, b) + ((c, d) + (s, t))

2. (a, b) + (c, d) = (c, d) + (a, b)

3. (a, b) + (0, 0) = (a, b)

4. (a, b) + (-a, -b) = (0, 0)

5. (a, b) + (c, d) = (s, t) Û (a, b) = (s, t) - (c, d)

 Û (c, d) = (s, t) - (a, b)

DEFINITION 3.2  For any complex numbers (a, b) and (c, d), let us define

( ) ( ) ( )a b c d ac bd ad bc, , ,× = - +

 This is called the product of (a, b) and (c, d) and the process of taking products is called 
multiplication.

Try it out Verify the following properties for any complex numbers (a, b), (c, d) and (s, t).

1. [( ) ( )] ( ) ( ) [( ) ( )]a b c d s t a b c d s t, , , , , ,× × = × ×
2. ( ) ( ) ( ) ( )a b c d c d a b, , , ,× = ×
3. ( ) [( ) ( )] ( ) ( ) ( ) ( )a b c d s t a b c d a b s t, , , , , , ,× + = × + ×
4. ( ) ( ) ( )a b a b, , ,× =1 0

5. ( ) ( ) ( )a c d ac ad, , ,0 × =
6. ( ) ( ) ( )a c ac, , ,0 0 0× =
7. ( ) ( ) ( )a c a c, , ,0 0 0+ = +

4.1 Quadratic expressions and equations: If a, b, c 
are real numbers and a ≠ 0, the expression of the 
form ax2 + bx + c is called quadratic expression and 
ax2 + bx + c = 0 is called quadratic equation.

4.2 Let f (x) º ax2 + bx + c be a quadratic expression 
and a be a real (complex) number. Then we write 
f (a) for aa2 + ba + c. If f(a) = 0, the a is called a zero 
of f(x) or a root of the equation f(x) = 0.

4.3 Roots: The roots of the quadratic equation ax2 + 
bx + c = 0 are

- + - - - -b b ac

a

b b ac

a

2 24

2

4

2
and

4.4 Discriminant: b2 - 4ac is called the discriminant of 
the quadratic expression (equation) ax2 + bx + c = 0.

4.5 Sum and product of the roots: If a and b are roots of 
the equation ax2 + bx + c = 0, then

a b a b+ =
-

=
b
a

c
a2

and

4.6 Let ax2 + bx + c = 0 be a quadratic equation and 
Δ = b2 - 4ac be its discriminant. Then the following 
hold good.

(1)  Roots are equal Û Δ = 0 (i.e., b2 = 4ac).

(2)  Roots are real and distinct Û Δ > 0.

(3)  Roots are non-real complex (i.e., imaginary) Û 
Δ > 0.

4.7 Theorem: Two quadratic equations ax2 + bx + c = 0 
and ¢ + ¢ + ¢ =a x b x c2 0 have same roots if and only 
if the triples (a, b, c) and (a¢, b¢, c¢ ) are proportional 
and in this case

ax bx c
a
a

a x b x c2 2+ + = ¢ + ¢ + ¢
¢
( )

 4.8 Cube roots of unity: Roots of the equation x3 - 1 = 0 
are called cube roots of unity and they are

1
1

2

3

2
,

-
± i

-1 2 3 2/ /± i  are called non-real cube roots of unity. 
Further each of them is the square of the other and 
the sum of the two non-real cube roots of unity is 
equal to -1. If w ≠ 1 is a cube root of unity and n is 
any positive integer, then 1 + wn + w2n is equal to 3 
or 0 according as n is a multiple of 3 or not.

 4.9 Maximum and minimum values: If f(x) º ax2 + 
bx + c and a ≠ 0, then

f
b
a

ac b
a

-æ
èç

ö
ø÷

=
-

2

4

4

2

is the maximum or minimum value of f according 
as a < 0 or a > 0.

4.10  Theorems (change of sign of ax2 + bx + c): Let f(x) º 
ax2 + bx + c where a, b, c are real and a ≠ 0. If 
a and b are real roots of f(x) = 0 and a < b, then

(1) (i)  f(x) and a (the coefficient of x2) have the 
same sign for all x < a or x > b.

   (ii)  f(x) and a will have opposite signs for all x 
such that a < x < b.

(2)  If f (x) = 0 has imaginary roots, then f(x) and a 
will have the same sign for all real values of x.

4.11  If f(x) is a quadratic expression and f (p)f (q) < 0 
for some real numbers p and q, then the quadratic 
equation f (x) = 0 has a root in between p and q.

   SUMMARY



B.    WORKED-OUT PROBLEMS AND ASSESSMENT – AS PER IIT-JEE PATTERN

In-depth solutions are provided to all worked-out problems for students to understand the logic behind and  

formula used.

WORKED-OUT PROBLEMS

Mere theory is not enough. It is also important to practice and test what has been 

proved theoretically. The worked-out problems and exercise at the end of each 

chapter are in resonance with the IIT-JEE paper pattern. Keeping the IIT-JEE 

pattern in mind, the worked-out problems and exercises have been divided into:

1. Single Correct Choice Type Questions

2. Multiple Correct Choice Type Questions

3. Matrix-Match Type Questions

4. Comprehension-Type Questions

5. Assertion–Reasoning Type Questions

6. Integer Answer Type Questions

1.  If the equations

x ax2 1 0+ + =  and x x a2 0- - =

have a real common root, then the value of a is

(A)  0 (B) 1 (C) −1 (D) 2

Solution: Let a be a real common root. Then

a a

a a

2

2

1 0

0

+ + =

- - =

a

a
Therefore

a

a

( ) ( )

( )( )

a a

a

+ + + =

+ + =

1 1 0

1 1 0

If a = -1,  then the equations are same and also cannot 
have a real root. Therefore a + ¹1 0 and hence a = -1,  
so that a = 2.

 Answer: (D)

m m m

m m m

< + - >

Þ < - + >

0 4 4 0

0 2 2 0

2and 3

and 3( )( )

This gives m < -2  and so

x x x x x2 5 6 0 2 3 0 2 3- + < Þ - - < Þ Î( )( ) ( , )

 Answer: (C)

4.  If p is prime number and both the roots of the equation 
x px p2 444 0+ - =( )  are integers, then p is equal to

(A)  2 (B) 3 (C) 31 (D) 37

Solution: Suppose the roots of x px p2 444 0+ - =( )  are 
integers. Then the discriminant

p p p p2 + = + ´4 444 4 444( ) { ( )}

must be a perfect square. Therefore p divides p + 4 ´ 
(444). This implies

p divides 4 444 2 3 374´ = ´ ´( )

Th f

   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions

Multiple correct choice type 

questions have four choices 

provided, but one or more of 

the choices provided may be 

correct.

MULTIPLE 
CORRECT CHOICE 
TYPE QUESTIONS

Multiple Correct Choice Type Questions
1.  Suppose a and b are integers and b ¹ -1. If the quadratic 

equation x2 + ax + b + 1 = 0 has a positive integer root, 
then

(A) the other root is also a positive integer
(B) the other root is an integer
(C) a b2 2+  is a prime number
(D) a b2 2+  has a factor other than 1 and itself

Solution: Let a and b be the roots and a be a positive 
integer. Then

a b -+ = a  and ab = b + 1

b a= --a  implies b is an integer and

a b2 2 2 2

2 2 2 2

2 2

1

1

1 1

+ = + + -

= + + +

= + +

( ) ( )

( )( )

a b ab

a b a b

a b

Since a2 + >1 1 and b2 1 1+ > ,  it follows that a2 + 1 is a 

factor of a b2 2+  other than 1 and itself.

 Answers: (B), (D)

Solution: 
Case 1:  Suppose b is even, that is,  b m= 2 . Then b ac2 4- =

 
4 42( ) .m ac k- =

Case 2:  Suppose b is odd, that is, b m= -2 1.  Then 

b ac m ac

m m ac

2 2

2

4 2 1 4

4 4 1 4

- = - -

= + + -

( )

= + - +

= +

4 1

4 1

2( )m m ac

k

 Answers: (A), (B)

3.  If a and b are roots of the equation x ax b2 0+ + = ,
then

(A) a = 0, b = 1 (B) a b= =0

(C) a b= = -1 1,  (D) a b= = -1 2,

Solution: If a + b = -a and ab = b, then a = 0 = b or a = 1, 
b = -2.

 Answers: (B), (D)

These are the regular mul-

tiple choice questions with 

four choices provided. Only 

one among the four choices 

will be the correct answer.

SINGLE CORRECT 
CHOICE TYPE 

QUESTIONS



COMPREHENSION-TYPE QUESTIONS

Comprehension-type questions consist 

of a small passage, followed by three 

multiple choice questions. The ques-

tions are of single correct answer type.

These questions are the 

regular “Match the Follow-

ing” variety. Two columns 

each containing 4 subdivi-

sions or first column with 

four subdivisions and sec-

ond column with more sub-

divisions are given and the 

student should match ele-

ments of column I to that 

of column II. There can be 

one or more matches.

MATRIX-MATCH TYPE QUESTIONS

1. Match the items in Column I with those in Column II

Column I Column II

(A)  If z x iy z a ib= + = -, /1 3 and
x
a

y
b

a b- = -l l( ) then is2 2 ,

(p) 10

(q) 14

(r) 1

(s) 4

(B)   If | | ,z i- < 1  then the value of 
| |z i+ -12 6  is less than

(C)  If | | | | ,z z1 21 2= =and then  
| | | |z z z z1 2

2

1 2

2+ + -  is equal to

(D)  If z i= +1 , then 
4 4 7 6 34 3 2( )z z z z- + - +  is equal to

(t) 5

Solution:

(A) x iy z a ib a a bi a ib i b

a ab i b a b

+ = = - = - + -

= - + -

( ) ( )

( ) ( )

3 3 2 2 3 3

3 2 3 2

3 3

3 3

Comparing the real parts we get

x a ab a a b

x
a

a b

= - = -

= -

3 2 2 2

2 2

3 3

3

( )

Comparing the imaginary parts we get

z z z z z z

z i

z z z z

4 3 2 2

2 2

4 3 2

4 7 6 3 2 3

1 2 2 1

4 4 7 6 3

- + - + = - +

= - + = + =

- + - + =

( )

( ) 44

 Answer: (D) Æ (s)

2. Match the items in Column I with those in Column II. 
In the following, w ¹ 1 is a cube root of unity.

Column I Column II

(A)  The value of the determinant

1 1 1

1 1

1

2 2

2 4

- -w w

w w

 is

(p) 3 1w w-( )

(q) 3 1w w( )-

(r) -i 3

(s) i 3

(B)   The value of 4 5 32002 2009+ +w w
 is

(C)  The value of the determinant

1 1

1 1 1

1 1

2 2

2

2

+ +
- - -
- - + + -

i w w

i w

i i w

 is

(D)  w wn n2 1+ +  (n is a positive integer 
d l i l f 3) i

(t) 0

Matrix-Match Type Questions

1.  Passage: 4 Indians, 3 Americans and 2 Britishers are 
to be arranged around a round table. Answer the 
 following questions.

 (i) The number of ways of arranging them is

(A) 9! (B) 
1

2
9! (C) 8! (D) 

1

2
8!

 (ii)  The number of ways arranging them so that the 
two Britishers should never come together is

(A) 7 2! !´  (B) 6 2! !´  (C) 7! (D) 6 6

2! P

 (iii)  The number of ways of arranging them so that 
the three Americans should sit together is

(A) 7 3! !´  (B) 6 3! !´  (C) 6 6

3! P  (D) 6 7

3! P

Solution:

 (i)  n distinct objects can be arranged around a circular 
table in ( )!n - 1  ways. Therefore the number of ways 
of arranging 4 3 2+ +  people = 8!.

 Answer: (C)

 (ii)  First arrange 4 Indians and 3 Americans around a 
round table in 6! ways. Among the six gaps, arrange 
the two Britishers in 6

2P  ways. Therefore the total 
number of arrangements in which Britishers are 
separated is 6 6

2! .´ P

 Answer: (D)

(iii)  Treating the 3 Americans as a single object, 7 (= 4 + 
1 + 2) objects can be arranged cyclically in 6! ways. 
In each of these, Americans can be arranged among 
 themselves in 3! ways. Therefore, the number of 
required  arrangements is 6 3! !.´

  (ii)  The number of ways in which all the four prizes can 
be given to any one of the 6 students = 6. Therefore 
the required number of ways is 6 6 12904 - = .

 Answer: (B)

(iii)  Give a set of two prizes to the particular student. 
Then the remaining 2 can be distributed among 
5  students in 52 ways. There are 4

2C  sets, each 
 containing 2 prizes. Therefore the required number 
of ways of distributing the prizes is

5 25 6 1502 4

2´ = ´ =C

 Answer: (C)

3.  Passage: A security of 12 persons is to form from a 
group of 20 persons. Answer the following questions.

 (i)  The number of times that two particular persons 
are together on duty is

(A) 
20

12 8

!

! !
 (B) 

18

10 8

!

! !
 (C) 

20

10 8

!

! !
 (D) 

20

10 10

!

! !

 (ii)  The number of times that three particular 
persons are together on duty is

(A) 
17

8 9

!

! !
 (B) 

17

8 8

!

! !
 (C) 

20

17 3

!

! !
 (D) 

20

9 8

!

! !

 (iii)  The number of ways of selecting 12 guards such 
that two particular guards are out of duty and 
three  particular guards are together on duty is

(A) 
( )!

( )! !

20

15 5
 (B) 

( )!

! !

18

9 3
 (C) 

( )!

! !

15

9 6
 (D) 

( )!

! ( )!

15

5 10

Comprehension-Type Questions



INTEGER-TYPE QUESTIONS

The questions in this section are nu-

merical problems for which no choices 

are provided. The students re required 

to find the exact answers to numerical 

problems and enter the same in OMR 

sheets. Answers can be one-digit or 

two-digit numerals.

These questions check the 

analytical and reasoning 

skills of the students. Two 

statements are provided – 

Statement I and Statement 

II. The student is expected 

to verify if (a) both state-

ments are true and if both 

are true, verify if statement 

I follows from statement 

II; (b) both statements are 

true and if both are true, 

verify if statement II is not 

the correct reasoning for 

statement I; (c), (d) which 

of the statements is untrue.

ASSERTION–REASONING TYPE QUESTIONS

Assertion–Reasoning Type Questions

In the following set of questions, a Statement I is given 
and a corresponding Statement II is given just below it. 
Mark the correct answer as:

(A)  Both I and II are true and II is a correct reason for I
( B )  Both I and II are true and II is not a correct reason 

for I
( C )  I is true, but II is false
( D )  I is false, but II is true

1.  Statement I: Let a, b and c be real numbers and 
a ¹ 0. If 4 3 2a b c+ +  and a have same sign, then not 
both the roots of the equation ax bx c2 0+ + =  belong 
to the open interval (1, 2).

   Statement II: A quadratic equation f x( ) = 0 will have 
a root in the interval (a, b) if f a f b( ) ( ) .< 0

Solution: Let f x px qx r( ) = + +2 . If f a( ) and f b( )  are 
of opposite sign, the curve (parabola) y f x= ( ) must 
intersect x-axis at some point. This implies that f (x) has a 
root in (a, b). Therefore, the Statement II is true.
 Let a and b be roots of ax bx c2 0+ + = . Then,

a b ab+ =
- b
a

c
a

and =

By hypothesis, 

4 3 2
0

a b c
a

+ +
>

2.  Statement I: If P x a bx c( ) = + +x2  and Q x ax( ) = - +2

dx c+ , where ac ¹ 0, then the equation P x Q x( ) ( ) = 0 
has at least two real roots.

   Statement II: A quadratic equation with real coeffi-
cients has real roots if and only if the discriminant is 
greater than or equal to zero.

Solution: Let px qx r2 0+ + =  be a quadratic equation. 
The roots are 

- ± -q q pr

p

2 4

2

These are real Û - ³q pr2 4 0. Therefore Statement II 
is true.
 In Statement I, ac ¹ 0. Therefore ac > 0 or ac < 0. If 
ac < 0, then b2 - 4ac > 0, so that P(x) = 0 has two real roots. 
If ac > 0, then d2 + 4ac > 0 so that Q(x) = 0 has two real 
roots. Further, the roots of P(x) = 0 and Q(x) = 0 are also 
the roots of P(x)Q(x) = 0. Therefore, Statement I is true 
and Statement II is a correct reason for Statement I.

 Answer: (A)

3.  Statement I: If a, b and c are real, then the roots of the 
equation (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0 
are imaginary.

   Statement II: If p, q and r are real and p ¹ 0 , then 
the roots of the equation px qx r2 0+ + =  are real or 
imaginary according as q pr q pr2 24 0 4 0- ³ - <or .

Integer Answer Type Questions

The answer to each of the questions in this section is 
a non-negative integer. The appropriate bubbles below 
the respective question numbers have to be darkened. 
For example, as shown in the figure, if the correct answer 
to the question number Y is 246, then the bubbles under 
Y labeled as 2, 4, 6 are to be darkened.

0 0 0 0

1 1 1 1

3 3 3 3

5 5 5 5

7 7 7 7

8 8 8 8

9 9 9 9

4 4 4

6 6 6

2 2 2

X Y Z W

1. The integer value of k for which

2.  The number of negative integer solutions of x x2 12´ ++  
2 2 23 2 2 3 4 1| | | |x x xx- + - + -= ´ + is .

3.  If ( )/a + 5 2i  is a root of the equation 2 6 02x x k- + = , 
then the value of k is .

4.  If the equation x x a2

1 24 0- + =log /  does not have 
distinct real roots, then the minimum value of 1/a
is .

5.  If a is the greatest negative integer satisfying

x x x2 24 77 0 4- - < >and

simultaneously, then the value of |  a  | is .

6.  The number of values of k for which the quad-
ratic equations (2k - 5)x2 - 4x - 15 = 0 and (3k - 8)
x2 - 5x - 21 = 0 have a common root is .

7.  The number of real roots of the equation 2 62x x- -
5 3 6 02x x- - =  is .



For self-assessment, each chapter has 

adequate number of exercise prob-

lems where the questions have been 

subdivided into the same categories as 

asked in IIT-JEE pattern.

EXERCISES   EXERCISES

Single Correct Choice Type Questions

1.  The roots of the equation

( ) ( ) ( )/ / /10 25
17

4
502 1 1x x x+ =

are

(A) 2, 1/2 (B) -2, 1/2 (C) 2, -1/2 (D) 1/2, -1/2

2.  If a a l m blm c a l n¹ + + + = + +0 2 02 2and and )( ) (
2 0bln c+ = , then

(A) mn l c a= +2 /  (B) lm n c a= +2 /

(C) ln m c a= +2 /
 

(D) mn l bc a= +2 /

3.  If x is real, then the least value of 

6 22 21

5 18 17

2

2

x x
x x

- +
- +

is

(A) 5/4 (B) 1 (C) 17/4 (D) -5/4

Multiple Correct Choice Type Questions
1.  The equation x x x( / )(log ) log ( / )3 4 5 42

2
2 2+ - =  has

(A) atleast one real solution
(B) exactly three solutions
(C) exactly one irrational solution
(D) complex roots

2.  If S is the set of all real values of x such that

2 1

2 3
0

3 2

x
x x x

-
+ +

>

then S is a superset of

(A) ( , / )-¥ - 3 2  (B) (-3/2, -1/4)

(C) ( / , / )-1 4 1 2  (D) (1/2, 3)

(A) a + b   (B) a − b 
(C) ( )a b+ 2  (D) ( )a b- 2

 8.  If the product of the roots of the equation

x mx e m2 24 3 4 0- + - =log

is 8, then the roots are

(A) real   (B) non-real
 (C) rational  (D) irrational

 9.  If 3 11 9
2 10 3 1- - + £log [ ( / ) ]/ x x , then x belongs to

(A) [0, 1/3)   (B) (1/3, 1)
(C) (2, 3)  (D) (3, 10/3]

10. Ifeverypairof theequations x2 + ax + bc = 0, x2 + bx +

In each of the following questions, statements are given 
in two columns, which have to be matched. The state-
ments in Column I are labeled as (A), (B), (C) and 
(D), while those in Column II are labeled as (p), (q), 
(r), (s) and (t). Any given statement in Column I can 
have  correct matching with one or more statements in 
Column II. The appropriate bubbles corresponding to 
the answers to these questions have to be darkened as 
illustrated in the  following example.

Example: If the correct matches are (A) ® (p), (s); 
(B) ® (q), (s), (t); (C) ® (r); (D) ® (r), (t); that is if the 
matches are (A) ® (p) and (s); (B) ® (q), (s) and (t); 
(C) ® (r); and (D) ® (r), (t), then the correct darkening 
of  bubbles will look as follows:

Column I Column II

(A)  The equation 
whose roots are 
a b ab+ and  is

(p) cx bx a2 0+ + =

(q) a x ac b x c2 2 2 22 0+ - + =( )

(r) a x a b c x bc2 2 0+ - - =( )

(s)  ax ac b x ac2 22+ + + +( )
bc c+ = 0

(t) cx bx a2 0- + =

(B)  The equation 
whose roots are a 2 
and b 2 is

(C)  The equation 
whose roots are 

1 1/ /a band  is

(D)  The equation 
whose roots are 
a b- -c cand  is

Matrix-Match Type Questions

Comprehension-Type Questions

1. Passage: Let A be a square matrix. Then 

(A) A is called idempotent matrix, if A A2 = .

(B)  A is called nilpotent matrix of index k, if Ak = O 
and Ak-1 ¹ O.

(C) A is called involutory matrix if A I2 = .

(D)  A is called periodic matrix with least periodic k, if 
A A A Ak k+ = ¹1 and .

Answer the following questions:

(i) The matrix 
0 1

1 0

-
-

é

ë
ê

ù

û
ú  is

 (A) idempotent (B) involutory

 (A) idempotent matrix

 (B) involutory

 (C) nilpotent matrix of index 2

 (D) AA IT = .

2.  Passage: Let A be 3 ´ 3 matrix and B is adj A. Answer 
the following questions:

(i) If A =
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 1

1 2 0

3 1 4

, then A-1  is equal to

 (A) 
1

11

8 5 2

4 3 1

- -
- -

é
ê
ê

ù
ú
ú  (B) 

1

11

8 5 2

4 3 1

-
-

é
ê
ê

ù
ú
ú

In each of the following, two statements, I and II, are given 
and one of the following four alternatives has to be chosen.

(A)  Both I and II are correct and II is a correct  reasoning 
for I.

(B)  Both I and II are correct but II is not a  correct 
 reasoning for I.

Assertion–Reasoning Type Questions

Integer Answer Type Questions

The answer to each of the questions in this section is 
a non-negative integer. The appropriate bubbles below 
the respective question numbers have to be darkened. 
For example, as shown in the figure, if the correct answer 
to the question number Y is 246, then the bubbles under 
Y labeled as 2, 4, 6 are to be darkened.

0 0 0 0

1 1 1 1

3 3 3 3

5 5 5 5

4 4 4

2 2 2

X Y Z W

2.  The number of negative integer solutions of x x2 12´ ++  
2 2 23 2 2 3 4 1| | | |x x xx- + - + -= ´ + is .

3.  If ( )/a + 5 2i  is a root of the equation 2 6 02x x k- + = , 
then the value of k is .

4.  If the equation x x a2

1 24 0- + =log /  does not have 
distinct real roots, then the minimum value of 1/a
is .

5.  If a is the greatest negative integer satisfying

x x x2 24 77 0 4- - < >and

simultaneously, then the value of |  a  | is .

   Statement II: If f x ax bx c( ) º + + >2 0 for all x > 5, 
then the equation f x( ) = 0 may not have real roots or 
will have real roots less than or equal to 5.

2.  Statement I: If a, b and c are positive integers and 
ax bx c2 0- + =  has two distinct roots in the integer 
(0, 1), then log ( ) .5 2abc ³

   Statement II: If a quadratic equation f x( ) = 0 has 

roots in an interval (h, k), then f h f k( ), ( ) > 0

3.  Statement I: There are only two values for sin x satis-
fying the equation 2 5 2 7

2 2sin cos .x x+ ´ =

(C)  I is true, but II is not true.
(D)  I is not true, but II is true.

1.  Statement I: If f x ax bx c( ) º + +2  is positive for all x  
greater than 5, then a > 0, but b may be negative or 
may not be negative.



The Answer key at the end of each chapter contains answers to all exercise problems.

ANSWERS

   ANSWERS

Single Correct Choice Type Questions

 1. (D)
 2. (B)
 3. (C)
 4. (C)
 5. (A)
 6. (D)
 7. (D)
 8. (A)
 9. (D)
10. (D)
11. (C)
12. (B)
13. (A)

14. (B)
15. (C)
16. (A)
17. (A)
18. (B)
19. (B)
20. (D)
21. (C)
22. (D)
23. (A)
24. (A)
25. (C)

Multiple Correct Choice Type Questions

1. (B), (C)
2. (B), (D)
3. (B), (C)
4. (A), (B)
5. (B), (D)
6. (A), (B), (C)
7. (A), (B), (C), (D)
8. (A), (B), (C), (D)

 9. (A), (B), (C), (D)
10. (B), (D)
11. (A), (B), (C)
12. (A), (B), (C), (D)
13. (A), (B)
14. (A), (B), (C), (D)
15. (A), (D)

Comprehension-Type Question

1. (i) (B); (ii) (A); (iii) (C)
2. (i) (B); (ii) (A); (iii) (C)

 3. (i) (A); (ii) (B); (iii) (A)
 4. (i) (D); (ii) (C); (iii) (D)

Assertion–Reasoning Type Questions

1. (A)
2. (A)
3. (D)

 4. (C)
 5. (A)

Integer Answer Type Questions

1. 2
2. 3
3. 6

 4. 16
 5. 0

Matrix-Match Type Questions

1. (A) ® (p), (B) ® (p), (C) ® (r), (D) ® (r)
2. (A) ® (p),  (B) ® (q), (C) ® (p), (D) ® (q)
3. (A) ® (q),  (B) ® (s), (C) ® (p), (D) ® (r)

 4. (A) ® (r),  (B) ® (r), (C) ® (q), (D) ® (p)
 5. (A) ® (q),  (r) ,  (s) (B) ® (s), (C) ® (p), (D) ® (q), (s)
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Sets: Any collection of well-
defined objects.

Relations: For any two sets A 
and B, any subset of A ´ B is 
called a relation from A to B.

Functions: A relation f from 
a set A to a set B is called a 
function from A to B if for 
each a Î A, there exists unique 
b Î B such that (a, b) Î f.
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Chapter 1  Sets, Relations and Functions2

Mankind has been using the number concept as an abstraction without expressely formulating what, in precise terms, 
a number is. The first precise formulation was made by the Swiss mathematician George Cantor during the years 
1874 –1897 while working on number aggregates. To start with one has to realize that the abstraction that is the number 
“five”‚ say, is the commonality that exists between all sets which can be put into one-to-one correspondence with the 
set of fingers on a normal human hand. In olden days a shepherd would carry a bag of pebbles just to say that he has 
that many sheep with him or, equivalently, there is a one-to-one correspondence between the pebbles in the bag and 
the sheep he possesses. The concept of set and the concept of one-to-one correspondence of sets were introduced 
by George Cantor for the first time into the world of mathematics. For a number like five or for any finite number, 
Cantor’s approach through one-to-one correspondence of sets may appear to be a triviality. But if we turn to infinite 
sets, we feel the difference. First of all, what is a set? The precise mathematical definition of a set had to wait for 
more than three decades after Cantor’s proposal: It is a collection of objects and several paradoxes that followed the 
Cantor’s viewpoint.

1.1 | Sets: Definition and Examples

For our present discussion we can be content with what most introductory mathematics texts are content with: the 
intuitive concept of a set. A set is just a well-defined collection of objects, well-defined in the sense that given any object 
in the world, one can say this much: Either the object belongs to the set or it does not. It cannot happen both ways. Let 
us consider a counterexample first and an example of a set later.

Let X be the collection of all sets A such that A is not an 
object in A or, A does not belong to A. We shall argue 
that X is not a set. Suppose, on the contrary, that X is a set.

If X belongs to X, then X does not belong to X.

If X does not belong to X, then X  belongs to X. Either 
way, we get a contradiction. Therefore, we cannot decide 
whether X is an object in X. Thus, X is not a  well-defined 
collection of objects and hence X is not a set.

Counter Example

A positive integer greater than one is called a prime 
number if it has exactly two positive divisors, namely 1 
and itself. Let P be the collection of all prime numbers. 
This is a  well-defined collection of objects. For, given any 
object in the world, the question whether it belongs to 
this set or not has a unique answer. First recognize that if 
the given object is other than a positive integer, one can 
answer the question in the negative without any think-
ing. If the object is a positive integer, the question arises 

whether it is a prime number or not. For example, consider 
the number 2009. We may not be able to answer whether 
it is a prime number or not. But this much is certain that 
either 2009 is a prime or it is not. It can never be both. 
This is the property of being a well-defined collection.

Example

DEFINITION 1.1  Set Any well-defined collection of objects is called a set.

DEFINITION 1.2  Element Let X be any set. The objects belonging to X are called elements of X, or members 
of X. If x is an element X, then we say that x belongs to X and denote this by x Î X. If x does 
not belong to X, then we write x Ï X.

The sets are usually denoted by capital letters of English alphabet while the elements are denoted in general by small 
letters. A set is represented by listing all its elements between the brackets { } and by separating them from each 
other by commas, if there are more than one  element. Here are some examples of sets and the usual notations used 
to denote them.
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QUICK LOOK 1

1. The set of all natural numbers (i.e., the set of all 
 positive integers) is denoted by � or �+. That is, 
� = {1, 2, 3, 4, ¼}.

2.  The set of all non-negative integers is denoted by W;
that is W = {0, 1, 2, 3, ¼}.

3. � denotes the set of all integers.

4. � denotes the set of all rational numbers.

5. The set of all real numbers is denoted by �.

6. The set of all positive real numbers is denoted by �+.

7. The set of all positive rational numbers is denoted 
by �+.

8. � denotes the set of all complex numbers.

Example     1.1   

Verify whether the following are sets:

(1)  The collection of all intelligent persons in Visakha-
patnam.

(2) The collection of all prime ministers of India.

(3) The collection of all negative integers.

(4) The collection of all tall persons in India.

Note that the collections given in (1) and (4) are not 
sets because, if we select a person in Visakhapatnam, 
we cannot say with certainty whether he/she belongs to 
the collection or not, as there is no stand and scale for the 
evaluation of intelligence or for being tall. However, the 
collections given in (2) and (3) are sets.

A set may be represented with the help of certain property or properties possessed by all the elements of that set. 
Such a property is a statement which is either true or false. Any object which does not possess this property will not be 
an element of that set. In order to represent a set by this method we write between the brackets { } a variable x which 
stands for each element of the set. Then we write the property (or properties) possessed by each element x of the set. 
We denote this property by p(x) and seperate x and p(x) by a symbol: or |, read as “such that”. Thus, we write

{ x | p(x)} or { x : p(x)}

to represent the set of all objects x such that the statement p(x)  is true. This representation of a set is called “set builder 
form” representation.

(1)  Let P be the collection of all prime numbers. Then it 
can be represented in the set builder form as

P x x= { | }is a prime number

(2)  Let X be the set of all even positive integers which 
are less than 15. Then

X =

=

{ |

{ , , , , , , }

x x xis even integer and 0 < < 15}

2 4 6 8 10 12 14

(3)  Let X be the set given above in (2) and

Y y y
y

X= = Î
ì
í
î

ü
ý
þ

| 0
1

or

Then

Y = ì
í
î

ü
ý
þ

0
1

2

1

4

1

6

1

8

1

10

1

12

1

14
, , , , , , ,

Examples

DEFINITION 1.3  Empty Set The set having no elements belonging to it is called the empty set or null set and 
is denoted by the symbol f.

(1)  LetX = < <{ }x x x| .is an integer and 10  Then X is a 
set and there are no elements in X, since there  is  no 
integer x such that 0 < x < 1. Therefore, X is the 
empty set.

(2)  Let X a a= ={ | }.a  is a rational number and 22  Then X 
is the empty set, since there is no rational number a for 
which a2 2= .

Examples
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Notation: The symbol Þ is read as “implies”.  Thus a Þ b is read as “a implies b”. The symbol Û is read as “implies 
and is implied by” or as “if and only if”.  Thus a Û b is read as “a implies and implied by b” or “a if and only if b”.

(1) x is an integer and 0 < x < 2 Û x = 1. (2) a is an integer and a2 = a Û a = 0 or a = 1.

Examples

DEFINITION 1.4  Equal Sets Two sets A and B are defined to be equal if they contain the same elements, in the 
sense that,

x A x BÎ Û Î

In this case, we write A = B. If A and B are not equal, then we denote it by A ¹ B.

(1) Let A = {1, 2, 3, 4} and B = {4, 2, 3, 1}. Then A = B.

(2) Let

X n n n

Y n n n

= Î £ £

= Î £ £

{ | }

{ | }

�

�

and

and

1 16

1 4

2

and Z n n n= Î £ £+{ | }� and 1 162

Then Y = Z and X ¹ Y, since -1 Î X and -1 Ï Y. Note that 
X = {-4, -3, -2, -1, 1, 2, 3, 4}.

Examples

DEFINITION 1.5  Finite and Infinite Sets A set having a definite number of elements is called a finite set. A set 
which is not finite is called an infinite set.

(1) The set �+ of positive integers is an infinite set.

(2)  {a, b, c, d} is a finite set, since it has exactly four 
elements.

(3) The set � of real numbers is an infinite set.

(4) { | }x x xÎ < £� and 0 100  is a finite set.

(5) { | }x x xÎ < <� and 0 1  is an infinite set.

Examples

DEFINITION 1.6  Family of Sets  A set whose members are sets is called a family of sets or class of sets.

Note that a family of sets is also a set. Usually families of sets are denoted by script letters �, �, �, �, etc.

(1)  For any integer n, let An = { x | x is an integer and
x ³ n}. Then { |A nn is an integer}  is a family of sets.

(2) For any house h, let

X hh = The set of persons belonging to the house

Then { |X hh is a house in Visakhapatnam} is a family of 
sets.

Examples

DEFINITION 1.7  Indexed Family of Sets A family � of sets is called an indexed family if there exists a set I 
such that for each element i Î I, there exists a unique member Ai in �  associated with i and 
� = {Ai : i Î I}. In this case, the set I is called the index set.

For example, the family of sets �+ of positive integers is an indexed family of sets, the index set being �, the set of 
integers. In the example Xh = The set of persons belonging to the house h where {Xh | h is a house in Visakhapatnam} 
also we have an indexed family of sets, where the index set is the set of houses in Visakhapatnam. If � is an indexed 
family of sets with the index set I, then we usually write

� = {Ai}i ÎI or {Ai | i Î I }
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DEFINITION 1.8  Intervals in � For any real numbers a and b, we define the intervals as the sets given below:

1. (a, b) = { x | x Î � and a < x < b}

2. (a, b] = { x | x Î � and a < x £ b}

3. [a, b) = { x | x Î � and a £ x < b}

4. [a, b] = { x | x Î � and a £ x £ b}

(1) [ , ] { | }2 4 2 4= Î < <x x x� and (2) [ , ] { | }0 1 0 1= £ £x x xÎ� and

Examples

Note that, for any two real numbers a and b, the intervals [a, b] or [a, b) or (a, b] is empty if and only if a ³ b. Also
(a, b) is empty if and only if a > b. Further [a, b] has exactly one element if and only if a = b. Thus these intervals 
become non-trivial only if a < b. Usually (a, b) is called an open interval, (a, b] is called left open and right closed inter-
val, [a, b) is called the left closed and right open interval and [a, b] is called a closed interval.

1.2 | Set Operations

We define certain operations between sets. These are closely related to the logical connectives “and”, “or” and “not”. 
To begin with, we have the following.

DEFINITION 1.9  Subset For any two sets A and B,  we say that A is a subset of B or A is contained in B if every 
element of A is an element of B; in this case we denote it by A Í B. A is not a subset of B is 
denoted by A B/Í .

If A Í B we also say that B is a super set of A or B contains A or B is larger than A or A is smaller than B. Sometimes, 
we write B Ê A instead of A Í B. If A is a subset of B and A ¹ B, then we say that A is a proper subset of B and denote 
this by A Ì B. Note that, for any sets A and B,  A = B if and only if A Í B and B Í A.

QUICK LOOK 2

1. The set �+ of positive integers is a proper subset of 
the set � of integers.

2. � is a proper subset of the set � of rational numbers.

3. � is a proper subset of the set � of real numbers.

4. � is a proper subset of the set � of complex numbers.

5. The set of Indians is a subset of the set of human beings.

6. If A = {1, 2, 3, 4, 5} and B = { x | x Î � and x2 − 5x +
6 = 0}, then B Ì A.

DEFINITION 1.10  Power Set For any set X, the collection of all subsets of X is also a set and is called the 
power set of X. It is denoted by P(X ).

Note that the empty set f and the set X are always elements in the power set P(X ). Also, X = f if and only if P(X ) has 
only one element. Infact, X has exactly n elements if and only if P(X ) has exactly 2n elements, as proved in Theorem  1.1. 
First, let us consider certain examples.

(1) If X = {a}, then P X X( ) { }= f,
(2) If X = {a, b}, then P X a b X( ) { }= f, { }, { },
(3) If X = {1, 2, 3}, then

P X X( ) { }= f, {1}, {2}, {3}, {1, 2}, {2, 3}, {3,1},

(4) If X = {1, 2, 3, 4, 5}, then P(X ) has 32 25( )=  elements

(5)  If X is a set such that P(X ) has 128 elements then X 
has 7 elements, since 2 1287 =

Examples
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DEFINITION 1.11  Cardinality If X is a finite set, then the number of elements in X is denoted by | X | or n(X ) 
and this number is called the cardinality of X.

THEOREM 1.1

PROOF

Let X be any set. Then X is a finite set with n elements if and only if the power set P(X ) is a finite 
set with 2n elements.

Suppose that X is a finite set with n elements. We apply induction on n. If n = 0, then X = f and 
P(X ) = {f} which is a set with 1 (= 20) element. Now, let n > 0 and assume that the result is true 
for all sets with n - 1 elements; that is, if Y is a set with n - 1 elements, then P(Y ) has exactly 2n-1 
elements. 

Since n > 0, X is a non-empty set and hence we can choose an element a in X. Let Y be the set of 
all elements in X other than a. Then | Y | = n - 1 and therefore | ( )| .P Y n= -2 1  Clearly P Y P X( ) ( ).Í  
Also, if A Î P(X ) and A Ï P(Y ), then A Í X and A Ë Y and hence a Î A. Therefore, the number of 
subsets of X which are not subsets of Y is equal to the number of subsets of X containing a which 
in turn coincides with |P(Y)|. Hence,

 | ( )| | ( )| | ( )|P X P Y P Y n n n= + = + =- -2 2 21 1

Converse is clear; since each element x Î X produces an element { x } Î P(X ), therefore X must
be finite if P(X ) is finite. Also, note that, for non-negative integers n and m, 2n = 2m if and only if 
n = m. ■

COROLLARY 1.1 For any finite set X, | X | < | P(X ) |.

DEFINITION 1.12  Intersection of Sets For any two sets A and B, we define the intersection of A and B to be 
the set of all elements belonging to both A and B. It is denoted by A Ç B. That is,

A Ç B = { x | x Î A and x Î B}

Example     1.2   

Let A = { x | x is an odd prime and x < 20} and B = { x | x is 
an integer and x > 6}. Find A Ç B.

Solution: By hypothesis

A = {3, 5, 7, 11, 13, 17, 19} and B = {7, 8, 9, 10, 11, 12, ...}

Therefore

A BÇ = { , , , , }7 11 13 17 19

Example     1.3   

Let X = The set of all circles in the plane whose radii is 
5 cm and Y = The set of all line segments of length 5 cm 
in the plane. Find X Ç Y.

Solution: X Ç Y = f, the empty set, since no circle of 
positive radius can be a line segment.

Example     1.4   

Let F = The set of all boys in a school who can play 
 football and C = The set of all boys in the school who can 
play cricket. Find F Ç C.

Solution: F Ç C = The set of all boys in the school who 
can play both football and cricket.

Example     1.5   

Let A = The set of all non-negative integers and B = The 
set of all non-positive integers. Find A Ç B.

Solution: A Ç B = {x | x is an integer,  x ≥ 0 and x ≤ 0} = {0}.
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The following can be proved easily.

Try it out

THEOREM 1.2 The following hold for any sets, A, B and C.

1. A Í B Û A = A Ç B
2. A Ç A = A

3. A Ç B = B Ç A
4. (A Ç B) Ç C = A Ç (B Ç C)

5. A Ç f = f, where f is the empty set.

6. For any set X, X Í A Ç B if and only if X Í A and X Í B.

In view of (4) above, we write simply A Ç B Ç C for (A Ç B) Ç C or A Ç (B Ç C). In general, if A1, A2, ¼, An are sets, 
we write

A A A Ai
i

n

n
=

Ç Ç Ç
1

1 2∩ 	for

More generally, for any indexed family {Ai}i ÎI of sets, we write Ai
i IÎ
∩  for the set of all elements common to all Ai’s, 

i Î I and express this by

A x x A i Ii
i I

i
Î

= Î Î∩ { | }for all

DEFINITION 1.13  Disjoint Sets Two sets A and B are called disjoint if A Ç B is the empty set. In this case we 
say that A is disjoint with B or B is disjoint with A.

(1)  Let E be the set of even integers and O the set of all 
odd integers. Then E and O are disjoint sets.

(2)  Let A p p= { | .is a prime number}  Then A Ç � = f, 
where � is the set of rational numbers, since it is 

known  that p  is an irrational number for any prime p.

(3) 0
1

0
1

, { }
nn

é
ëê

ù
ûú

=
=

¥∩

(4)  0
1

1
,

nn

æ
èç

ö
ø÷

=
=

¥
f∩  

since, for any given a > 0, we can find an integer n 
such that 0 < 1/n < a and hence a Ï(0, 1/n).

Examples

DEFINITION 1.14  Union of Sets For any two sets A and B, we define the union of A and B as the set of all 
 elements belonging to A or B and denote this by A È B; that is,

A B x x A x BÈ = Î Î{ | }or

Note that the statement “x Î A or x Î B” does not exclude the case “x Î A and x Î B”. 
Therefore

A B x x A x BÈ = Î Î{ | or or both}

Let E be the set of even integers and O the set of all odd 
integers. Then E OÈ = �,  the set of integers. In this case, 

E and O are disjoint and hence we do not come across 
the case “x E x OÎ Îand ”.

Example
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Example     1.6   

Let A be the interval [0, 1] and B the interval [1/2, 2]. 
Then find A È B and A Ç B.

Solution: We have

A B x x A x B

x x x x

È = Î Î

= Î £ £ £ £ì
í
î

ü
ý
þ

{ | }

| ’

or

and ‘ or� 0 1
1

2
2

= Î £ £

=

{ | }

[ , ]

x x x� and 0 2

0 2

Also,

A BÇ = é
ëê

ù
ûú

1

2
1,

Example     1.7   

Let A = Ç[ , ]0 1 �  and B = Ç( , ) .1 2 �  Find A BÈ .

Solution: A B A BÈ = Î Î{ |x x xor }

= Î Î Î{ | [ , ] ( , )’}x x x x� and ‘ or0 1 1 2

= Î £

= Ç

{ | }

[ , )

x x x�

�

and <

0 2

0 2

Example     1.8   

Let A be the set of all even primes and B the interval
(2, 3). Find A È B.

Solution: A B x x xÈ = Î{ | ( , )}is an even prime or 2 3

= = Î < <{ | }x x x x2 2 3or such that�

= Î £ <

=

{ | }

[ , )

x x x2 3

2 3

and�

The following can be easily proved.

Try it out

THEOREM 1.3 For any sets A, B and C the following hold.

  1. A Ç B Í A È B
  2. For any set X, A È B Í X if and only if A Í X and B Í X

  3. A È A = A

  4. A È B = B È A
  5. (A È B) È C = A È (B È C)

  6. A Í B Û A È B = B

   7. A È f = A

  8. A = A Ç B Û A Í B Û A È B = B

  9. A Ç (A È B) = A

10. A È (A Ç B) = A

THEOREM 1.4 
DISTR IBUT IVE 

LAWS

The following hold for any sets A, B and C.

1. A Ç (B È C) = (A Ç B) È (A Ç C)

2. A È (B Ç C) = (A È B) Ç (A È C)

These are called the distributive laws for intersection Ç and union È.



PROOF 1. x Î A Ç (B È C) Þ x Î A and x Î B È C

 

Þ Î Î Î

Þ Î Î Î Î

Þ Î Ç Î Ç

Þ Î

x A x B x C

x A x B x A x C

x A B x A C

x

and or

and or and

or

( )

( ) ( )

(( ) ( )A B A CÇ È Ç

Therefore

 A B C A B A CÇ È Í Ç È Ç( ) ( ) ( )  (1.1)

On the other hand, we have

x A B A C x A B x A C

x A x B x A x C

x A

Î Ç È Ç Þ Î Ç Î Ç

Þ Î Î Î Î

Þ Î

( ) ( )

( ) ( )

or

and or and

and (( or

and

x B x C

x A x B C

x A B C

Î Î

Þ Î Î È

Þ Î Ç È

)

( )

Therefore

 ( ) ( ) ( )A B A C A B CÇ È È Í Ç È  (1.2)

From Eqs. (1.1) and (1.2), we have A B C A B A CÇ È = Ç È Ç( ) ( ) ( ).

2. It can be proved similarly and is left as an exercise for the reader. ■

Try it out A È (B Ç C) = (A È B) Ç (A È C)

THEOREM 1.5

PROOF

For any sets A, B and C,

 A B A C A B A C B CÇ = Ç È = È =and imply

Suppose that A B A C A B A CÇ = Ç È = Èand . Consider

B B A B= Ç È( ) [by part (9) of Theorem 1.3]

= Ç ÈB A C( ) (since A È B = A È C)

= Ç È Ç( ) ( )B A B C  (by the distributive laws)

= Ç È Ç( ) ( )C A C B  (since A Ç B = A Ç C)

= Ç ÈC A B( ) (by the distributive laws)

= Ç ÈC A C( ) (since A È B = A È C)

= C   [by part (9) of Theorem 1.3]

Therefore B = C.
Since (A È B) È C = A È (B È C) for any sets A, B and C, we simply write A È B È C without 

bothering about the brackets. In general, if A1, A2, …, An are any sets, then we write 

 A A A Ai
i

n

n
=

È È È
1

1 2∪ 	for

For any indexed family { }A Ii iÎ  of sets, we write Aii IÎ∪  for the set of all elements belonging to at 
least one Ai and express this by

 
A x x A I

I
i

i
i i

Î

= Î Î∪ { | for some }
 ■

1.2   Set Operations 9
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(1) For any positive integer n, let

A x x xn n n n n= - = Î - < <( , ) { | }� and

Then

A x xn = Î
=

¥

{ | �∪
n 1

 and -n < x < n for some n Î =+� �}

since, for any real number x, there exists a positive 
integer n such that | x | < n and hence -n < x < n, so 
that x AnÎ .

(2) For any positive integer n, let

Pn = { p | p is a prime number and p < n}

Note that P1 = f = P2, P3 = {2} and P4 = {2, 3}. Now

Pn
n

=
=

¥

1

∪  The set of all prime numbers

since, for any prime p, we have p ApÎ +1.

(3) For any positive real number a, let

Aa =  The set of human beings on the Earth whose 
height is less than or equal to a cm

Then

Aa
a

=
Î +�
∪  The set of all human beings on the Earth

(4) For any positive integer n, let

X
n n

x x
n

x
nn = -æ

èç
ö
ø÷ = Î - < <ì

í
î

ü
ý
þ

1 1 1 1
, | � and

Then

X Xn
n

n
n=

¥

=

¥

= { } = -
1 1

0 1 1∩ ∪and ( , )

since Xn Í X1 for all n Î �+.

Examples

DEFINITION 1.15  For any two sets A and B, the difference of A and B is defined as the set

A - B = { x | x Î A and x Ï B}

Example     1.9   

Find the difference of the following sets.

(1) A x x x= = Î < <( , ) { | }0 1 0 1� and  and

B x x
x

= Î Îì
í
î

ü
ý
þ

+| � �and
1

(2) � - � where the symbols have there usual meaning.

(3)  A = The set of all students in a school and B = The 
set of all girls

(4) � - �+ where the symbols have the usual meaning.

Solution:

(1) By hypothesis

A = (0, 1) = {x | x Î � and 0 < x < 1} and B = {x | x Î�+ 
and 1/x Î�}. We have

B = ì
í
î

ü
ý
þ

1
1

2

1

3

1

4
, , , ,	

Now

A B x x A x B

x x x
x

n nn

- = Î

= Î < <ì
í
î

ü
ý
þ

=
+

æ
èç

ö
ø÷=

{ | }

| ,

,

and

and

Ï

Ï� �0 1
1

1

1

1

11

¥

∪

(2) � � � �- = Î{ | }x x xand Ï

 

=

= +

= È - - È
Î

{ |

( , )

( , ) (

x x

n n
n

is a real number and not an integer}

1

2 1

�
∪
	 -- È È È1 0 0 1 1 2, ) ( , ) ( , )

(3) A - B = The set of all boys in the school

(4) � - �+ = The set of all non-positive integers

= {x | x Î � and x £ 0}

THEOREM 1.6 
DE MORGAN 'S 

LAWS

PROOF

For any sets A, B and C, the following hold:

1. A - (B È C) = (A - B) Ç (A - C)

2. A - (B Ç C) = (A - B) È (A - C)

1. x A B C x A x B C

x A x B x C

Î - È Þ Î È

Þ Î

( )

( )

and

and and

Ï

Ï Ï



Þ Î Î

Þ Î - Î -

Þ Î - Ç -

( ) ( )

( ) ( )

x A x B x A x C

x A B x A C

x A B A C

and and and

and

Ï Ï

and therefore, A - (B È C) Í (A - B) Ç (A - C). Also,

x A B A C x A B x A C

x A x B x A x C

x A

Î - Ç - Þ Î - Î -
Þ Î Î Ï
Þ Î

( ) ( )

( ) (

and

and and andÏ  )
aand and )

and

(

( )

x B x C

x A x B C

x A B C

Ï Ï
ÏÞ Î È

Þ Î - È

and therefore (A - B) Ç (A - C) Í A - (B È C). Thus

A - (B È C) = (A - B) Ç (A - C)

2. It can be similarly proved and is left as an exercise for the reader. ■

Try it out

THEOREM 1.7 The following hold for any sets A, B and C.

1. B Í C Þ A - C Í A - B

2. A Í B Þ A - C Í B - C

3. (A È B) - C = (A - C) È (B - C)

4. (A Ç B) - C = (A - C) Ç (B - C)

5. (A - B) - C = A - (B È C) = (A - B) Ç (A - C)

6. A - (B - C) = (A - B) È (A Ç C)

THEOREM 1.8 
GENERAL IZED 

DE MORGAN'S 
LAWS

PROOF

Let { }Ai i IÎ  be any family of sets and B and C any sets. Then the following hold:

1. B A B A
I I

-
æ

èç
ö

ø÷
= -

Î Î
i

i
i

i
∪ ∩( )

2. B A B A
I I

-
æ
èç

ö
ø÷

= -
Î Î

i
i

i
i

∩ ∪( )

3. A B A B
I I

i
i

i
iÎ Î

æ
èç

ö
ø÷

- = -∪ ∪( )

4. A B A B
I I

i
i

i
iÎ Î

æ
èç

ö
ø÷

- = -∩ ∩( )

These follow from the facts that

x A x A

A A

x A A

I

Î Û Î Î

Î Û Î Î

Û

Î

Î

Î

i
i

i

i
i I

i

i
i I

i

i I

x x i I

x

∪

∩

∪

for some

for all

Ï Ï ffor all

for some

i I

x ii
i I

i

Î

Û Î
Î

Ï ÏA x A I∩and 
■

1.2   Set Operations 11
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(1) � � �
�

∪- = -
æ
èç

ö
ø÷Î

{ }n
n

 = -
Î

( { })�
�

∩ n
n

(2) � � �
�

∪- = +
æ
èç

ö
ø÷

-
Î

[ , ]n n
n

1

 = + -( )
Î

[ , ]n n
n

1 �
�

∪
 = +

Î

( , )n n
n

1
�

∪

Note that, here we have used the fact that, for any 
 integer n, there is no integer m such that n m n< < + 1.

(3) For any integer n,

� - + = -¥ È + ¥( , ) ( , ] [ , )n n n n1 1

Here ( , )-¥ n  stands for the set of real numbers x 
such that x n£  and [ , )n + ¥1  for the set of real num-
bers x such that n x+ £1 .

(4)  Let

A x x= Î < =+{ | } { , , , , , , , , }� 10 1 2 3 4 5 6 7 8 9

and B = The set of all prime numbers

Then

A B- = { , , , , }1 4 6 8 9

Examples

It is convenient to write ¢B  for the set of all  elements not belonging to B and to write A B-  as A BÇ ¢.  But the 
problem here is that ¢B may not be a set at all. However, if X is a superset of B, then certainly X B-  is a set, which can 
be imagined as ¢B .  For any two sets A and B, we can take X A B= È  and then

A B A X B A B- = Ç - = Ç ¢( )

When we are dealing with a family { }Ai i IÎ  of sets (or set of sets), we can assume that each Ai  is a subset of some set X; 
for example, we can take X =

Î
Aii I∪ .  This common superset is called a  universal set. Therefore, when we discuss about 

difference set A B- ,  we can treat A and B as subsets of a universal set X and treat A B-  as A BÇ ¢,  where

B x x X x B¢ = Î Ï{ }| and

¢B  is certainly a set, since X and B are sets and so is X B- . This ¢B  is called the complement of B in X or, simply, the comple-
ment of B, when there is no ambiguity about X. Note that A B A A B- = - Ç( ) and A BÇ  is a subset of A. Therefore, we 
can call A B-  is the complement of B in A. With this understanding, the properties proved above can be restated as follows:

 A B A B- = Ç ¢

 A B A A B- = - Ç( )

 ( )B C B CÈ ¢ = ¢ Ç ¢  [Part (1), Theorem 1.6]

 ( )B C B CÇ ¢ = ¢È ¢  [Part (2), Theorem 1.6]

 B C C BÍ Þ ¢ Í ¢  [Part (1), Theorem 1.7]

 A A
I I

i
i

i
iÎ Î

æ
èç

ö
ø÷
¢

= ¢∪ ∩  [Part (1), Theorem 1.8]

 A A
I I

i
i

i
iÎ Î

æ
èç

ö
ø÷
¢

= ¢∩ ∪  [Part (2), Theorem 1.8]

 A A B A B- - = Ç( )

 B A A A B B B BÍ Þ - - = ¢ ¢ =( ) ( )or

 A AÇ ¢ = f

 A A XÈ ¢ = ,  the universal set

DEFINITION 1.16  Symmetric Difference For any sets A and B, the symmetric difference of A and B is defined 
as the set

A B A B B A A B B AD = - È - = Ç ¢ È Ç ¢( ) ( ) ( ) ( )

That is, A BD  is the set all elements belonging to exactly one of A and B.
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Example     1.10   

Find the symmetric difference of the following:

(1) A = {1, 2, 3, 4} and B = {4, 5, 6}

(2) A = {a, b, c, d, e} and B = {b, c, f, g}

Solution:

(1) We have A = {1, 2, 3, 4} and B = {4, 5, 6}. Then

A - B = {1, 2, 3} and B - A = {5, 6}

Therefore

A D B = {1, 2, 3} È {5, 6} = {1, 2, 3, 5, 6}

(2) From the given sets we have

A – B = {a, d, e} and B – A = { f, g}

Therefore

A D B = {a, d, e} È { f, g} = {a, d, e, f, g}

THEOREM 1.9

PROOF

The following hold for any sets A, B and C.

1. A B B AD = D
2. ( ) ( )A B C A B CD D = D D
3. A AD f =
4. A AD = f

1. A B A B B AD = - È -( ) ( )

 = - È -

= D

( ) ( )B A A B

B A

2. ( ) [( ) ] [ ( ) ]A B C A B C C A BD D = D Ç ¢ È Ç D ¢

= Ç ¢ È Ç ¢ Ç ¢ È Ç Ç ¢ È Ç ¢ ¢

= Ç ¢Ç ¢ È Ç ¢

[{( ) ( )} ] [ {( ) ( )} ]

[( ) (

A B B A C C A B B A

A B C B AA C C A B B A

A B C B A C C A B

Ç ¢ È Ç ¢È Ç ¢È

= Ç ¢Ç ¢ È Ç ¢Ç ¢ È Ç ¢Ç ¢ È

)] [ ( ) ( )]

( ) ( ) [ {( ) (( ) ( ) ( )}]

( ) ( ) [{ ( ) (

¢Ç È Ç ¢ È Ç

= Ç ¢Ç ¢ È Ç ¢Ç ¢ È Ç ¢Ç ¢ È Ç

A A B B B A

A B C B A C C A B A BB

A B C B A C C A B C A B

)}]

( ) ( ) ( ) ( )= Ç ¢Ç ¢ È Ç ¢Ç ¢ È Ç ¢Ç ¢ È Ç Ç

Therefore, we have

( ) ( ) ( ) ( ) ( )A B C A B C A B C A B C A B CD D = Ç ¢ Ç ¢ È ¢ Ç Ç ¢ È ¢ Ç ¢ Ç È Ç Ç

This is symmetric in A, B and C; that is, if we take B, C and A for A, B and C, respectively, the 
resultant is same. Therefore,

( ) ( ) ( )A B C B C A A B CD D = D D = D D

3. A A A A AD = - È - = È =f f f f( ) ( )
4. A A A A A AD = - È - = È =( ) ( ) f f f  ■

1.3 | Venn Diagrams

A set is represented by a closed curve, usually a circle, and its elements by points within it. This facilitates better 
 understanding and a good insight. A statement involving sets can be easily understood with pictorial representation of 
the sets. The diagram showing these sets is called the Venn diagram of that statement, named after the British logician 
John Venn (1834 –1883).

Usually the universal set is represented by a rectangle and the given sets are represented by circles or closed 
geometrical figures inside the rectangle representing the universal set. An element of set A is represented by a point 
within the circle representing A.
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In Figure 1.1, the rectangle represents the universal set S, A and B represent two disjoint sets contained in S and 
a and b represent arbitrary elements in A and B, respectively.

S

A

a

B

b

FIGURE 1.1 A Venn diagram.

In Figure 1.2, two intersecting sets A and B are represented by the intersecting circles, indicating that the common 
area of the circles represents the intersection A BÇ . Figure 1.3 represents the statement “A is a subset of B”.

The shaded parts in Figures 1.4 –1.6 represent the union of two sets A and B, namely A È B in the cases 

A B A BÇ = Çf f, ¹  and A BÍ , respectively. Figures 1.7–1.9 represent the intersection A BÇ  in these cases. 

S

A B

FIGURE 1.2 Two intersecting sets A and B.

S

A

B

FIGURE 1.3 Representation of “A is a subset of B”.

S

A B

FIGURE 1.4 Representation of A B A BÈ Ç =when f.
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S

A B

FIGURE 1.5 Representation of A B A BÈ Ç ¹when f.

B

S

A

FIGURE 1.6 Representation of A B A BÈ Íwhen .

S

A B

FIGURE 1.7 Representation of A B A BÇ Ç =when f.

S

A B

FIGURE 1.8 Representation of A B A BÇ Ç ¹when f.

S

A

B

FIGURE 1.9 Representation of A B A BÇ Íwhen .
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S

A

B

FIGURE 1.10 Representation of A B B A- Íwhen .

S

A

B

FIGURE 1.11 Representation of A - B when A Í B. In this case A – B = f.

S

A B

FIGURE 1.12 Representation of A - B when A Ç B = f.

S

A B

FIGURE 1.13 Representation of A - B when A Ë B and B Ë A.

The shaded parts in Figures 1.10 –1.13 represent the difference A - B in various cases. The symmetric differences 
A D B [= (A - B) È (B - A)] are represented by the shaded parts in the Figures 1.14 –1.17 in these cases.

S

A

B

FIGURE 1.14 Representation of A D B when B Í A.
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S

B

A

FIGURE 1.15 Representation of A D B when A Í B.

S

A B
 

FIGURE 1.16 Representation of A D B when A Ç B = f.

S

A B

FIGURE 1.17 Representation of A D B when A Ë B and B Ë A.

Figure 1.18 represents the complement of a set A in a universal set S. Figures 1.19 –1.21 illustrate the cases A D B, 
(A D B) - C and C - (A D B), respectively. (A D B) D C is represented by Figure 1.22. From this one can easily see that 
(A D B) D C = (A D B) D C.

S

AA

FIGURE 1.18 Complement of a set A.
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S
A B

C

FIGURE 1.19 Representation of A D B.

S
A B

C

FIGURE 1.20 Representation of (A D B) - C.

S
A B

C

FIGURE 1.21 Representation of C - (A D B).

S
A B

C

FIGURE 1.22 Representation of (A D B) D C.

Figures 1.23 and 1.24 represent the property

A B C A B A C- È = - Ç -( ) ( ) ( )
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S
A B

C

FIGURE 1.23 Representation of A B C- È( ).

S
A B

C

FIGURE 1.24 Representation of ( ) ( ).A B A C- Ç -

In the following, we derive certain formulas for the number of elements in the intersection, union, difference and 
symmetric difference of two given finite sets. First, recall that, for any finite set A, n(A) or |A| denotes the number of 
elements in A.

(1) Let A = {a, b, c, d}, then n(A) = 4.

(2) If A = {2, 3, 5, 7}, then n(A) = 4.

(3)  If X is a finite set and n(X ) = m, then n P X m[ ( )] ,= 2  
where P(X) is the set of all subsets of X.

(4)  If X = {m | m Î Z and m2 = 1}, then n(X) = 2, since
X = {1, -1}. 

Examples

THEOREM 1.10

PROOF

For any two disjoint sets A and B,

 n A B n A n B( ) ( ) ( )È = +

Any element of A BÈ  is in exactly one of A and B and therefore n A B n A n B( ) ( ) ( )È = +
In Figure 1.25, the shaded part represents A BÈ  when A and B are disjoint sets.

S

A B

 FIGURE 1.25 Representation of A BÈ  when A and B are disjoint sets. ■
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COROLLARY 1.2 If A A An1 2, , ,…  are pairwise disjoint sets, then

n n n nn n( ) ( ) ( ) ( )A A A A A A1 2 1 2È È È = + + +	 	

THEOREM 1.11

PROOF

For any finite sets A and B,

n n n n( ) ( ) ( ) ( )A B A B A BÈ = + - Ç

Let A and B be finite sets, n a n b( ) ( )A B= =,  and n m( ) .A BÇ =  If A BÇ  is empty then m = 0  
and, by Theorem 1.10,

 n n n n n n( ) ( ) ( ) ( ) ( ) ( )A B A B A B A BÈ = + = + - Ç  ■

Suppose that A BÇ ¹ f . Then A B- ,  B A-  and A BÇ  are pairwise disjoint sets (Figure 1.26) and hence we have

n n n n n

n n

( ) [( ) ( ) ( )] ( ) ( ) ( )

( ) ( )

A B A B B A A B A B B A A B

A B

È = - È - È Ç = - + - + Ç

= + -- Çn( )A B

since n n n( ) ( ) ( )A A B A B= - + Ç  and n B n n( ) ( ) ( ).= - + ÇB A A B
We have earlier proved that n n n( ) ( ) ( ),A B A BÈ = +  if A and B are disjoint sets. The converse of this is also true.

S

A B

FIGURE 1.26 Representation of pairwise disjoint sets.

COROLLARY 1.3

PROOF

If A and B are finite sets such that n n n( ) ( ) ( ),A B A BÈ = +  then A and B are disjoint.

If n n n( ) ( ) ( )A B A BÈ = + , then by Theorem 1.11 n( )A BÇ = 0 and hence A BÇ = f . ■

COROLLARY 1.4 For any finite sets A and B,

 n n n( ) ( ) ( )A B A A B- = - Ç

COROLLARY 1.5 If A is a subset of a finite set B, then

 n n n( ) ( ) ( )B A B A= + -

THEOREM 1.12

PROOF

For any finite sets A, B and C,

 n n n n n n n n( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A B C A B C A B B C C A A B CÈ È = + + - Ç - Ç - Ç + Ç Ç

Let A, B and C be any finite sets. Then

n n n n

n n n n n

( ) ( ) ( ) [( ) ]

( ) ( ) ( ) ( ) [(

A B C A B C A B C

A B A B C A

È È = È + - È Ç

= + - Ç + - ÇÇ È ÇC B C) ( )]
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= + + - Ç - Ç + Ç - Ç Ç Ç

= +

n n n n n n n

n n

( ) ( ) ( ) ( ) [ ( ) ( ) ( )]

( ) (

A B C A B A C B C A C B C

A B)) ( ) ( ) ( ) ( ) ( )+ - Ç - Ç - Ç + Ç Çn n n n nC A B B C C A A B C

S
A B

C

 ■

THEOREM 1.13

PROOF

Let A, B and C be finite sets. Then the number of the elements belonging to exactly two of the sets 
A, B and C is

n n n n( ) ( ) ( ) ( )A B B C C A A B CÇ + Ç + Ç - Ç Ç3

The required number is

 

n n n n n

n

[( ) ] [( ) ] [( ) ] [ ( ) ( )]

[ ( )

A B C B C A C A B A B A B C

B C

Ç - + Ç - + Ç - = Ç - Ç Ç

+ Ç -- Ç Ç + Ç - Ç Ç

= Ç + Ç + Ç - Ç Ç

n n

n n n n

( )] [ ( ) ( )]

( ) ( ) ( ) (

B C A C A n C A B

A B B C C A A B3 CC)  ■

THEOREM 1.14

PROOF

Let A, B and C be any finite sets. Then the number of elements belonging to exactly one of the 
sets A, B and C is

n n n n n n n( ) ( ) ( ) ( ) ( ) ( ) ( )A B C A B B C C A A B C+ + - Ç - Ç - Ç + Ç Ç2 2 2 3

The number of elements belonging only to A is

n n n

n n

n n

[ ( )] ( ) [ ( )]

( ) [( ) ( )]

( ) [ (

A B C A A B C

A A B A C

A A B

- È = - Ç È

= - Ç È Ç

= - Ç )) ( ) ( )]

( ) ( ) ( ) ( )

+ Ç - Ç Ç Ç

= - Ç - Ç + Ç Ç

n n

n n n n

A C A B A C

A A B A C A B C

Similarly, the number of elements belonging only to B is

n n n n( ) ( ) ( ) ( )B B C B A A B C- Ç - Ç + Ç Ç

Also, the number of the elements belonging only to C is

n n n n( ) ( ) ( ) ( )C C A C B A B C- Ç - Ç + Ç Ç

Thus the number of elements belonging to exactly one of the sets A, B and C is

[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )n n n n n n n nA A B A C A B C B B C B A A B C- Ç - Ç + Ç Ç + - Ç - Ç + Ç Ç ]]

 + - Ç - Ç + Ç Ç[ ( ) ( ) ( ) ( )]n C C A C B A B Cn n n

= + + - Ç - Ç - Ç + Ç Çn n n n n n n( ) ( ) ( ) ( ) ( ) ( ) ( )A B C A B B C C A A B C2 2 2 3  ■
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QUICK LOOK 3

Summary of the formulas
Let A, B and C be given finite sets and S a universal 
finite set containing A, B and C. Then the following 
hold:

1. n(A È B) + n(A Ç B) = n(A) + n(B)

2. n(A È B) = n(A - B) + n(B - A) + n(A Ç B)

3. n(A È B) = n(A) + n(B) Û A Ç B = f
4. n(A) = n(A - B) + n(A Ç B)

5.  The number of the elements belonging to exactly 
one of A and B is

n n n

n n n

n n

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

A B A B B A

A B A B

A B A B

D = - + -
= + - Ç
= È - Ç

2

6. The number of elements belonging to exactly one of 
A, B and C is

n n n n n

n n

( ) ( ) ( ) ( ) ( )

( ) ( )

A B C A B B C

C A A B C

+ + - Ç - Ç
- Ç + Ç Ç

2 2

2 3

7.  The number of elements belonging to exactly two of 
A, B and C is

n(A Ç B) + n(B Ç C) + n(C Ç A) - 3n(A Ç B Ç C)

8. n(A¢ È B¢) = n(S) - n(A Ç B)

9. n(A¢ Ç B¢) = n(S) - n(A È B)

Example     1.11   

If A and B are sets such that n(A) = 9, n(B) = 16 and 
n(A È B) = 25, find A Ç B.

Solution: We have

n n n n( ) ( ) ( ) ( )A B A B A BÈ = + - Ç

Therefore, substituting the values we get

25 9 16

25

0

= + - Ç
= - Ç
= Ç

n

n

n

( )

( )

( )

A B

A B

A B

Hence A BÇ = f.

Example     1.12   

If A and B are sets such that n n( ) , ( )A A B= È =14 26  
and n( ) ,A BÇ = 8  then find n( )B .

Solution: We have

n n n n( ) ( ) ( ) ( )B A B A B A= È + Ç -
= + - =26 8 14 20

Example     1.13   

If A, B, C are sets such that n(A) = 12, n(B) = 16, n(C) = 18,
n(A Ç B) = 6, n(B Ç C) = 8, n(C Ç A) = 10 and n(A Ç B Ç 
C) = 4, then find the number of elements belonging to exa-
ctly one of A, B and C.

Solution: The number of elements belonging to exactly 
one of A, B and C is

n A n B n C n A B n B C

n C A n A B C

( ) ( ) ( ) ( ) ( )

( ) ( )

+ + - Ç - Ç
- Ç + Ç Ç
= + + -

2 2

2 3

12 16 18 22 6 2 8 2 10 3 4

10

´ - ´ - ´ + ´
=

Example     1.14   

In Example 1.13, find the number of elements belonging 
to exactly two of A, B and C.

Solution: The number is

n n n n( ) ( ) ( ) ( )A B B C C A A B CÇ + Ç + Ç - Ç Ç

= + + - =

3

6 8 10 3 4 12´



1.3   Venn Diagrams 23

Example     1.15   

If A, B and C are sets defined as A = { x | x Î �+ and x £ 
16}, B = { x | x Î� and -3 < x < 8} and C = { x | x is a prime 
number}, then find the number of elements belonging to 
exactly two of A, B and C, even though C is an infinite set. 

Solution: We have

n A n B n C( ) , ( ) ( )= = = ¥16 10 and

Now

A Ç B = {1, 2, 3, 4, 5, 6, 7}

B C

C A

Ç =

Ç =

{ , , , }

{ , , , , , }

2 3 5 7

2 3 5 7 11 13

and A Ç B Ç C = {2, 3, 5, 7}

Therefore, the required number is

n A B n B C n C A n A B C( ) ( ) ( ) ( )Ç + Ç + Ç - Ç Ç

= + + - =

3

7 4 6 3 4 5´

Example     1.16   

In a group of 80 students, 50 play football, 45 play cricket 
and each student plays either football or cricket. Find the 
number of students who play both the games.

Solution: Let F be the set of the students who play 
football and C be the set of students who play cricket. 
Then n(F) = 50 and n(C) = 45.

Since each of the 80 students play at least one of the 
two games, we have n(F È C) = 80. Therefore,

n F C n F n C n F C( ) ( ) ( ) ( )Ç + - È

= + - =

=

50 45 80 15

F

FÇC

C

Example     1.17   

If 65% of people in a town like apples and 78% like 
 mangoes, then find out the percentage of people who like 
both apples and mangoes and the percentage of people 
who like only mangoes.

Solution: Let the total number of people in the village be 
100. Let A be the set of people who like apples and M the 
set of people who like mangoes. Then n(A) = 65, n(M) = 78 
and n(A È M) = 100. Therefore

n A M n A n M n A M( ) ( ) ( ) ( )Ç = + - È

= + - =65 78 100 43

Hence 43% of people like both apples and mangoes. 
Also,

n M n A M( ) ( )- Ç = - =78 43 35

Therefore, 35% of people like only mangoes.

Example     1.18   

The total number of students in a school is 600. If 150 
students drink apple juice, 250 students drink  pineapple 
juice and 100 students drink both apple juice and 
 pineapple juice, then find the number of students who 
drink neither apple juice nor pineapple juice.

Solution: Let

A = The set of students who drink apple juice
and    P = The set of students who drink pineapple juice

We are given that n(A) = 150, n(P) = 250 and

n(A Ç P) = 100. Then

n A P n A n P n A P( ) ( ) ( ) ( )È = + - Ç

= + - =150 250 100 300

Let S be the set of all students in the school, then S is 
the universal set containing A and P. We are given that 
n(S) = 600. Now,

n S A P n S n A P[ ( )] ( ) ( )- È = - È
= - =600 300 300

Therefore 300 students drink neither apple juice nor 
pineapple juice.
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Example     1.19   

In a class there are 400 students. Following is a table 
showing the number of students studying one or more of 
the subjects mentioned:

Mathematics

Physics

Chemistry

Mathematics and Physics

Mathematics and Chemistry

Physics and Chemistry

Mathematics, Physics and Chemistry

Only Mathematics

Only Physics

Only Chemistry

None of Mathematics, Physics and Chemistry

250

150

100

100

60

40

30

Fill in the empty places in the above table.

Solution: Let M, P and C stand for the set of students 
studying Mathematics, Physics and Chemistry. Let S be the 
set of all students in the class. The Venn diagram is as follows:

S
P C

M

We are given that

n S n M n P n C( ) = = = =400 250 150 100, ( ) , ( ) , ( )

Also, from the table,

n(M Ç P) = 100, n(M Ç C) = 60, n(P Ç C) = 40,

n(M Ç P Ç C) = 30

We have,

n M P C n M n M P C[ ( )] ( ) [ ( )]- È = - Ç È
 = - Ç È Çn M n M P M C( ) [( ) ( )]

 

= - Ç + Ç
- Ç Ç Ç
n M n M P n M C

n M P M C

( ) [ ( ) ( )

( )]

 

= - Ç - Ç
+ Ç Ç
n M n M P n M C

n M P C

( ) ( ) ( )

( )

 = - - +250 100 60 30

 = 120

Therefore 120 students study only Mathematics. Also

n P M C n P n P M C

n P M P C

n P M n

[ ( )] ( ) [ ( )]

[( ) ( )]

( )

- È = - Ç È

= - Ç È Ç

= - Ç -

150

150 (( )

( )

P C

n P M C

Ç

+ Ç Ç

= - - +

=

150 100 40 30

40

Therefore 40 students study only Physics. Similarly,

n C M P n C n C M P

n C M n C P

n C M P

[ ( )] ( ) [ ( )]

( ) ( )

( )

- È = - Ç È

= - Ç - Ç

+ Ç Ç

= -

100

100 660 40 30

30

- +

=

Therefore 30 students study only Chemistry. Again

n M P C n M n P n C n M P

n P C n C M n M P C

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

È È = + + - Ç

- Ç - Ç + Ç Ç

= +250 1150 100 100 40 60 30

330

+ - - - +

=

n S M P C n S n M P C[ ( )] ( ) ( )- È È = - È È

= - =400 330 70

Therefore 70 students study none of Mathematics, Physics 
and Chemistry.

Example     1.20   

Let X X X1 2 30, , ,…  be 30 sets each with five elements and 

Y Y Y1 2, , ,… m  be m sets each with 3 elements. Let

X Y Si
i

j
j

m

= =

= =
1

30

1

∪ ∪

Suppose that each element of S belongs to exactly 10 of 
Xi’s and exactly 9 of Yj’s. Then find m.
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Solution: Let n S s( ) .=  Since each element of S belongs 
to exactly 10 of Xi’s, so

n si
i

( )X
=
å =

1

30

10

Since each Xi contains 5 elements, therefore

n X( )i
i=
å = ´ =

1

30

30 5 150

Therefore, 10 s = 150 and hence s = 15. Similarly

3 9 9 15 135
1

m n Y sj
j

m

= = ´ = ´ =
=

å ( )

Therefore, m = 45.

1.4 | Relations

Let A be the set of all straight lines in the plane and B the set of all points in the plane. For any L Î A and x Î B, let 
us write L R x if the line L passes through the point x. This is a relation defined between elements of A and elements 
of B. Here L R x can be read as “L is related to x” and R denotes the relation “is passing through”. Therefore L R x 
means “L is passing through x” . We can also express this statement by saying that the pair of L and x is in relation R 
or that the ordered pair (L, x) Î R. This pair is ordered in the sense that L and x cannot be interchanged because the 
first coordinate L represents a straight line and the second coordinate represents a point and because the statement 
“x passes through L” has no sense. Therefore, we can think of R as a set of ordered pairs (L, x) satisfying the property 
that L passes through x. We formalize this in the following. 

DEFINITION 1.17  Ordered Pairs A pair of elements written in a particular order is called an ordered pair. It 
is written by listing its two elements in a particular order, separated by a comma and enclos-
ing the pair in brackets. In the ordered pair (L, x), L is called the first component or the first 
coordinate and x is called the second component or the second coordinate.

The ordered pairs (3, 4) and (4, 3) are different even though they consist of same pair of  elements; for example these 
represent different points in the Euclidean plane.

DEFINITION 1.18  The Cartesian Product Let A and B be any sets. The set of all ordered pairs (a, b) with 
a Î A and b Î B is called the Cartesian product of A and B and is denoted by A ´ B; that is,

A B a b a A b B´ = Î Î{ }( , )| and

(1) Let A = {a, b, c} and B = {1, 2}. Then

A ´ B = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}

and B A a a b b c c´ = { }( , ), ( , ), ( , ), ( , ), ( , ), ( , )1 2 1 2 1 2

(2) If A x y z B a= ={ , , } { },and  then

A B x a y a z a´ = { }( , ), ( , ), ( , )

and B A a x a y a z´ = { }( , ), ( , ), ( , )

Examples

QUICK LOOK 4

1. For any sets A and B,

A B A B´ = Û = =f f for

2.  If one of A and B is an infinite set and the other is a 
non-empty set, then the Cartesian product A ´ B is 
an infinite set.

3. For any non-empty sets A and B,

A B B A A B´ = ´ Û =
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DEFINITION 1.19  If A1, A2, ¼, An are sets, then their Cartesian product is defined as the set of n-tuples (a1, a2,

¼, an) such that ai Î Ai for 1 £ i £ n. This is denoted by A1 ´ A2 ´ 	 ´ An or X
i

n

iA
=1

 or Ai
i

n

=
Õ

1

. 

That is,

A A A1 2 1 2 1´ ´ ´ = £ £{ }	 …n n i ia a a a A i n( , , , )| Î for

 If A A A A1 2= = = =	 n , say, then the Cartesian product A A A1 2´ ´ ´	 n  is denoted by An ;  
that is,

A A A A A A

A A A A A

A

1 2

3

1

= = ´ = Î{ }
= ´ ´ = Î{ }
=

, ( )|

( )|

(

a b a b

a b c a b c

an

,

, ,

,

, ,

, aa a a in i2 1, ,… )| Î £ £{ }A nfor

(1) If A a b c= { , , }, then

A a a a b a c b a b b

b c c a c b c c

2 = {( , ), ( , ), ( , ), ( , ), ( , ),

( , ), ( , ), ( , ), ( , )}

(2) If A = { , },1 2  then

A3 1 1 1 1 1 2 1 2 1 1 2 2

2 1 1 2 1 2 2 2 1

= {( , , ), ( , , ), ( , , ), ( , , ),

( , , ), ( , , ), ( , , )), ( , , )}2 2 2

Examples

THEOREM 1.15

PROOF

For any finite sets A and B,

n n n( ) ( ) ( )A B A B´ = ×

Let A and B be finite sets such that n(A) = m and n(B) = n. Then A = {a1, a2, ¼, am} and B = {b1, b2, ¼, 
bn} where ai’s are distinct elements of A and bj’s are distinct elements of B. In such case

A B a B´ = ´
=

({ } )i
i

m

1

∪

Since { } {( , )| ,a a b j ni i j´ = £ £B 1 }  we get that n a n B n.i({ } ) ( )´ = =B  Also, for any i k a ai k¹ ¹,  and 
hence

({ } ) ({ } )a B a Bi k´ Ç ´ = f

Therefore,

n n a

n a

n

n

i
i

m

i

m

i

i

m

i

( ) ({ } )

({ } )

( )

A B B

B

B

m

´ = ´
æ
èç

ö
ø÷

= ´

=

=

=

=

=

=

å

å

1

1

1

1

∪

åå
= × = ×m n n n( ) ( )A B ■

COROLLARY 1.6 If A A A1 2, , ,… m  are finite sets, then A A A1 2´ ´ ´	 m  is also finite and

n n n nm m( ) ( ) ( ) ( )A A A A A A1 2 1 2´ ´ ´ = ´ ´ ´	 	



1.4   Relations 27

COROLLARY 1.7 If A is a finite set and m is any positive integer, then

n nm m( ) [ ( )]A A=

In particular, n n( ) ( ) .A A2 2=

QUICK LOOK 5

Let A, B, C and D be any sets. Then the following hold.

1. (A È B) ´ C = (A ´ C) È (B ´ C)

2. A ´ (B È C) = (A ´ B) È (A ´ C)

3. A ´ (B Ç C) = (A ´ B) Ç (A ´ C)

4. (A Ç B) ´ C = (A ´ C) Ç (B ´ C)

5. ( ) ( )

( ) ( ) ( ) ( )

A B C D

A C A D B C B D

È ´ È =
´ È ´ È ´ È ´

6. ( ) ( ) ( ) ( )

( ) ( )

A B C D A C B D

A D B C

Ç ´ Ç = ´ Ç ´
= ´ Ç ´

7. ( ) ( ) ( )A B C A C B C- ´ = ´ - ´
8. A B C A B A C´ - = ´ - ´( ) ( ) ( )

Try it out Prove the equalities in Quick Look 5.

(1) If A = {a, b, c, d} and B = {1, 2, 3}, then

n n n( ) ( ) ( )A B A B´ = ´ = ´ =4 3 12

(2) If A = {a, b, c, d}, then

n(A2) = n(A)2 = 42 = 16

and n(A3) = n(A)3 = 43 = 64

(3) For any sets A and B, we have

A B B A b
a

´ ´= = ´
Î Î

({ } ) ( { })a
A b B

∪ ∪

(4) Let S a b a b a b= Î + =+{( , )| , }� and 2 7 . Then

S = {(1, 3), (3, 2), (5, 1)}

(5) Let

A = {1, 2, 3, 4, 5, 6} and S = {(a, b) | a, b ÎA and a 
divides b}

Then

S = È{( , ), ( , ), ( , ), ( , ), ( , ), ( , )} {( , ),

( , ), ( , )

1 1 1 2 1 3 1 4 1 5 1 6 2 2

2 4 2 6 }} {( , ), ( , ), ( , ), ( , ), ( , )}È 3 3 3 6 4 4 5 5 6 6

(6) If A is a finite set and n(A) = m, then n[P(A ´ A)] = 2
2m

(7)  If A has 3 elements, then the number of subsets of 
A A´  is 2 23 92

= , since A A´  has 9 elements.

(8)  If A has only one element, then An  also has one 
element and P A( )n  has two elements for any posi-
tive integer n.

(9) For any non-empty finite sets A and B,

n A
n A B

n B
B

A B
n A

( )
( )

( )
( )

( )

( )
=

´
=

´
and n

n

Examples

Example     1.21   

If A and B are sets such that n(A ´ B) = 6 and A ´ B 
 contains (1, 2), (2, 1) and (3, 2), then find the sets A, B 
and A ´ B.

Solution: Since n(A) × n(B) = n(A ´ B) = 6, n(A) and 
n(B) are divisors of 6. Hence n(A) = 1 or 2 or 3 or 6. 

Since (1, 2), (2, 1) and (3, 2) Î A ´ B, 1, 2, 3 Î A and 
hence n(A) ³ 3. Also, 2, 1 ÎB and hence n(B) ³ 2. Thus 
n(A) = 3 and n(B) = 2. Therefore, A = {1, 2, 3} and B = 
{1, 2}, so that

A B´ = {( , ), ( , ), ( , ), ( , ), ( , ), ( , )}1 1 1 2 2 1 2 2 3 1 3 2
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Graphical Representation of Cartesian Product

Y

3

2

1

0
a b c d e X

(a, 4)

(d, 5)

(e, 2)

(b, 1)

(c, 3)

4

5

FIGURE 1.27 Graphical representation of Cartesian product.

Let A and B be non-empty sets. The Cartesian product A ´ B can be represented graphically by drawing two 
 perpendicular lines OX and OY. We represent elements of A by points on OX and those of B by points on OY. 
Now draw a line parallel to OY through the point representing a on OX and a line parallel to OX through the point 
 representing 4 on OY. The point of intersection of these lines represents the ordered pair (a, 4) in A ´ B. Figure 1.27 
represents graphically the Cartesian product A ´ B where A = {a, b, c, d, e} and B = {1, 2, 3, 4, 5}.

DEFINITION 1.20  For any sets A and B, any subset of A ´ B is called a relation from A to B.

(1)  {( , ), ( , ), ( , ), ( , )}a b a c2 1 4 3  is a relation from A to B, 
where A a b c d B= ={ , , , } { , , ,and 1 2 3 4}.

(2)  For any sets A and B, the empty set f and A B´  are 
also relations from A to B.

Examples

DEFINITION 1.21  Let R be a relation from a set A into a set B. That is, R Í A ´ B. If (a, b) Î R, then we say that 
“a is R related to b” or “a is related to b with respect to R” or “a and b have relation R”. It is 
usually denoted by a R b.

DEFINITION 1.22  Domain Let R be a relation from A to B. Then the domain of R is defined as the set 
of all first components of the ordered pairs belonging to R and is denoted by Dom (R). 
Mathematically, 

Dom(R) = {a | (a, b) Î R for some b Î B}

Note that Dom(R) is a subset of A and that Dom(R) is non-empty if and only if R is non-empty.

DEFINITION 1.23  Range Let R be a relation from A to B. Then the range of R is defined as the set of all 
second components of the ordered pairs belonging to R and is denoted by Range(R). 
Mathematically,

Range(R) = {b | (a, b) Î R for some a Î A}

Note that Range(R) is a subset of B and that it is non-empty if and only if R is non-empty.
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(1)  Let A = {1, 2, 3, 4}, B = {a, b, c, d, e}, and R = {(1, a), 
(2, c), (3, a), (2, a)}. Then

Dom R } and Range(R)( ) { , , { , }= =1 2 3 a c

(2)  Let A = {2, 3, 4}, B = {2, 3, 4, 5, 6, 7, 8} and R = {(a, b) Î 
A ´ B | a divides b}. Then

R 2 2 2 4 2 6 2 8 3 3) 3 6 4 4 4 8= {( , ), ( , ), ( , ), ( , ), ( , , ( , ), ( , ), ( , )}

Dom(R) = {2, 3, 4} and Range(R) = {2, 4, 6, 8, 3}

(3)  Let R = {(a, b) Î �+ ´ �+ | 2a = b}. Then R is a relation 
from �+ to �+ and is given by

R 2 is a positive integer}= {( , ) |a a a

Then

Dom(R) = �+

and Range(R) = The set of all positive even integers

Examples

 

THEOREM 1.16

PROOF

Let A and B be non-empty finite sets with n(A) = m and n(B) = n. Then the number of relations 
from A to B is 2mn.

It is known that the number of subsets of an n-element set is 2n. Since the relations from A to B 
are precisely the subsets of A ´ B and since n(A ´ B) = n(A) × n(B) = mn, it follows that there are 
exactly 2mn relations from A to B. ■

(1)  Let A = {1, 2, 3} and B = {a, b}. Then n(A) = 3, n(B) = 2 
and n(A ´ B) = n(A) × n(B) = 3 × 2 = 6. Therefore there
are exactly 64 (=26) relations from A to B.

(2)  Let A and B be two finite sets and K be the number 
of relations from A to B. Then K is not divisible by 
any odd prime number, since K A B= ×2n n( ) ( ) and 2 is 
the only prime dividing 2m for any positive integer m.

Examples

Representations of a Relation

A relation can be expressed in many forms such as:

1. Roster form: In this form, a relation R is represented by the set of all ordered pairs belonging to R. For  example, 
R = {(1, a), (2, b), (3, a), (4, c)} is a relation from the set {1, 2, 3, 4} to the set {a, b, c}.

2. Set-builder form: Let A = {2, 3, 4, 5} and B = {2, 4, 6, 8, 10}. Let R = {(a, b) Î A ´ B | a divides b}. Then R is a relation 
from A to B. This is known as the set-builder form of a relation. Note that

R = {(2, 2), (2, 4), (2, 6), (2, 8), (2, 10), (3, 6), (4, 4), (4, 8), (5, 10)}

3. Arrow-diagram form: In this form, we draw an arrow corresponding to each ordered pair (a, b) in R from the first 
component a to the second component b. For example, consider the relation R given in (2) above. Then R can be 
represented as shown in Figure 1.28. There are nine arrows corresponding to nine ordered pairs belonging to the 
relation R.

2
2

3

4

4

5

A B

6

8

10

FIGURE 1.28 Representation of arrow-diagram form.
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4. Tabular form: To represent a given relation R, sometimes it is convenient to look at it in a tabular form. Suppose 
R is a relation from a finite set A to a finite set B. Let

A = {a1, a2, …, an} and B = {b1, b2, …, bm}

Write the elements b1, b2, ..., bm (in this order) in the top row of the table and the elements a1, a2, …, an (in this order) 
in the leftmost column. For any 1 ≤ i ≤ n and 1 ≤ j ≤ m, let us define

r
a b

a a
ij

i j

i j

=
ì
í
ï

îï

1

0

if R

if R

( , )

( , )

Î

Ï

Write rij in the box present in the ith row written against ai and in the jth column written against bj. This is called the 
tabular form representation of the relation R.

Tabular Form
Let us consider sets A = {2, 3, 4, 5}, B = {2, 4, 6, 8, 10}, and 
relation R given by

R = {(a, b) Î A ´ B | a divides b}

That is

R = { (2, 2), (2, 4), (2, 6), (2, 8), (2, 10), (3, 6), (4, 4),
(4, 8), (5, 10)

This relation R is represented in the following tabular form.

R 2

3

2 1 1 1 11

1

1

1

1

4

4

5

0 0 0 0

00

0 0 00

0

6 108

Instead of writing 1 and 0, we can write T and F 
 signifying whether a bi jR  is true or false.

Examples

Among all four representations of a relation, the set-builder form is most popular and convenient. The roster form, 
the arrow-diagram form and the tabular form can represent a relation R from A to B only when both the sets A and B 
are finite. The set-builder form is more general and can represent a relation even when A or B or both are infinite sets.

Let R = {(a, b) Î �+ ´ �+| a divides b}. Then R is a relation 
from � �+ +to . This cannot be represented by the roster 

form or set-builder form or tabular form. Note that

Dom R Range R( ) ( )= =+�

Examples

DEFINITION 1.24  Binary Relation  Any relation from a set A to itself is called a binary relation on A or 
simply a relation on A.

For example, the relation R given in the above example is a relation on �+.

Remark: For any n-element set A, there are 2
2n relations on A. For example, if A a b c= { , , }, then there are 512 232

( )=  
relations on A.

DEFINITION 1.25  Composition of Relations Let A, B and C be sets, R a relation from A to B and S a relation 
from B to C. Define

S R there exists R and� = Î ´ Î Î Î{ }( , ) | ( , ) ( , )a c b a b b cA C B such that S

Then S R�  is a relation from A to C. In other words for any a Î A  and c ÎC,

a c a b b( )S R R S  for some � Û Îand b c B

S R�  is called the composition of R with S.

Note that, for any relations R with S, R S�  may not be defined at all even when S R�  is defined. Also even when both 
R S�  and S R�  are defined, they may not be equal.
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(1)  Let R = {(a, b) Î �+ ´ �+ | b = 2a} and S = {(a, b) Î
�+ ´ �+ | b = a + 2}. Then both R and S are relations 
from �+ to �+ and hence both R � S and S � R are 
defined. For any positive integers a and c, we have

a c a b b( )R S S� �Û Î +and R for someb c

Û = + = Î +b a c b2 2and for some b �

Û = + = +c a a2 2 2 4( )

and

a( )S R R and S for some� �c a b b c bÛ Î +

Û = = + Î +b a c b b2 2and for some �

Û = +c a2 2

For example, (3, 10) ÎR � S since (3, 5) ÎS and (5, 10) 
ÎR. Also, (3, 8) ÎS � R since (3, 6) ÎR and (6, 8) ÎS. 

Note that (3, 8) ÏR � S and (3, 10) ÏS � R. Therefore 
S � R Ë R � S and R � S Ë S � R.

(2)  Let A = {1, 2, 3, 4}, B = {a, b, c, d}, and C = {x, y, z}. Let 

R = {(1, c), (2, d), (2, a), (3, d)}

and S = {(a, y), (b, x), (b, y), (a, z)}

Then R is a relation from A to B and S is a relation 
from B to C.

Dom R( ) { , , }= 1 2 3  and Range(R) = { , , }a c d

 Dom(S) = { , }a b  and Range(S) = { , , }x y z

R � S is not defined. However S � R is defined and

S � R = {(2, y), (2, z)}

Since (2, a) ÎR and (a, y) ÎS, we have (2, y) ÎS � R
Since (2, a) ÎR and (a, z) ÎS, we have (2, z) ÎS � R

Examples

THEOREM 1.17

PROOF

Let A, B and C be sets, R a relation from A to B and S a relation from B to C. Then the following 
hold:

1. S � R ¹ f if and only if Range(R) Ç Dom(S) ¹ f
2. Dom(S � R) Í Dom(R)

3. Range(S � R) Í Range(S)

1.  Suppose that S � R ¹ f. Choose(a, c) Î S � R. Then there exists b Î B such that (a, c) Î R and 
(b, c) Î S and hence b Î Range(R) and b Î Dom(S). Therefore b Î Range(R) Ç Dom(S). Thus 
Range(R) Ç Dom(S) is not empty.

Conversely, suppose that Range(R) Ç Dom(S) ¹ f. Choose b Î Range(R) Ç Dom(S). Then 
there exist a Î A and c Î C such that (a, b) Î R and (b, c) Î S and hence (a, c) Î S � R. Thus S � R 
is not empty.

2. a Î Dom(S � R) Þ (a, c) Î S � R for some c Î C

Þ Î Î Î

Þ Î

( , ) ( , )

( )

a b b c BR and S for some

Dom R

b

a

Therefore Dom(S � R) Í Dom(R).

3. c Î Range(S � R) Þ (a, c) Î S � R for some a Î A

Þ Î Î Î

Þ Î

( , ) ( , )

( )

a b b c BR and S for some

Range S

b

c

Therefore Range (S � R) Í Range(S). ■

Example     1.22   

Find S � R, Dom(S � R), Range(S � R) for the following:

(1)  A = {1, 2, 3, 4}, B = {a, b, c} and C = {x, y, z}. The rela-
tions are R = {(2, a), (3, b), (2, b), (3, c)} and S = {(a, 
y), (b, x), (b, y)}.

(2)  The sets are the same as above. The  relations are

R = {(1, a), (2, b), (2, c), (4, a)}

 and S = {(b, x), (b, y), (d, z)}
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Solution:

(1) From the given data, we have

Dom(R) = {2, 3} and Range(R) = {a, b, c}

Dom(S) = {a, b} and Range(S) = {x, y}

(a) S � R = {(2, y), (3, x), (3, y), (2, x)}

(b) Dom(S � R) =  {2, 3} = Dom(R)

(c) Range(S � R) = {x, y} = Range(S)

(2) Using the given data we have

 S � R = {(2, x), (2, y)}

 Dom(S � R) = {2} Ì {1, 2, 4} = Dom(R)

Range(S � R) = {x, y} Ì {x, y, z} = Range(S)

THEOREM 1.18

PROOF

Let A, B, C and D be non-empty sets, R Í A ´ B, S Í B ´ C and T Í C ´ D. Then

(T � S) � R = T � (S � R)

For any a Î A and d Î D,

(a, d) Î (T � S) � R Þ (a, b) Î R and (b, d) Î T � S for some b Î B

 Þ (a, b) Î R, (b, c) Î S and (c, d) Î T for some b Î B and c Î C

 Þ (a, c) Î S � R and (c, d) Î T, c Î C

 Þ (a, d) Î T � (S � R)

Therefore,

(T � S) � R Í T � (S � R)

Similarly

T � (S � R) Í (T � S) � R

Thus,

 (T � S) � R = T � (S � R) ■

DEFINITION 1.26  Inverse of a Relation Let A and B be non-empty sets and R a relation from A to B. Then 
the inverse of R is defined as the set

{(b, a) Î B ´ A| (a, b) Î R}

 and is denoted by R-1.

Note that, if R is a relation from A to B, then R-1 is a relation from B to A and that R � R-1 is a relation on B and R-1 � R 
is a relation on A.

Let A = {1, 2, 3, 4} and B = {a, b, c, d, e}.

Let R = {(1, a), (2, b), (3, a), (4, d), (2, c), (3, e)}. Then 

 R-1 = {(a, 1), (b, 2), (a, 3), (d, 4), (c, 2), (e, 3)}

 R � R-1 = {(a, a), (b, b),(b, c),(a, e), (d, d),

 (c, b), (c, c), (e, a), (e, e)}

and R-1 � R = {(1, 1), (2, 2), (3, 3), (4, 4)} = DA

(the diagonal of A).

Examples

THEOREM 1.19 Let A, B and C be non-empty sets and R a relation from A to B and S a relation from B to C.  Then 
the following hold.

1. (S � R)-1 = R-1 � S-1

2. (R-1)-1 = R



1.5   Equivalence Relations and Partitions 33

PROOF 1. S � R is relation from A to C and therefore (S � R)-1 is relation from C to A. Now consider 

 (c, a) Î (S � R)-1 Û (a, c) Î S � R

 Û (a, b) Î R and (b, c) Î S for some b Î B
Û (c, b) Î S-1 and (b, a) Î R-1 for some b Î B

 Û (c, a) Î R-1 � S-1

Therefore (S � R)-1 = R-1 � S-1.

2. It is trivial and left as an exercise for the reader. ■

1.5 | Equivalence Relations and Partitions

A partitioning of a set is dividing the set into disjoint subsets as shown in the Venn diagram in Figure 1.29. In this 
 section we discuss a special type of relations on a set which induces a partition of the set and prove that any such 
 partition is induced by that special type of relation. Let us begin with the following.

FIGURE 1.29 Partitioning of a set.

DEFINITION 1.27  Let X be a non-empty set and R a (binary) relation on X. Then,

1. R is said to be reflexive on X if (x, x) Î R for all x Î X.

2. R is said to be symmetric if (x, y) Î R Þ (y, x) Î R
3. R is said to be transitive if (x, y) Î R and (y, z) Î R Þ (x, z) Î R.

4.  R is said to be an equivalence relation on X if it is a reflexive, symmetric and transitive 
relation on X.

(1)  Let X = {1, 2, 3, 4} and R = {(1, 2), (2, 1), (1, 1), (2, 2)}.  
Then R is a relation on X. R is not reflexive on X, 
since 3 ÎX and (3, 3) ÏR. However R is symmetric 
and transitive. You can easily see that R is reflexive 
on a smaller set, namely {1, 2}. Therefore R is an equ-
ivalence relation on {1, 2}.

(2)  Let R = {(a, b) Î �+ ´ �+ | a divides b}. Then R is a 
reflexive and transitive relation on the set �+ of posi-
tive integers. However, R is not symmetric, since 
(2, 6) ÎR and (6, 2) ÏR. Note that a relation R on a 
set S is symmetric Û R = R-1.

(3)  Let X = {1, 2, 3, 4} and R = {(1, 1), (2, 2), (3, 3), (4, 4), 
(2, 3), (3, 2), (3, 4), (4, 3)}. Then R is a reflexive and 
symmetric relation on X. But R is not transitive, since 
(2, 3) ÎR and (3, 4) ÎR, but (2, 4) ÏR.

(4) For any set X, let

DX = {(x, x)| x ÎX}

Then DX is reflexive, symmetric and transitive rela-
tion on X and hence an equivalence relation on X. 
DX is called the diagonal on X.

(5) For any positive integer n, let

Rn = {(a, b) Î � ´ � | n divides a - b}

For any a Î �, n divides 0 = a - a and hence (a, a) Î Rn. 
Therefore Rn is reflexive on �. For any a, b Î �,

(a, b) ÎRn Þ n divides (a - b)

 Þ n divides - (a - b)

 Þ n divides (b - a)

 Þ (b, d) ÎRn

Examples
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Therefore Rn is symmetric. Also, for any a, b and 
c Î �,

(a, b) ÎRn and (b, c) ÎRn Þ n divides (a - b) and (b - c)

 Þ n divides (a - b) + (b - c)

 Þ n divides (a - c)

 Þ (a, c) ÎRn

Therefore Rn is transitive also. Thus Rn is an equiva-
lence relation on � and is called the  congruence relation 
modulo n.

(6)  Let A and B be subsets of a set X such that A Ç B = f  
and A È B = X. Define

R = {(x, y) ÎX ´ X | either x, y ÎA or x, y ÎB}

Then R is an equivalence relation on X.

THEOREM 1.20

PROOF

Let R be a symmetric and transitive relation on a set X. Then the following are equivalent to each 
other.

1. R is reflexive on X.

2. Dom(R) = X.

3. Range(R) = X.

4. R is equivalence relation on X.

Since R is already symmetric and transitive, (1) Û (4) is clear. 
Also, since (a, b) Î R if and only if (b, a) Î R, it follows that (2) Û (3).

If R is reflexive on X, then (x, x) Î R for all x Î X and hence Dom(R) = X. Therefore (1) Û (2) 
is clear.

Finally, we shall prove (2) Þ (1). Suppose that Dom(R) = X. Then,

 x Î X Þ x Î Dom(R)

 Þ (x, y) Î R for some y Î X

 Þ (x, y) Î R and (y, x) Î R (since R is symmetric)

 Þ (x, x) Î R (since R is transitive)

Therefore (x, x) Î R for all x Î X. Thus R is reflexive on X. ■

DEFINITION 1.28  Partition Let X be a non-empty set. A class of non-empty subsets of X is called a partition 
of X if the members of the class are pairwise disjoint and their union is X. In other words, a 
class of sets {Ai}iÎI is called a partition of X if the following are satisfied:

1. For each i Î I, Ai is a non-empty subset of X

2. Ai Ç Aj = f for all i ¹ j Î I

3. A X
I

i
i

=
Î
∪

(1)  For any set X, the class {{x}}x ÎX is a partition of X; 
that is, the class of all singleton subsets of X is a 
 partition of X.

(2)  Let E = the set of all even integers and O = the set of 
all odd integers. Then the class {E, O} is a partition of �.

(3)  For any non-empty proper subset A of a set X, the 
class {A, X - A} is a partition of X. Note that X - A 
is not empty since A is a proper subset of X.

Examples

DEFINITION 1.29  Let R be an equivalence relation on a set X and x Î X. Then define

R(x) = {y Î x | (x, y) Î R}

  R(x) is a subset of X and is called the equivalence class of x with respect to R or the 
R-equivalence class of x or simply the R-class of x.
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(1)  Let X = {1, 2, 3, 4} and R = {(1, 1), (2, 2), (3, 3), (4, 4), 
(2, 3), (3, 2)}. Then R is an equivalence relation on X 
and the R-classes are as follows:

R(1) = {x ÎX | (1, x) ÎR} = {1}

R(2) = {x ÎX | (2, x) ÎR} = {2, 3}

R(3) = {x ÎX | (3, x) ÎR} = {2, 3}

R(4) = {x ÎX | (4, x) ÎR} = {4}

(2) Let n be a positive integer and

Rn = {(a, b) Î� ´ � | n divides a - b}

Then Rn is an equivalence relation on the set � of 
 integers. For any a Î �, the Rn-class of “a” denoted 
by Rn (a) is given by

 Rn(a) = {y ÎX | (a, y) ÎRn}

 = {y ÎX | n divides a - y}

= {y ÎX | a - y = nx for some x Î �}

 = {a + nx | x Î �}

We can prove that Rn(0), Rn(1), …, Rn(n - 1) are all 
the distinct Rn-classes in �. If a ³ n or a < 0, we can 
write by the division algorithm that

a = qn + r

where q, r Î � and 0 £ r < n. Hence Rn(a) = Rn(r), 
0 £ r < n.

Examples

THEOREM 1.21

PROOF

Let R be an equivalence relation on a set X and a, b Î X.  Then the following are equivalent to each other:

1. (a, b) Î R

2. R(a) = R(b)

3. R(a) Ç R(b) ¹ f

(1) Þ (2): Suppose that (a, b) Î R. Then (b, a) Î R (since R is symmetric) and

 x Î R(a) Þ (a, x) Î R
 Þ (b, a) Î R and (a, x) Î R

Þ (b, x) Î R (since R is transitive)

 Þ x Î R(b)

Therefore R(a) Í R(b). Similarly R(b) Í R(a). Thus R(a) = R(b).

(2) Þ (3) is trivial, since a Î R(a) and if R(a) = R(b), then a Î R(a) Ç R(b).

(3) Þ (1): Suppose that R(a) Ç R(b) ¹ f. Choose an element c Î R(a) Ç R(b). Then (a, c) Î R and 
(b, c) Î R and hence (a, c) Î R and (c, b) Î R. Since R is transitive, we get that (a, b) Î R. ■

THEOREM 1.22

PROOF

Let R be an equivalence relation on a set X.  Then the class of all distinct R-classes forms a  partition 
of X; that is,

1. R(a) is a non-empty subset of X for each a Î X.

2. Any two distinct R-classes are disjoint.

3. The union of all R-classes is the whole set X.

1. By definition of the R-class R(a), we have

R(a) = { x Î X | (a, x) Î R}

Therefore R(a) is a subset of X. Since (a, a) Î R we have a Î R(a). Thus R(a) is a non-empty 
subset of X for each a Î X.

2. This is a consequence of (2) Û (3) of  Theorem 1.21.

3. Since a Î R(a) for all a Î X, we have

 R( )a X
a XÎ

=∪  
■
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Let X = {1, 2, 3, 4, 5, 6, 7, 8} and R = {(x, y) Î X ´ X | both 
x and y are either even or odd}. Then

R(1) = {1, 3, 5, 7} = R(3) = R(5) = R(7)

and R(2) = {2, 4, 6, 8} = R(4) = R(6) = R(8)

Therefore, there are only two distinct R-classes, namely 
R(1) = {1, 3, 5, 7} and R(2) = {2, 4, 6, 8} and these two form 
a partition of X.

Examples

In Theorem 1.22, we have obtained a partition from a given equivalence relation on set a X.  Infact, for any given 
 partition of X, we can define an equivalence relation on X which induces the given partition. This is proved in the 
following.

THEOREM 1.23

PROOF

Let X be a non-empty set and {Ai}iÎI  a partition of X. Define

R = {(x, y) Î X ´ X | both x and y belong to same Ai , i Î I }

Then R is an equivalence relation whose R-classes are precisely Ai ’s .

We are given that {Ai}iÎI is a partition of X, that is,

1. Each Ai is a non-empty subset of X.

2. Ai Ç Aj = f for all i ¹ j Î I .

3. Ai
i I

=
Î

X∪ .

For any x Î X, there exists only one i Î I such that x Î Ai and hence (x, x) Î R. This means that R
is reflexive on X; clearly R is symmetric. Also, (x, y) Î R and (y, z) Î R Þ x, y Î Ai and y, z Î Aj for 
some i, j Î I. This implies

Ai Ç Aj ¹ f and hence i = j and Ai = Aj

 Þ x, z Î Ai , i Î I

 Þ (x, z) Î R

Thus R is transitive also. Therefore R is an equivalence relation on X. For any i Î I and x Î Ai, we 
have

y Î Ai Û (x, y) Î R Û y Î R(x)

and have Ai = R(x). This shows that Ai ’s are all the R-classes in X. ■

Theorems 1.22 and 1.23 imply that we can get a partition of X from an equivalence relation on X and conversely 
we can get an equivalence relation from a partition of X and that these processes are inverses to each other.

For any i = 0, 1 or 2, let

Ai = {a Î  �+ | on dividing a with 3, the remainder is i}

That is,

 

A n n

A n n

A

0

1

2

3 6 9 12 3

1 4 7 10 3 1 0

= = Î

= = + £ Î

=

+

+

{ , , , , } { | }

{ , , , , } { | }

{

… �

… �

22 5 8 11 3 2 0, , , , } { | }… �= + £ Î +n n

Then {A0, A1, A2} is a partition of �+. The equivalence 
relation corresponding to this partition is

R or

or

The rem

= Î ´ Î Î
Î

= Î ´

+ +

+ +

{( , ) | , ,

, }

{( , ) |

a a a b

a b

a b

b b A A

A

� �

� �

0 1

2

aainders are same

when and are divided by

divid

a b 3

3

}

{( , ) |= Î ´+ +a b � � ees a b- }

In this case, R(1) = A1, R(2) = A2 and R(3) = A0 and these 
three are the only R-classes in �+.

Examples
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THEOREM 1.24

PROOF

Let R and S be two equivalence relations on a non-empty set X. Then R Ç S is also an equivalence 
relation on X and, for any x Î X,

(R Ç S)(x) = R(x) Ç S(x)

For any x Î X, (x, x) Î R and (x, x) Î S (since R and S are reflexive on X ). Hence (x, x) Î R Ç S. 
Therefore R Ç S is reflexive on X. Also,

(x, y) Î R Ç S Þ (x, y) Î R and (x, y) Î S

 Þ (y, x) Î R and (y, x) Î S

 Þ (y, x) Î R Ç S

Therefore R Ç S is symmetric. Further

(x, y), (y, z) Î R Ç S Þ (x, y), (y, z) Î R and (x, y), (y, z) Î S

 Þ (x, z) Î R and (x, z) Î S

 Þ (x, z) Î R Ç S

Therefore R Ç S is an equivalence relation. For any x Î X, we have

 (R Ç S)(x) = { y Î X | ( x, y) Î R Ç S}

 = { y Î X | ( x, y) Î R} Ç { y Î X | ( x, y) Î S}

 = R(x) Ç S(x) ■

We have proved in Theorem 1.24 that the intersection of equivalence relations on a given set X is again an 
 equivalence relation. This result cannot be extended to the composition of equivalence relations. In this direction, we 
have the following theorem that gives us several equivalent conditions for the composition of equivalence relations to 
again become an equivalence relation.

THEOREM 1.25

PROOF

Let R and S be equivalence relations on a set X.  Then the following are equivalent to each other.

1. R � S is an equivalence relation on X.

2. R � S is symmetric.

3. R � S is transitive.

4. R � S = S � R.

(1) Þ (2) is clear.

(2) Þ (3): Suppose that R � S is symmetric. Then 

R � S = (R � S)–1 = S–1 � R–1 = S � R

and (R � S) � (R � S) = R � (S � R) � S

 = R � (R � S) � S

 = (R � R) � (S � S)

 = (R � S)

Since R and S are reflexive, we get that R � DX = R = DX � R and S � DX = S = DX � S. Also, 
since R and S are transitive, R � R Í R = R � DX Í R � R-1 so that R � R = R. Similarly, S � S = S. 
Therefore, R � S is transitive.

(3) Þ (4): Suppose that R � S is transitive. Then (R � S) � (R � S) = R � S. Now, consider

S R S R R S R S R S� � � � � � � �= Í =( ) ( ) ( ) ( )D DX X

and R S R S S R R S S R S R� � � � � �= = Í = =- - - - - -1 1 1 1 1 1( ) ( )
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Therefore

R � S = S � R

(4) Þ (1): Suppose that R � S = S � R. Then

(R � S)-1 = S-1 � R-1 = S � R = R � S

Hence R � S is symmetric and transitive also. Further DX = DX � DX Í R � S and therefore R � S is 
reflexive on X. Thus, R � S is an equivalence relation on X. ■

1.6 | Functions

Functions are a special kind of relations from one set to another set. The concept of a function is an important tool 
in any area of logical thinking, not only in science and technology but also in social sciences. The word “function” 
is derived from a Latin word meaning operation. For example, when we multiply a given real number x by 2, we 
are  performing an operation on the number x to get another number 2x. A function may be viewed as a rule which 
 provides new element from some given element. Function is also called a map or a mapping. In this section, we discuss 
various types of functions and their properties. The following is a formal definition of a function.

DEFINITION 1.30  Function A relation R from a set A to a set B is called a function (or a mapping or a map) 
from A into B if the following condition is satisfied:

For each element a in A there exists one and only one element b in B such that (a, b) Î R.

That is, R Í A ´ B is called a function from A into B if the following hold:

1. For each a Î A, there exists b Î B such that (a, b) Î R.

2. If (a, b) Î R and (a, c) Î R, then b = c.

ALTERNATE DEFINITION  A relation R from A to B is a function from A into B if Dom(R) = A  and  whenever 
the first components of two ordered pairs in R are equal, then the second  components 
are also equal.

Examples

(1)  Let R = {(x, 2x) | x Î �}. Then R is a function from � 
into �.

(2)  Let R = {(x, | x |) | x Î �}. Then R is a function from 
the real number system � into itself.

(3)  Let A = {1, 2, 3, 4} and B = {a, b, c}. Let R = {(1, a),
(2, a), (3, b), (4, b)}. Then R is a function from A into B.

(4)  Let A and B be as in (3) above and  R = {(1, a), (2, b),
(3, c), (3, a), (4, a)}. Then R is not a function from A 
into B, since we have two ordered pairs (3, c) and (3, a)
in R whose first components are equal and the 
second components are different. Also, if S = {(1, a), 
(2, b), (4, c)}, then S is not a function of A into B, 
since Dom(S) ¹ A. 

Notation

1.  If R is a function from A into B and a Î A, then the unique element b in B such that (a, b) Î R is denoted by R(a).

2. Usually functions will be denoted by lower case letters f, g, h, ….

3. If f is a function from A into B, then we denote this by f : A ® B.

4.  If f : A ® B is a function and a Î A, then there exists a unique element b in A such that (a, b) Î f. This unique 
element is denoted by f (a). We write f (a) = b to say that (a, b) Î f or a f bbb. Some authors also write (a)f = b or simply 
af = b to say that (a, b) Î f . However in this chapter we prefer to use f (a) = b.

DEFINITION 1.31  Let f : A ® B be a function. Then A is called the domain of f and is denoted by Dom( f ). B is 
called the co-domain of f and is denoted by codom( f ). The range of f is also called the image 
of f or the image of A under f and is denoted by Im( f ). That is,

Im( f ) = { f (a) | a Î A}
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Note that Im( f ) is a subset of B and may not be equal to B. If f (a) = b, then b is called the image of a under f and a is 
called a pre-image of b. Note that for any a Î A, the image of a under f is unique. But, for b Î B, there may be several 
pre-images of b or there may not be any pre-image of b at all. To describe a function f : A ® B it is enough if we pre-
scribe the image f (a) of each a Î A under f.

Examples

(1)  Define a function f :  � ® � by f (x) = x2 for all x Î�. 
That is, f  = {(x, x2) | x Î �}.  Here x2 is the image of 
any x Î�. Note that x2 is always  non-negative for 
any x Î� and hence a negative real number has no 
 pre-image under f. For example, there is no x Î� such 
that f (x) = -1. Here both the domain and  co-domain 
of the function are � and the image of f (or range 
of f ) is equal to the set of non-negative real numbers.

(2)  Define f :  � ® � by f (x) = x / 2 for all x Î�. Then the 
domain of f is � and the co-domain of f is �. Also

Im( ) ( ) | |f f x x
x

x= Î{ } = Îì
í
î

ü
ý
þ

� �
2

Here note that every integer n has a pre-image, namely 
2n, since f (2n) = n. The real number 1/3 has no pre-image.

Quite often a function is given by an equation of type f (x) = y without specifically mentioning the domain and co-
domain. We can identify the domain and co-domain by looking at the validity of the equation. The following examples 
illustrate these.

Example     1.23   

Let f be the function defined by

f x
x x

x x
( ) =

+ +
- +

2

2

2 1

8 12

Find out the domain of f.

Solution: We are given that

f x
x x

x x
( ) =

+ +
- +

2

2

2 1

8 12

The expression of the right-hand side has  meaning for 
all real numbers except when x = 6 or x = 2. Therefore, 
the domain of f is the set at all real number other than 6 
and  2, that is,

Dom( ) ,f = - { }� 2 6

Example     1.24   

Consider a function defined by

f =
+

æ
èç

ö
ø÷

Î
ì
í
ï

îï

ü
ý
ï

þï
x

x
x

x,
2

21
�

Then f is a function from � into �. Find the range of f.

Solution: We have

f ( )x
x

x
=

+

2

21
 for all x Î�

Suppose

y
x

x
= =

+
f x( )

2

21
Then

y yx x+ =2 2  or  x y y2 1( )- =

Therefore 

x
y

y
2

1
=

-
 or x

y
y

= ±
-1

provided y y/( ) ;1 0- ³  that is, 0 1£ <y . Thus the range 
of f is [0, 1).

DEFINITION 1.32  Let f : A ® B and g : B ® C be functions. Then the composition of f with g is defined as the 
function g � f : A ® C given by

(g � f )(a) = g( f (a)) for all a Î A
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Note that g � f  is defined only when the range of f is contained in the domain of g. If f : A ® B is a function and g : D ® C is 
another function such that Range( f ) Í D = Dom(g), then g � f  can be defined as a function from A into C. When we regard 
functions as relations, then the composition of functions is same as that of the  relations as given in Definition 1.25. That is,

(a, c) Î g � f Û (a, b) Î f and (b, c) Î g for some b Î B

 Û f (a) = b and g(b) = c

 Û g( f (a)) = c

 Û (g � f )(a) = c

Example     1.25   

Let f :  � ® � and g :  � ® � be defined by

f x
x

( ) =
+ 2

3
 for all x Î�

and g x
x
x

( ) =
-
+

2

2

1

1
 for all x Î�

Find (g � f )(x).

Solution: We have

( )( ) ( ( ))g f x g f x g
x

� = =
+æ

èç
ö
ø÷

2

3

=
+ -
+ +

[( )/ ]

[( )/ ]

x
x

2 3 1

2 3 1

2

2

=
+ -
+ +

( )

( )

x
x

2 9

2 9

2

2

=
+ -
+ +

x x
x x

2

2

4 5

4 13

Example     1.26   

Let A = {1, 2, 3, 4}, B = {a, b, c} and C = {x, y, z}. Let 

f = {(1, a), (2, c), (3, b), (4, a)}

and g = {(a, y), (b, z), (c, x)}

Find g � f.

Solution: We have f  : A ® B and g : B ® C are func-
tions. Then g � f : A ® C is given by

g � f = {(1, y), (2, x), (3, z), (4, y)}

Try it out

THEOREM 1.26 Let f  : A ® B and g : B ® C be functions. Then Dom(g � f ) = Dom( f ) and codom(g � f ) =
codom(g).

Two functions f and g are said to be equal if their domains are equal and f(x) = g(x) for all elements x in Dom ( f ). 
For any functions f and g, even when both g � f and f � g are defined, g � f  may be different from f � g, as seen in the 
following example.

Example     1.27   

Let f :  � ® � and g :  � ® � be defined by

f (x) = x2 and g(x) = x + 2 for all x Î�

Show that g � f  ¹ f � g.

Solution: We have

( )( ) ( ( )) ( )g f x g f x g x x� = = = +2 2 2

( )( ) ( ( ))

( ) ( )

f g x f g x

f x x

x x

� =

= + = +

= + +

2 2

4 4

2

2

Therefore g � f  ¹ f � g.
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The following is an easy verification and is a direct consequence of Theorem 1.18.

Try it out

THEOREM 1.27 Let f : A ® B, g : B ® C and h : C ® D be functions. Then

h g f h g f� � � �( ) ( )=

In the following we discuss certain special types of functions. If f  : A ® B is a function, a1 and a2 are elements of A 
and b1 and b2 are elements of B such that f (a1) = b1 and f (a2) = b2 and if a1 = a2, then necessarily b1 = b2. In other words, 
two elements of B are equal if their pre-images are equal. It is quite possible that two distinct elements of A may have 
equal images under f. A function f  : A ® B is called an injection if distinct elements of A have distinct images under f. 
The following is a formal definition.

DEFINITION 1.32  Injection A function f  : A ® B is called an injection or “one-one function” if f (a1) ¹ f (a2) 
for any a1 ¹ a2  in A; in other words,

f (a1) = f (a2) Þ a1 = a2

for any a1, a2 Î A.

(1) Let f :  � ® � be defined by

f (x) = x + 2 for all x Î �

Then f is an injection, since, for any x, y, Î �,

f x f y x y x y( ) ( )= Þ + = + Þ =2 2

(2) Let f :  � ® � be defined by

f (x) = x2 for all x Î �

Then f is not an injection, since two distinct  elements 
have the same image; for example, 1 ¹ -1 but f(1) = 12 
= (–1)2 = f(–1).

Examples

THEOREM 1.28

PROOF

Let f  : A ® B and g : B ® C be functions. Then the following hold.

1. If f and g are injections, then so is g � f.
2. If g � f is an injection, then f is an injection.

1. Suppose that both f and g are injections. For any a1, a2 Î A, we have

( )( ) ( )( )

( ( )) ( ( ))

g f a g f a

g f a g f a

� �1 2

1 2

=

Þ =

 Þ =f a f a( ) ( )1 2  (since g is an injection)

 Þ =a a1 2  (since f is an injection)

Therefore, g � f is an injection.

2. Suppose that g � f is an injection. Then, for any a1, a2 Î A, we have

 f a f a g f a g f a g( ) ( ) ( ( )) ( ( )) (1 2 1 2= Þ = ∵ is a function)

 Þ =( )( ) ( )( )g f a g f a� �1 2

 Þ =a a1 2  (since g � f is an injection)

Therefore f is an injection. ■

Note that g � f can be an injection without g being an injection. An example of this case is given in the following.
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Define

f : �+ ® � by f(x) = x + 2 for all x Î�+

and g : � ® � by g(x) = x2 for all x Î�

Then g � f : �+ ® � is given by

(g � f )(x) = g( f(x)) = g(x + 2) = (x + 2)2 for all x Î�+

Now, for any x, y Î�+,

 (g � f )(x) = (g � f )(y)

 Þ (x + 2)2 = (y + 2)2

Þ x + 2 = y + 2 (since x and y are positive)

 Þ x = y

Therefore g � f  is an injection. However, g is not an injec-
tion, since 

g(2) = 22 = (–2)2 = g(–2)

Example

Next we discuss functions under which every element in the codomain is the image of some element in the domain.

DEFINITION 1.33  Surjection A function f  : A ® B is called a surjection or “onto function” if the range of f is 
equal to the co-domain B; that is, for each b Î B, b = f(a) for some a Î A.

(1) Let f : � ® � be defined by

f(x) = 2x + 1 for all x Î�

Then, for any element y in the co-domain �, we have 
(y - 1)/2 is in the domain � and

f
y y

y
-æ

èç
ö
ø÷ =

-
+ =1

2

2 1

2
1

( )

Therefore f is a surjection. Note that f is an injection 
also, since

f x f y x y x y( ) ( )= Þ + = + Þ =2 1 2 1

(2)  Let � be the set of all non-negative integers. Define 
f : � ® � by f (x) = | x | for all x Î�. Then f is a 
surjection, since f (x) = x for all x Î� and � Í �. 
However, f is not an injection since

f (–1) = |–1| = 1 = f (1) and –1 ¹ 1

(3)  Define f : � ® � by f (x) = x2 + 1 for all x Î�. Then 
f is neither an injection nor a surjection. It is not an 
injection, since

f (–1) = (-1)2 + 1 = 2 = 12 + 1= f (1) and –1 ¹ 1

f is not a surjection, since we cannot find an element 
x in � such that x2 + 1 = 0; that is f (x) = 0.

(4)  Define f : � ® � by f(x) = x + 2 for all x Î �. Then 
f is an injection and it is not a surjection, since we 
cannot find an integer x such that f(x) = 1/2. Note that 
f (x) = x + 2 is always an integer for any integer x.

Examples

THEOREM 1.29

PROOF

Let f : A ® B and g : B ® C be functions. Then the following hold:

1. If f and g are surjections, then so is g � f.

2. If g � f is a surjection, then g is a surjection.

1.  Suppose that f and g are surjections. Also g � f is a function from A into C.  The domain of g � f is 
A and the co-domain of g � f is C. Now,

c C c g b b B g

f a b g b c

Î ÎÞ =

Þ = =

( )

( ) ( )

for some (since is a surjection)

and foor some and since is a surjection)

and )

a A b B

a A

Î Î

Î

(

( )( ( (

f

g f a g f aÞ =� ))) ( )

( )( )

= =

Þ =

g b c

g f� a c a Afor some Î

Thus g � f is a surjection.
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2.  Suppose g � f is a surjection. To prove that g : B ® C is a surjection, let c Î C. Since g � f : A ® C 
is a surjection, there exists a Î A such that (g � f )(a) = c. Then f(a) Î B and

g( f (a)) = (g � f )(a) = c

Thus g is a surjection. ■

Note that g � f can be a surjection without f being a surjection. This is substantiated in the following.

Define f : � ® � by f(x) = [2x] for x Î� and g : � ® � by 
g(x) = [x] for all x Î�, where [x] is the integral part of x
(i.e., [x] is the largest integer £ x). Then g � f : � ® � is 
given by

( )( ) ( ( )) [[ ]] [ ]g f x g f x x x� = = =2 2

In this case g � f is a surjection, since, for any n Î�, n/2 Î�
and

( ) [ ]g f
n n

n n�
2

2
2

æ
èç

ö
ø÷

= ×é
ëê

ù
ûú

= =

However f is not a surjection, since f(x) is always an 
 integer and we cannot find x Î� such that f (x) = 1/2.

Example

It is a convention that, when f : A ® B is a surjection, we often denote this by saying “f is a function of A onto B” 
or f is a surjection of A onto B. We use the word onto only in the case of surjections. Whenever we want to mention that 
f : A ® B is a surjection, we say that f is a surjection (or surjective function or onto function) of A onto B.

DEFINITION 1.34  Bijection A function f : A ® B is said to be a bijection or a one-one and onto function or a 
one-to-one function if f is both injective and surjective. 

(1)  For any set X, define I : X ® X by I(x) = x for all 
x ÎX. Then clearly I is an injection and a  surjection, 
and hence a bijection. This is called the identity 
 function on X or identity map on X. To specify the set 
X also, we denote the identity function I on X by IX.

(2)  Define f : � ® � by f (x) = x + 3 for all x Î�. Then f is 
a bijection of � onto � (the term “onto” is used, since 
any bijection is necessarily a surjection).

(3)  For any real numbers a and b with a ¹ 0, define 
f : � ® � by

f (x) = ax + b for all x Î�

Then f is an injection, since

f x f y ax b ay b ax ay

x y a

( ) ( )

( )

= Þ + = + Þ =
Þ = ¹since 0

Also, f is surjective, since, for any y Î�,

y b
a

f
y b

a
a

y b
a

b y
-

Î
-æ

èç
ö
ø÷

=
-æ

èç
ö
ø÷

+ =� and

Thus,  f is a bijection of � onto itself.

(4)  Let E be the set of all even integers and � the set of 
all integers. Define f : E ® � by

f x
y x y

y x y y
( ) =

=

=

ì
í
ï

îï

2 4

2

if

if and is odd

Then f is a bijection. One can verify that

 f ( )0 0=  f ( )- = -2 1

 f ( )2 1=  f ( )- = -4 2

 f ( )4 2=

 f ( )6 3=  f n f n( ) ( )- = -

 f ( )8 4=

Examples

Try it out

THEOREM 1.30 Let f : A® B be any function. Then

I f f f IB A� �= =
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THEOREM 1.31

PROOF

If f : A ® B and g : B ® C are bijections, then g � f : A ® C is a bijection.

This is an immediate consequence of Theorems 1.28 [part (1)] and 1.29 [part (1)], since a bijection 
is both an injection as well as a surjection. ■

In the following, we give a characterization property for bijections.

THEOREM 1.32

PROOF

Let f : A ® B be a mapping. Then f is a bijection if and only if there exists a function g : B ® A 
such that

g f I f g IA B� �= =and

that is, g( f (a)) = a for all a Î A and f (g(b)) = b for all b Î B.

If there is a function g : B ® A such that

g f I f g IA B� �= =and

then, by Theorem 1.28 [part (2)],  f is an injection (since g f IA� =  which is an injection. Also, by 
Theorem 1.29 [part (2)],  f is a surjection (since f g IB� =  which is a surjection). Thus f is a bijection.
Conversely suppose that f is a bijection. Define g B A: ®  as follows:

g(b) = The pre-image of b under f

That is, if f (a) = b, then g(b) is defined as a. First observe that every element b Î B has a 
 pre-image a Î A under f (since f is a surjection). Also, this pre-image is unique (since f is an  injection). 
Therefore g is properly defined as a function from B into A. Now, for any a A b BÎ Îand ,  we have

( )( ) ( ( ))g f a g f a a� = =

since a is the pre-image of f(a) and

( )( ) ( ( ))f g b f g b b� = =  

since g(b) = a if f(a) = b. Thus g f I f g IA B� �= =and .  ■

DEFINITION 1.35  Inverse of a Bijection Let f : A ® B and g : B ® A be functions such that g � f = IA and 
f � g = IB. Then both f and g are bijections (by the above theorem). Also, g is unique such that 
g � f = IA  and f � g = IB, since, for any a Î A and b Î B, we have

f (a) = b Û g( f(a)) = g(b) Û a = g(b)

The function g is called the inverse function of f and f is called the inverse function of g. Both 
f and g are interrelated by the property

f (a) = b Û a = g(b)

for all a Î A and b Î B. The inverse function of f is denoted by f -1. When we look at f as a 
 relation, then f -1  is precisely the inverse relation as defined in Definition 1.26.

To confirm that f is a bijection, the existence of g satisfying both the properties g f I f g IA B� �= =and  are  necessary. 
Just g f IA� =  may not imply that f is a bijection. In this context, we have the following two results.

THEOREM 1.33

PROOF

Let f : A ® B be a function. Then f is an injection if and only if there exists a function g : B ® A 
such that g � f = IA.

If g : B ® A is a function such that g � f = IA, then by Theorem 1.28 [part (2)],  f is an injection, Conversely 
suppose that f  is an injection. Choose an arbitrary element a0 Î A and define g : B ® A as follows:

g b
a b f a a A

a b f
( )

( )
=

= Î

/Î

ì
í
ï

îï

if for some

if Range ( )0
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Recall that Range( f ) = { f(a) | a Î A} Í B. Since f is an injection, there can be at most one a Î A for 
any b Î B such that f (a) = b. Therefore, g is a well-defined function from B into A. Also, for any a Î A,

( )( ) ( ( ))g f a g f a a� = =

and hence g f IA� = .  ■

THEOREM 1.34

PROOF

Let f : A ® B be a function. Then f is a surjection if and only if there exists a function g : B ® A  
such that f � g = IB.

If there is a function g : B ® A such that f � g = IB, then, by Theorem 1.29 [part (2)], f is a  surjection. 
Conversely, suppose that f is a surjection. Then each element b in B has a  pre-image a in A [i.e., 

a is an element in A such that f (a) = b]. Now, for each b Î B, choose one element ab in A such that 
f (ab) = b. Define g : B ® A by

g b a b Bb( ) = Îfor each

Then g is a function from B into A and, for any b Î B, we have 

( )( ) ( ( )) ( )f g b f g b f a bb� = = =

Therefore f g IB� = . ■

DEFINITION 1.36  Real-Valued Function If f : A ® B is a function and a Î A then the image f(a) is also called 
a value of f at a. If the value of f at each a Î A is a real number, then f is called a real-valued 
 function on A; that is, any function from a set A into a subset of the real number system � is 
called a real-valued function on A.

If f : A ® B is a function and B Í C, then f can be treated as a function from A into C as well. Therefore, a real-valued 
function on A is just a function from A into �.

QUICK LOOK 6

Let f and g be real valued functions on a set A. Then we 
define the real-valued functions f + g, - f, f - g and f × g 
on A as follows:

1. ( f + g)(a) = f (a) + g(a)

2. ( -f )(a) = - f (a)

3. ( f - g)(a) = f (a) - g(a)

4. ( f × g)(a) = f (a)f (b)

Note that the operation symbols are those in the real 
number system �. Also, if g(a) ¹ 0 for all a ÎA, then 
the function f /g is defined as follows:

5. ( f /g)(a) = f (a)/g(a) for all a ÎA

(1) Let f be a polynomial over �, that is

f a a x a x a xn
n= + + + +0 1 2

2 	

where a0, a1, a2, ¼, an are all real numbers. For any
a Î�, let us define

f a a a a a a a an
n( ) = + + + +0 1 2

2 	

Then f : � ® � is a real-valued function on � and is 
called a polynomial function.

(2) Define f : � ® � by

f a e aa( ) = Îfor all �

Then f is a real-valued function on �.

(3) Define f : [ , ]0 2p ® � by

f a a( ) = Îsin for all a �

Then f is a real-valued function defined on [ , ]0 2p  
and is denoted by sin.

(4) Define f : � �+ ®  by

f a a a( ) = Î +for all �

This is a real-valued function defined on �+. Here a  
stands for the positive square root of a.

Examples
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We have earlier made use of the notation [x] to denote the largest integer ≤ x and called it the integral part of x. 
Now, we shall formally define this concept before going on to prove certain important properties.

DEFINITION 1.37  For any real number x, the largest integer less than or equal to x is called the integral part of x 
and in denoted by [x].  The real number x x- [ ] is called the fractional part of x and is denoted 
by { x }.

Note that, for any real number x, [x] is an integer and { x } is a real number such that

x x x x= + £ <[ ] { } { }and 0 1

Also, this expression of x is unique in the sense that, if n is an integer and a is a real number such that x n a= +  
and 0 1£ <a ,  then n = [x] and a = {x}.

(1) 
5

6
0

5

6

5

6

é
ëê

ù
ûú

= ì
í
î

ü
ý
þ

=and

(2) For any 0 1 0£ < = =a a a a, [ ] { }and

(3) -é
ëê

ù
ûú

= -
-ì

í
î

ü
ý
þ

=
1

4
1

1

4
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4
and

(4) 
-é
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ù
ûú

= -
-ì

í
î

ü
ý
þ

=
11

10
2

11

10

9

10
and

Examples

THEOREM 1.35

PROOF

The following hold for any real number x.

1. [x] £ x < [x] + 1

2. x - 1 < [x] £ x

3. 0 £ { x } = x - [x] < 1

4. [ ] ,x i x
i x

= >
£ £å 1

0if

5. [ ] { }x x x x= Û Î Û =� 0

6. { }x x=  if and only if [ ]x = 0

7. [ ] [ ]x x
x

x
+ - =

-

ì
í
ï

îï

0

1

if is an integer

if is not an integer

(1) through (6) are all straight-forward verifications using the definition that [x] is the largest 
 integer n such that n x£  and that x x x- =[ ] { }.

To prove (7), let [ ] .x n=  Then n x n£ < + 1 and therefore

- - < - £ -n x n1

If x is an integer, then so is –x and hence [ ] [ ] ( ) .x x x x+ - = + - = 0  If x is not an integer, then –x is 
also not an integer and therefore

- - < - -n x n1

So [ ]- = - -x n 1 and hence [ ] [ ] ( )x x n n+ - = + - - = -1 1. ■

(1) -é
ëê

ù
ûú

+ é
ëê

ù
ûú

= - + = -
9

5
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5
2 1 1

(2) [ ] [ ]- + = - + =3 3 3 3 0

(3) 
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1 2 1

é
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+ é
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7

8
1 0 1

Examples



1.6   Functions 47

THEOREM 1.36

PROOF

The following hold for any real numbers x and y:

1. [ ]
[ ] [ ] { } { }

[ ] [ ]
x y

x y x y

x y x y
+ =

+ + <

+ + ³

ì
í
ï

îï

if

if { } + { } 1

1

1

2. [ ] [ ] [ ]x y x y+ ³ +  and equality holds if and only if { } { }x y+ < 1

3. If x or y is an integer, then [ ] [ ] [ ]x y x y+ = +

1.  Let x = n + r  and y = m + s, where n and m are integers, 0 £ r < 1 and 0 £ s < 1. Then [x] = n,
{ x } = r, [y] = m and {y} = s. Now,

x y x y x y+ = + + +[ ] [ ] ({ } { })

and 0 2£ + <{ } { }x y

Therefore

[ ]
[ ] [ ] { } { }

[ ] [ ]
x y

x y x y

x y x y
+ =

+ + <

+ + ³

ì
í
ï

îï

if

if { } + { } 1

1

1

2. This is a consequence of (1).

3. This is a consequence of (2) and the fact that x is an integer if and only if { x } = 0. ■
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THEOREM 1.37

PROOF

The following hold for any real number x and any non-zero integer m:

1. 
x
m

x
m

é
ëê

ù
ûú

= é
ëê

ù
ûú

[ ]

2. If n and k are positive integers and k > 1, then

n
k

n
k

n
k

é
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ù
ûú

+
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ûú

£ é
ëê

ù
ûú

1 2

1.  Let [x] = n. Then x = n + r, 0 £ r < 1 (where r = { x }). Let m > 0. By division algorithm, we have

n qm s q s= + Î, , �  and 0 £ <s m

Alternately

n
m

q
s
m

s
m

= + £ <, 0 1
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Therefore,

[ ]x
m

n
m

qé
ëê

ù
ûú

= é
ëê

ù
ûú

=

Also,

x
m

n r
m

n
m

r
m

q
s r
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s r s m=
+

= + = +
+

£ + < + £, 0 1

and therefore

x
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q
x
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é
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ëê

ù
ûú

[ ]

Similar technique proves this when m < 0  also.

2. Let n and k be positive integers and k > 1. Let

n
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Then
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m r r= + £ <, 0 1
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m r
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+
= + +
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Note that, if r k+ ³( / ) ,1 1  then 2 2 2 1 2r k k³ - ³ ³( / ) ( )∵ . Thus
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Examples

DEFINITION 1.38  Let A be a subset of � and f : A ® � be a function. A positive real number p is called a period 
of f if f (x) = f (x + p) whenever x and x + p Î A. A function with a period is called a periodic 
function.

Note that, if p is a period of a function f : � ® �, then np is also a period of f for any positive integer n, since for any x Î �,

f x f x p f x p( ) ( ) ( )= + = + =2 	
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(1) Define the function f : � �®  by

f x x( ) { },=  the fractional part of x

Note that any real number x can be uniquely 
expressed as x = n + r, where n is an integer and 
0 £ r < 1 and this r is the fractional part of x denoted 
by {x} and this n is the integral part of x denoted by 
[x]. If x = n + r, then x + 1 = (n + 1) + r and hence

f x x x f x( ) { } { } ( )= = + = +1 1

for all x Î�. Thus, 1 is a period of f and hence every 
 positive integer n is a period of f. Therefore, f is a 
 periodic function.

(2)  We will be learning later in Vol. II that functions like 
sin x, cos x, cosec x, etc. are all periodic functions and 
2p is a period of all these.

(3)  The function f : � ® �, defined by f (x) = c, for all 
x Î�, where c is a given constant, is a periodic func-
tion. Infact, every positive real number is a period 
of this.

(4) The function f : � ® � defined by

f (x) = [x] (the integral part of x)

is not a periodic function. Note that

[x + n] = [x] + n

for all x Î� and for all integers n.

Examples

1.7 | Graph of a Function

A function f from a set A into a set B is a relation from A to B; that is,  f Í A ´ B and hence it can be represented as 
a subset of the Cartesian product A ´ B graphically. In particular, when the function is a real-valued function defined 
on the real number system or a subset of �, we can plot the point (a, f (a)) on the coordinate plane by treating the 
x-axis as the domain and the y-axis as the co-domain of the function. This type of representation facilitates a better 
insight into understanding various properties of the function. First, let us have the formal definition of the graph in 
the following.

DEFINITION 1.39  Graph of a Function Let f  : A ® B be a function. Then the graph of f is defined as the set 
of all ordered pairs whose first coordinate is an element a of A and the second coordinate is 
the image of a under f.  This is denoted by Graph ( f ). That is,

Graph ( f ) = {(a, f (a)) | a Î A}

Note that the graph of a function f  : A ® B is a subset of the Cartesian product A ´ B. For each a Î A, there is exactly 
one ordered pair in Graph ( f ) with a as the first coordinate. In the following, we shall provide graphs of certain 
 important functions and draw diagrams of these.

Example     1.28   

Let f : � ® � be defined by f(x) = x for all x Î�. (Recall 
that f is called the identity function on � and is denoted 
by IR .) What is the graph of f ? Sketch the same.

Solution: The graph of f is

{( , ( )) | } {( , ) | }a f a a a a aÎ = Î� �

This is known as the diagonal relation on �. As shown in 
Figure 1.30, it is a straight line passing through the origin, 
contained in the first and third quadrants and bisecting 

the right angle XOY.�

b

b

a

a

(a, a)

(b, b)

Y = �

X = �
O

FIGURE 1.30 Example 1.28.
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Example     1.29   

For any given real numbers m and c, let us define the 
function f : � ® � by

f (x) = mx + c for all x Î�

Sketch the graph of the same.

Solution: The graph of f is

{(x, mx + c) | x Î�}

As shown in Figure 1.31, this is a straight line whose 
slope is m and the intercept on the y-axis is c. If we take
m = 1 and c = 0, we get the identity function given in
Example 1.28.

Y = �

X = �

(0, c)

O

FIGURE 1.31 Example 1.29.

Example     1.30   

Sketch the graph for m = 0 in Example 1.29.

Solution: If m = 0 in Example 1.29, then we get 

f (x) = c for all x Î�

This is called the constant function with image c. 
The graph of f is a straight line parallel to the x-axis
(Figure 1.32).

(0, c)

Y = �

X = �
O

FIGURE 1.32 Example 1.30.

Example     1.31   

Define f : � ® � by

f (x) = | x | for all x Î�

Sketch the graph of f.

Solution: The given function is

f x
x

x
( ) =

³

-

ì
í
ï

îï

if 

if < 0

x

x

0

The graph of f is

{( , )| } {( , )| }x x x x x x³ È - <0 0

This is the combination of two straight lines: one passing 
through the origin, bisecting XOY� and contained in the 
first quadrant and the second passing through the origin, 
bisecting ¢X OY�  and contained in the second quadrant 
(Figure 1.33).

X�

Y = �

X = �

y= -x y=x

O

FIGURE 1.33 Example 1.31.
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Example     1.32   

Let f : � ® � be defined by f(x) = [x] for all x Î�, where 
[x] is the largest integer ≤ x. For example

 f 1
1

2
1

æ
èç

ö
ø÷

= ,  f ( . ) ,- = -2 5 3  f ( . )2 5 2=

 f ( ) ,2 2=  f ( . ) ,- = -4 2 5  f ( . )5 01 5=

 f ( . ) ,3 9 3=  f ( . ) ,- = -8 9 9  f ( . )- = -6 01 7

Sketch the graph of f.

Solution: The graph of f is ([ , ) { })n n n
n

+ ´
Î

1
�∪  and 

is given in Figure 1.34. This function is called the step 
function. The graph of f restricted to an interval [n, n + 1), 
with n an integer, is a line segment parallel to the x-axis.

Y= �

X = �
O

FIGURE 1.34 Example 1.32.

Example     1.33   

Let f : � ® � be defined by

f x

x

x
x

x
( ) | |=

¹

ì
í
ï

îï

0

0

if = 0

if

Sketch the graph of this function.

Solution: We have

f x

x

x
x

x
( ) | |=

¹

ì
í
ï

îï

0

0

if = 0

if

Then 

f x

x

x

x

( ) =

-

>

ì

í
ï

î
ï

1

0

1 0

if < 0

if = 0

if

This function is called the signum function. The graph 
of this f is in three parts: one is the line y = 1 which is 
parallel to x-axis and contained in the first quadrant; 
the second is the origin (0, 0) and the third is the line 
y = –1 which is parallel to the x-axis and contained in the 
third quadrant (Figure 1.35).

y = 1

y = -1

Y = �

X = �
O

FIGURE 1.35 Example 1.33.

Example     1.34   

Let f : � ® � be defined by 

f x

x x

x

x x

( ) =

- <

=

+

ì

í
ï

î
ï

1 0

1 0

1

if  

if  

if  > 0

Sketch the graph for this function.

Solution: Note that f (x) = 1 + | x | for all x Î�.  The graph 
of f is given by

{( , ) } {( , )} {( , )| }x x x x x x1 0 0 1 1 0+ > È È - <

Y = �

X = �

M
P ( 0, 1 )

L

O

FIGURE 1.36 Example 1.34.
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This is in three parts: one is the straight line bisecting 
LPY�  and contained in the first quadrant, the second 
is the point P = (0, 1) and the third is the straight line 

bisecting MPY�  and contained in the second quadrant 
(Figure 1.36).

DEFINITION 1.40  Let A be a subset of � and f  : A ® � be a function. Then we say that f is increasing if
f (x) £ f (y) whenever x £ y.  f is said to be decreasing if f (x) ³ f (y) whenever x £ y.

Example     1.35   

Let 1 < a Î� and define f : � ® � by f (x) = ax for all x Î�. 
Sketch the graph of f.

Solution: Since a > 1, f is an increasing function. 
The graph of f is a curve which goes upward when x 
increases [i.e., f (x) increases when x increases] and goes 
downwards when x decreases [i.e., f (x) decreases when 
x decreases]. Also, since a > 1, a is positive and hence 
ax is positive for all x. This implies that the graph of 
f (x) = ax is contained in the first and second quadrants 
(Figure 1.37).

(0, 1)

Y = �

X = �

y = ax, a >1

O

FIGURE 1.37 Example 1.35.

Example     1.36   

Let 0 < a < 1 and define f : � ® � by f (x) = ax for all x Î�. 
Sketch the graph of f. Here, f(x) decreases as x increases 
(since 0 < a < 1) and hence f is a decreasing function. The 
graph of f is the curve shown in Figure 1.38. The curve 
cuts the y-axis at (0, 1). Also, since a > 0, ax > 0 for all 
x Î�. Therefore, the graph of f is contained in the first 
and second quadrants only.

X = �

(0, 1)

Y = �y = ax,  0 < a <1

O

FIGURE 1.38 Example 1.36.

Example     1.37   

Let f : � ® � be a periodic function with a period p. 
What would the graph of this function look like?

Solution: In this case, the graph of f between the lines 
x = 0 and x = p is similar to that between the lines x = p 
and x = 2p. For example, consider the function f : � ® � 
defined by

f (x) = {x}, the fractional part of x

This is a periodic function with 1 as a period. The graph 
of this function is as shown in Figure 1.39. Note that  
0 £ f (x) < 1 for all real numbers x.

Y= �

X= �
3210-1-2

FIGURE 1.39 Example 1.37.
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1.8 | Even Functions and Odd Functions

If we consider the function f : � ® � defined by f (x) = x2, then we have f (x) =  f (-x). Functions satisfying this property 
are called even functions. If f is a real-valued function such that f (x) = -f (x) for all x, then f is called an odd function. 
In this section we discuss certain elementary properties of even and odd functions. We shall begin with a formal defini-
tion in the following.

Even Functions

DEFINITION 1.41  Symmetric Set  A subset X of the real number system � is said to be a symmetric set if

x xÎ Û - ÎX X

(1)  The interval [–1, 1] is a symmetric set, since -1 £ x £ 1  
if and only if -1 £ -x £ 1.

(2)  The interval [0, 1] is not symmetric.

(3)  The set � of integers, the set � of rational numbers 
and the whole set � are all symmetric sets.

(4)  The sets {0}, {–1, 1}, {–1, 0, 1} are symmetric.

(5) [-2, -1] È [1, 2] is a symmetric set.

Examples

DEFINITION 1.42  Even Function Let X be a symmetric set and f : X ® � a function. Then f is said to be an 
even function if

f (-x) = f (x) for all x Î X

(1)  If f : � ® � is the function defined by f (x) = x 2 for all 
x Î�, then f is an even function, since, for any x Î�,

f (-x) = (-x)2 = x2 = f (x)

(2)  The function f : � ® �, defined by f (x) = | x | for all 
x Î�, is even, since

f (-x) = | -x | = | x | = f (x) for all x Î�

(3)  Any constant function f : � ® � is even, that is, for 
any c Î�, the function f : � ® �, defined by f (x) = c  
for all x Î�, is even.

(4)  The function f : [-p, p] ® �, defined by f (x) = cos x 
for all -p £ x £ p, is an even function, since cos(-x) = 
cos x.

Examples

Graphs of Even Functions

The graph of an even function is symmetric about the y-axis, in the sense that, when y-axis is assumed as plane mirror, the 
graph in the left part is the image of the right part. Equivalently, if the graph is rotated through 180o about the y-axis, we 
get the appearance of the graph as original. Figure 1.40 shows the graphs of the even functions given in the example above.

Odd Functions

DEFINITION 1.41  Odd Function Let X be a symmetric set. A function f : X ® � is said to be an odd function if

f (-x) = - f (x) for all x Î X
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(a) (b)

O O

Y = �Y = �

X = �X = �

(c)

(0, c)

O

Y = �

X = �

Y = �

(d)

X = �

(0, 1)

(0, 0)

(0, -1)

FIGURE 1.40 Graphs of the functions: (a) f (x) = x2 ; (b) f (x) = | x |; (c) f (x) = c; (d) f (x) = cos x.

(1)  The identity function f : � ® �, defined by f (x) = x
for all x Î�, is an odd function, since f (-x) = -x =
-f (x) for all x Î�.

(2)  In general, for any integer n, the function f : � ® �, 
defined by f (x) = x2n+1, is an odd function, since 
f (-x) = (-x)2n+1 = -x2n+1 = -f (x) for all x Î�.

(3)  Define f : [-p, p] ® � by f (x) = sin x for all -p £ x £ 
p. Then f is an odd function, since f (-x) = sin(-x) = 
-sin x = -f (x) for all x Î[-p, p].

(4)  Define f : (-p / 2, p / 2) ® � by f (x) = tan x for all 
-p / 2 < x < p / 2. Then f is an odd function, since 
tan(-x) = -tan x for all x Î(-p / 2, p / 2). 

Examples

Note: If f is an odd function defined on a symmetric set S containing 0, then necessarily f (0) = 0, for f (0) = f (-0) = -f (0). 
Hence 2 f (0) = 0, so that f (0) = 0.

Graphs of Odd Functions

The graph of an odd function is symmetric about the origin. If the graph is rotated through 180o, either clockwise or 
anticlockwise, about the origin, the resulting figure gives the same appearance as original. Figure 1.41 gives the graphs 
of the odd functions given in the above example.
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(a) (b)

p p-p /2

( p /2, 1)

( -p /2, 1)

p /2
X

0

Y

(c)

Y Y

X X
OO

(d)

Y

0-p /2 p /2
X

FIGURE 1.41 Graphs of the functions: (a) f x x( ) = ;  (b) f x x( ) ;= 3
 (c) f(x) = sin x; (d) f(x) = tan x.
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Remark: Unlike in integers, a function can be neither even nor odd. For example, consider the function f : � ® �  
defined by f (x) = x2 + x + 1 for all x Î �. Then f (-1) = 1 and f (1) = 3 and hence

f (–1) ¹ f (1) and f(–1) ¹ – f (1)

Therefore f is neither even nor odd. Next, note that a function f is both even and odd if and only if f x( ) = 0 for all x.

(1)  Define f : � ® � by f (x) = ex + e-x for all x Î �. Then 
f (-x) = e-x + e-(-x) = ex + e-x = f (x) for all x Î � and 
therefore f is an even function.

(2)  Define f : [-1, 1] ® � by f x x x( ) = - - +1 134 34  for 
all -1 £ x £ 1. Then

f x x x( ) ( ) ( )- = - - - + -1 134 34

= + - -

= - - - +

= -

1 1

1 1

34 34

34 34

x x

x x

f x

( )

( )

for all x Î -[ , ]1 1 . Therefore f is an odd function.

Examples

THEOREM 1.38

PROOF

Let X be a symmetric set and f and g functions of X into �. Then, the product fg is an even function 
if both f and g are even or both f and g are odd.

Suppose that both f and g are even functions. Then, for any x Î X, we have

( )( ) ( ) ( ) ( ) ( ) ( )( )fg x f x g x f x g x fg x= = - - = -

and hence fg is an even function. One the other hand, suppose that both f and g are odd  functions. 
Then, for any x Î X, we have

( )( ) ( ) ( ) ( ( ))( ( )) ( ) ( ) ( )( )fg x f x g x f x g x f x g x fg x- = - - = - - = =

and therefore fg is an even function. ■

THEOREM 1.39

PROOF

For any real-valued functions f and g defined on a symmetric set X, the product fg is an odd 
 function if one of f and g is odd and the other is even.

Note that fg = gf, since rs = sr for any real numbers r and s. Without loss of generality, we can 
 suppose that f is even and g is odd. Then, for any x Î X, we have

( )( ) ( ) ( ) ( )( ( )) ( ( ) ( )) ( )( )fg x f x g x f x g x f x g x fg x- = - - = - = - = -

Therefore fg is an odd function. ■

THEOREM 1.40

PROOF

Let f be a real-valued function on a symmetric set X. Then the following hold:

1. f is even if and only if af is even for any 0 ¹ a Î �.

2. f is odd if and only if af is odd for any 0 ¹ a Î �.

3. f is even (odd) if and only if –f is even (odd).

1.  Let us recall that for any a Î � the function af  is defined by (af )(x) = af (x) for all x Î X. Suppose 
that f is even. Then, for any a Î � and x Î X,

(af )(-x) = af (-x) = af (x) = (af )(x)

and hence af is even. Conversely, suppose that 0 ¹ a Î � such that af is even. Then, for any x Î X, 
we have

af (- x) = (af )(- x) = (af )(x) = af (x)

Now, since a ¹ 0, f (-x) = f (x).  Therefore, f is even.
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2. It can be proved similarly.

3. It is a simple consequence of (1) and (2); take a = 1 in (1) and (2). ■

THEOREM 1.41

PROOF

If f and g are even (odd), then so is f ± g.

Suppose that f and g are even. Then, for any x Î X, we have

( )( ) ( ) ( ) ( ) ( ) ( )( )f g x f x g x f x g x f g x+ - = - + - = + = +

Therefore f + g is even. This together with the above theorem implies that f - g is also even. 
Similarly, we can prove that, if f and g odd, then so is f ± g. ■

THEOREM 1.42

PROOF

Any function can be expressed as a sum of an even function and an odd function.

Let f : X ® � be a function whose domain X is a symmetric set. Define g : X ® � and h : X ® � by

g x
f x f x

( )
( ) ( )

=
+ -
2

 and h x
f x f x

( )
( ) ( )

=
- -
2

for all x Î X . Then

g x
f x f x f x f x

g x( )
( ) ( ( )) ( ) ( )

( )- =
- + - -

=
+ -

=
2 2

and h x
f x f x f x f x

h x( )
( ) ( ( )) ( ) ( )

( )- =
- = - -

=
- -

= -
2 2

for all x Î X . Therefore, g is an even function and h is an odd function. Also, for any x Î X,

 g x h x
f x f x f x f x

f x( ) ( )
( ) ( ) ( ) ( )

( )+ =
+ -

+
- -

=
2 2

and hence f = g + h. ■

Note: The above representation of f is unique in the sense that if g + h = f = a + b, where g and a are even and h and 
b are odd, then g = a and h = b; for, in this case g - a = b - h, which is both even and odd. Therefore, g - a = 0 = b - h  
or g = a and h = b.

The unique functions g and h given in the proof of Theorem 1.42 are called the even extension of f and odd 
 extension of f, respectively.

(1) Let f : � ® � be defined by

f x x x x( ) ( )= + + = +2 22 1 1

Note that f is neither even nor odd, since

f ( ) ( ) ( )- = - + - + =1 1 2 1 1 02

and f ( ) ( ) ( )1 1 2 1 1 42= + + =

Therefore f (-1) ¹ f (1) and f (-1) ¹ -f (1). However, 
consider the functions g and h defined by

g(x) = x2 + 1 and h(x) = 2x

Then g is even, h is odd and f = g + h. Note that 

f x f x
g x

( ) ( )
( )

+ -
=

2
 and 

f x f x
h x

( ) ( )
( )

- -
=

2

(2) Consider the function f : � ® � defined by

f (x) = ex for all x Î�

Then f = g + h, where

 g x
e ex x

( ) =
+ -

2
 and h x

e ex x

( ) =
- -

2

Note that g is even and h is odd.

Examples
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Example     1.38   

Determine the even and odd extensions of the function 
f : � ® � given by f (x) = e-x.

Solution: The even extension of f is given by

g x
f x f x e ex x

( )
( ) ( )

=
+ -

=
+-

2 2

and the odd extension of f is given by

h x
f x f x e ex x

( )
( ) ( )

=
- -

=
--

2 2

1. If A is the set of positive divisors of 20, B is the set of 
all prime numbers less than 15 and C is the set of all 
 positive even integers less than 11, then (A Ç B) È C is

(A) {2, 3, 5, 7, 8, 10} (B) {2, 4, 5, 7, 8, 10}

(C) {2, 4, 5, 6, 7, 8, 10} (D) {2, 4, 5, 6, 8, 10}

Solution: It is given that

A = {1, 2, 4, 5, 10, 20}

 B = {2, 3, 5, 7, 11, 13}

 C = {2, 4, 6, 8, 10}

Therefore

A B A B CÇ = Ç È ={ , } ( ) { , , , , , }2 5 2 4 5 6 8 10and

 Answer: (D)

2. Which of the following sets is empty?

(A) { x Î � | x2 = 9 and 2x = 6}

(B)  { x Î � | x2 = 9 and 2x = 4}

(C)  { x Î � | x + 4 = 4}

(D) { x Î � | 2x + 1 = 3}

Solution: We have x2 = 9 only if x = ±3. For this value 
of x the equation 2x = 4 is not satisfied. Sets in (A), (B), 
and (D) are non-empty.

 Answer: (B)

3. For each positive integer n, let

An = The set of all positive multiples of n

Then A A6 10Ç  is

(A) A10 (B) A20 (C) A30 (D) A60

Solution: Given that An a n a= Î +{ | }.� divides  Now

a A A

a r

n m

r

Î Ç Û
Û
Û Î

Both and divide

The LCM of { , } divides

where

n m a

n m a

A , == LCM { , }n m

Therefore,

A6 Ç A10 = A30

since LCM {6, 10} = 30.

 Answer: (C)

4. Let A = {a, b, c, d} and B = {a, b, c}. Then the number 
of sets X contained in A and not contained in B is

(A) 8 (B) 6 (C) 16 (D) 12

Solution: If X Í A and X BÍ ,  then necessarily d Î X 
Í A and hence X = Y È { d }, where Y is any subset of 
B. The number of subsets of B is 23 and therefore the 
required number is 8.

 Answer: (A)

5. Let A, B and C be three sets and X be the set of all 
elements which belong to exactly two of the sets A, B 
and C. Then X is equal to

(A) ( ) ( ) ( )A B B C C AÇ È Ç È Ç
(B) A B CD D( )

(C) ( ) ( ) ( )A B B C C AÈ Ç È Ç È
(D) ( ) [ ( )]A B C A B CÈ È - D D

Solution: We have

x x xÎ Û Î ÇX A B Cand Ï

or x xÎ ÇB C Aand Ï

or x xÎ ÇC A Band Ï

Therefore

X = [(A Ç B) - C] È [(B Ç C) - A] È [(C Ç A) - B]

 = È È - D D( ) [ ( )]A B C A B C

since

A B C A B C A B C

A B C A B C

D D = Ç Ç È Ç Ç È

Ç Ç È Ç Ç

( ) ( ) ( )

( ) ( )

c c c c

c c

 Answer: (D)

   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions
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6. Let Ã( )x  denote the power set of X. If A a b c d e= { , , , , }  
and B a c d x y= { , , , , },  then Ã Ç =( )A B

(A) { , { , }, { , }, { , , }, { }, { }, { }}f a c c d a c d a c d

(B) { , { }, { }, { , }, { , }, { , }, { , , }}f a c a c c d a d a c d

(C) Ã È( )A B

(D) Ã ÇÃ( ) ( )A B

Solution: We have X A B X AÍ Ç Û Í  and X BÍ .

 Answer: (D)

7. Let A and B be finite sets with n(A) = m and n(B) = n. 
If the number of elements in Ã(A) is 56 more than 
those in Ã(B), then

(A) m n= =6 4,

(B) m n= =6 3,

(C) m n= =7 4,

(D) m n= =5 3,

Solution: It is given that

n A nm n( ( )) ( ( ))Ã = = + Ã = +2 56 56 2B

Now 2 2 56m n- =  and m n> . Hence we get

2 2 1 56 8 7 2 2 13 3n m n( ) ( )- - = = ´ = -

Therefore n = 3 and m - n = 3 and hence m = 6 and n = 3.

 Answer: (B)

8. If A and B are two subsets of a universal set X, then  
Ac - Bc =
(A) A - B  (B) (A - B)c

(C) B Ç Ac  (D) (B - A)c

Solution: We have

A B A B A B B Ac c c c c c c- = Ç = Ç = Ç( )

 Answer: (C)

9. If A = {1, 2, 3, 4}, B = {1, 2, 5, 6}, C = {2, 7, 8, 9} and 
D = {2, 4, 8, 9}, then (A D B) D (C D D) =
(A) {3, 4, 5, 6, 7} (B) {3, 4, 5, 7}

(C) {3, 5, 7, 8}  (D) {3, 5, 6, 7}

Solution: We have

A B A B B A

C D C D D C

D = - È - =

D = - È - =

( ) ( ) { , , , }

( ) ( ) { , }

3 4 5 6

7 4

and ( ) ( ) ( ) ( )

[( ) ( )]

{ , , } { } { , , ,

A B C D A B C D

C D A B

D D D = D - D

È D - D

= È =3 5 6 7 3 5 6 7}}

 Answer: (D)

10. Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9} and A = {2, 3, 4, 5, 6}. Then 
the number of subsets B of S such that A D B = {5} is

(A) 1 (B) 2 (C) 3 (D) 0

Solution: For any subsets X, Y and Z of S, we have 

X X X XD = D =f f,  

and X Y Z Y X ZD = Û = D

Now,

A B B AD = Û = D ={ } { } { , , , }5 5 2 3 4 6

 Answer: (A)

11. Let A, B and C be finite sets such that A Ç B Ç C = f 
and each one of the sets A D B, B D C and C D A has 
100 elements. The number of elements in  A È B È C is 

(A) 250 (B) 200 (C) 150 (D) 300

Solution: Let n(X ) denote the number of elements in X. 
Then,

n n n n n

n n n

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

A B C A B C A B

B C C A A B C

È È = + + - Ç

- Ç - Ç + Ç Ç

 = - Çå ån n( ) ( )A A B

 (since A B CÇ Ç = f )

Now,

A B A B B A A B A BD = - È - = È - Ç( ) ( ) ( ) ( )

Therefore

n n n

n n n

( ) ( ) ( )

( ) ( ) ( )

A B A B A B

A B A B

D = È - Ç

= + - Ç2

and

300 2

2

= D = + - Ç

= - Çéë ùû

å å
å å

n n n n

n n

( ) [ ( ) ( ) ( )]

( ) ( )

A B A B A B

A A B

Therefore

n n n( ) ( ) ( ) /A B C A A BÈ È = - Ç = =å å 300 2 150

 Answer: (C)

Alternate Method
Draw the Venn diagram as follows:

A B

C
c

y

ba x

z
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The shaded part is A Ç B Ç C which is given to be empty. 
Let a, b, c denote n[A – (B È C )], n[B – (C È A)], n[C –
(A È B)] respectively. Let x, y, z denote the number 
of elements in (A Ç B) - C, (B Ç C) - A, (C Ç A) - B 
 respectively. Then

n( )A B C a b c x y zÈ È = + + + + +

We are given that

100

100

= D = + + +

= D = + + +

n a z b y

n C b x c z

( ) ( ) ( )

( ) ( ) ( )

A B

B

and 100 = D = + + +n C A c y a x( ) ( ) ( )

Adding the above three, we get that

300 2 2 2= + + + + + = È È( ) ( ) ( )a b c x y z n A B C

and hence n( ) .A B CÈ È = 150

 Answer: (C)

12. Let n be a positive integer and

R a b a b nm m= Î ´ - = ¹ Î{ }( , ) � � �| for some 0

Then R is

(A) Reflexive on �
(B) Symmetric

(C) Transitive

(D) Equivalence relation on �

Solution: R is not reflexive, since (2, 2) ÏR. R is sym-
metric, since

( , )

( )

( , )

a b R a b nm m

R

Î Þ - = ¹ Î

Þ - = - ¹ - Î

Þ Î

for some 0

and 0

�

�b a n m m

b a

R is not transitive, since ( , )2 2n + ÎR  and ( , ) ,n R+ Î2 2  
but ( , ) .2 2 ÏR

 Answer: (B)

13. Let P0 = 1 and Pn be the number of partitions on 
a finite set with n elements. For n ≥ 1, a recursion 
formula for Pn is given by

(A) P P Pn n n= +- -1 2  for n ≥ 2

(B) P
n

r
P

r

n

rn =
-æ

èç
ö
ø÷=

-

å
1

1

1

(C) P
n

r
Pn

r

n

r+
=

=
æ
èç

ö
ø÷å1

0

(D) P P nPn n n+ -= +1 1

Solution: We are given that P0 = 1. If X is a set with 
only one element, then clearly P1 = 1. Now, let X be a set

with n + 1 elements, n > 0. If A is a non-empty subset of 

X with K-elements (such sets are 
n

K

+æ
èç

ö
ø÷

1
 in number), 

then the number of partitions of the set X - A is Pn K( ) .+ -1  
For each f ¹ ÍA X  and for each partition of X - A, 
we get a partition of X. Conversely, any partition of X 
 corresponds to a non-empty subset A of X and a parti-
tion of X - A. Therefore

P
n

K
P

n

r
Pn

K

n

n K
r

n

r( ) ( )+
=

+

+ -
=

=
+æ

èç
ö
ø÷

=
æ
èç

ö
ø÷å å1

1

1

1

0

1

 Answer: (C)
Note: If n is a positive integer and 0 £ £r n is an integer, 

then 
n

r
æ
èç

ö
ø÷

 denotes the number of selections of n distinct

objects taken r at a time (see Chapter 6).

14. The number of equivalence relations on a five element 
set is

(A) 32 (B) 42 (C) 50 (D) 52

Solution: Note that equivalence relations and partitions 
are same in number. By Problem 13, we have

P P P P P5

0

4

0 1 2

4 4

0

4

1

4

2

4

3
=

æ
èç

ö
ø÷

=
æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

+
æ
èç

ö

=
å rr

r øø÷
+

æ
èç

ö
ø÷

P P3 4

4

4

Now,

P P P P P

P P

0 1 2 0 1

3 0

1 1
1

0

1

1
1 1 2

2

0

2

1

= = =
æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

= + =

=
æ
èç

ö
ø÷

+
æ
è

, ,

çç
ö
ø÷

+
æ
èç

ö
ø÷

= + × + × =

=
æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

+
æ

P P

P P P

1 2

4 0 1

2

2
1 2 1 1 2 5

3

0

3

1

3

2èèç
ö
ø÷

+
æ
èç

ö
ø÷

= × + × + × + × =

=
æ
èç

ö
ø÷

+
æ
èç

ö

P P

P P

2 3

5 0

3

3

1 1 3 1 3 2 1 5 15

4

0

4

1øø÷
+

æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

= × + × + × + × + ×

P P P P1 2 3 4

4

2

4

3

4

4

1 1 4 1 6 2 4 5 1 155 52=

 Answer: (D)

15. Which one of the following represents a function?

(A) 

1

2

3

4

a

b

c

d
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(B) 

1

2

3

4

a

b

c

d

(C) 

1

2

3

4

a

b

c

d

(D) 

1

2

3

4

a

b

c

d

Solution: In (A), 3 ® b and 3 ® d. It does not represent 
a function, since one element in the domain cannot be 
sent to two elements in the codomain. Similarly (B) and 
(C) do not represent functions. But (D)  represents a func-
tion f, where f f f( ) , ( ) , ( )1 2 3= = =a b b and f ( ) .4 = d

 Answer: (D)

16. Let A be the set of all men living in a town. Which 
one of the following relations is a function from 
A to A?

(A) {(a, b) Î A ´ A | b is the son of a}

(B) {(a, b) Î A ´ A | b is the father of a}

(C) {(a, b) Î A ´ A | a and b are same}

(D) {(a, b) Î A ´ A | a is the grandfather of b}

Solution: Here (B) is not a function, since for any a Î A,
there should be exactly one b such that b is the father 
of a. Then again there should be c Î A such that c is the 
father of b and so on. This chain breaks at some stage, 
where there is man a whose father is not in that town. 
Therefore, not every element in A has an image. In (A) 
and (D) an element can have more than one images and 
hence they do not represent a function. However, (C) is a 
function; in fact, it is the identity function on A.

 Answer: (C)

17. Let f : � �®  be the function defined by

f x
x x x

x x
( ) =

- + <
- ³

ì
í
î

2 4 3 2

3 2

if

if

Then number of real numbers x for which f x( ) = 3 is

(A) 1 (B) 2 (C) 3 (D) 4

Solution: We have

x f x x x

x x

x x

< = Þ - + =
Þ - =
Þ = <

2 3 4 3 3

4 0

0 2

2and

(since )

( )

( )

Also x ³ 2 and f x x x( ) .= Þ - = Þ =3 3 3 6  Therefore, 
only x = 0  or 6 satisfy f x( ) .= 3

 Answer: (B)

18. Let

f x
ax

x
( ) =

+
¹ -

1
1for x

Then the value of a such that ( )( )f f x x� =  for all 
x ¹ -1 is

(A) -1 (B) 2  (C) - 2  (D) 1

Solution: We have

x f f x f= =
+

æ
èç

ö
ø÷

= +
+ +

( )( )
[ /( )]

[ /( )]
�

ax
x

a ax x
ax x1

1

1 1

Therefore

x
a x

ax x
x=

+ +
¹ -

2

1
1for all

( ) ( )a x a x+ + - =1 1 02 2  for all x ¹ -1

This is a quadratic equation which is satisfied by more 
than two values of x (infact, for all x ¹ -1). Therefore, the 
coefficients of x2 and x must be both zero. Hence

a a+ = - =1 0 1 02and

and so

a = -1

 Answer: (A)

19. If f (x) is a polynomial function satisfying the relation

f x f
x

f x f
x

( ) ( )+ æ
èç

ö
ø÷

= æ
èç

ö
ø÷

¹
1 1

0for all x

and f (4) = 65, then f (2) =
(A) 7 (B) 4 (C) 9 (D) 6

Solution: Since f (4) = 65, f (x) must be a non-zero poly-
nomial. Let

f x a a x a x a x an
n

n( ) ,= + + + + ¹0 1 2

2 0	

Worked-Out Problems 61
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Suppose that

f x f
x

f x f
x

( ) ( )+ æ
èç

ö
ø÷

= æ
èç

ö
ø÷

¹
1 1

0for all x

Then

a x
a
x

a x
a
xr

r

r

n
r
r

r

n

r
r

r

n
r
r

r

n

= = = =
å å å å+ =

æ

èç
ö

ø÷
æ

èç
ö

ø÷0 0 0 0

Multiplying throughout by xn, we get that

a x a x a x a xr
n r

r

n

r
n r

r

n

r
r

r

n

r
n r

r

n
+

=

-

= =

-

=
å å å å+ =

æ

èç
ö

ø÷
æ

èç
ö

ø÷0 0 0 0

That is,

( ) ( )a x a x a x a x a x a x an n
n

n n n
n n0 1

1 2

0 1

1

1+ + + + + + + ++ -
-	 	

= + + + + + + +-
-( )( )a a x a x a x a x a x an

n n n
n n0 1 0 1

1

1	 	

Equating the corresponding coefficients of powers of x, 
we have

a a a a a a a a

a a a a a a a

a a a

n n n n n

n n n n

n

= = +

= + +

= +

- -

- - -

0 1 0 1 1

2 2 1 1 2 0

0 0

2 22

,

aa a a a a

a a a a a a a a

a a

n n n

n n n n

n

= Þ = ¹

= + Þ = Þ =

=
- -

-

0 0

1 0 1 1 1 1

2

1 0

0 0

(since )

22 1 1 2 0 2 2 2 2 0a a a a a a a a a an n n n n n+ + Þ = + Þ =- - - -

Continuing this process, we get that an- =1 0  and 2 1 2= + an . 
Hence an = ±1. Therefore

f x xn( ) = ±1

Since we are given that f (4) = 65 we have

65 1 4= ± n

Therefore f (x) cannot be 1 - xn. Thus, f (x) = 1 + xn and 
65 = 1 + 4n and hence n = 3. So f (x) = 1 + x3 and f (2) = 9.

 Answer: (C)

20. Let f x x x( ) /( )= +9 9 3  for all x Î�.  Then the value of 

f r
r

( / )2009
1

2008

=å  is

(A) 1004 (B) 1005 (C) 1004.5 (D) 1005.5

Solution: Consider

f x f x
x

x

x

x

x

x x

( ) ( )+ - =
+

+
+

=
+

+
+ ×

-

-1
9

9 3

9

9 3

9

9 3

9

9 3 9

1

1

x

x (
=

+
+

+
9

9 3

9

3 3 9xx

x

x

)

( )
=

× +
+

=
3 9 9

3 3 9
1

Therefore,

f
r

f f
r 2009

1

2009

2008

20091

2008 æ
èç

ö
ø÷

= æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

+

=

=
å …

ff
r r

f
r

r 2009

2009

2009

2009

1

1004 æ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

é
ëê

ù
ûú

= æ
èç

ö
ø÷

+

=
å

ff
r

r

r

1
2009

1 1004

1

1004

1

1004

-æ
èç

ö
ø÷

= =

=

=

å

å

 Answer: (A)

Note: If a is any positive integer and f x a a ax x( ) /( ),= +2 2  
then

f x f x( ) ( )+ - =1 1

21. Let [x] and { x } denote the integral part and  fractional 
part of x, respectively. Then the number of solutions 
of the equation 4{ x } = x + [x] is

(A) 1 (B) 2 (C) 0 (D) infinite

Solution: Let 4{ x } = x + [x] = 2[ x ] + { x }. Therefore 3{ x } 
= 2[x]. Since 0 £ { x } < 1, we have 0 £ 3{ x } < 3 and there-
fore  0 £ 2{ x } < 3. Since 2[x] is even integer,

[ ]x = 0  or 1 and { }x = 0  or 
2

3

Therefore

x x

x x

x

= =

= æ
èç

ö
ø÷

= +

=

0 1

0 4
2

3
1

0
5

3

or

or

or

[ ]

 Answer: (B)

22. If the function f : � ® � satisfies the relation f (x) +
f (x + 4) = f (x + 2) + f (x + 6) for all x Î �, then a period 
of f is

(A) 3 (B) 7 (C) 5 (D) 8

Solution: The given relation is

 f x f x f x f x( ) ( ) ( ) ( )+ + = + + +4 2 6  (1.3)
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Multiple Correct Choice Type Questions

Replacing x with x - 2, we get that

 f x f x f x f x( ) ( ) ( ) ( )- + + = + +2 2 4  (1.4)

From Eqs. (1.3) and (1.4) we get

or 

f x f x

f x f x

( ) ( )

( ) ( )

- = + Î

= + Î

2 6

8

for all

for all

x

x

�

�

 Answer: (D)

23. Let A = ´� � �,  the real number system and

R either

or and

= Î ´ <

= >

{(( , ), ( , )) |

}

x y a b A A x a

x a y b

Then which one of the following is true, if ((x, y),
(a, b)) Î R and R(( , ), ( , ))a b p q Î ?

(A) (( , ), ( , ))x y p q ÎR  (B) (( , ), ( , ))x y q p ÎR

(C) (( , ), ( , ))x y y q ÎR (D) (( , ), ( , ))y x p q ÎR

Solution: Suppose that ((x, y), (a, b)), ((a, b), (p, q)) Î R.
 Then

either x a<  or x a=  and y b>

and either a p<  or a p=  and b q>

If x < a and a < p, then x < p and hence ((x, y), (p, q)) Î R. 
Same is the case when x < a and a = p and also when x = a 
and a < p. If x = a, y > b, a = p and b > q, then x = p and 
y > b > q. Therefore ((x, y), (p, q)) Î R.

 Answer: (A)

24. Let a be a positive real number and f : �® � a func-
tion such that

f x a f x f x( ) ( ) ( )+ = + -1 2 2  for all x Î �

Then a period of f is

(A) 2a (B) 3a (C) 4a (D) 5a

Solution: Given f x a f x f x( ) ( ) ( )+ = + -1 2 2  for all 
x Î �. Replacing x with x - a we get

f x f x a f x a( ) ( ) ( ( ))= + - - -1 2 2  and 1 2£ £f x( )

Therefore

 [ ( ) ] ( ) [ ( )]f x a f x f x+ - = -1 22 2  (1.5)

Replacing x with x + a, we get

[ f (x + 2a) - 1]2 = 2f (x + a) - [ f (x + a)]2

 = - + - +[ ( ) ]f x a 1 12

 = - - +[ ( ) { ( )} ]2 12f x f x  [by Eq. (1.5)]

 = -[ ( ) ]f x 1 2

Therefore,

 f x a f x( ) ( )+ - = -2 1 1 [since f x a f x( ), ( )+ ³ 1]

 f x a f x( ) ( )+ =2  for all x Î �

Thus 2a is a period of f.

 Answer: (A)

25. The range of the function f defined by

f x
e e

e e

x x

x x
( )

| |

| |
=

-
+

is

(A) [0, 1] (B) (–1, 0] (C) (0, 1) (D) [–1, 0]

Solution: Here f (x) is defined for all real x, since 
e ex x+ ¹| | 0 for all x Î �. Also

f x

x

e e
e e

e
e

x
x x

x x

x

x

( ) =
³

-
+

= -
+

<

ì
í
ï

îï
-

-

0 0

1

1
0

2

2

for

for

Therefore

f x
e x( ) = -

+
1

2

12
 for all x < 0

For x < 0,

y f x y
e x= Û ³ = -

+
> -( ) 0 1

2

1
1

2

From this it follows that the range of f is (–1, 0].

 Answer: (B)

1. Let A and B be two sets. If X is any set such that 
A X B XÇ = Ç  and A X B XÈ = È , then

(A) B Í A (B) A Í B (C) A = B (D) A D B = f

Solution: We have

A A X A

B X A

= È Ç

= È Ç

( )

( )

= Ç È Ç

= Ç È Ç

= Ç È

= Ç È =

( ) ( )

( ) ( )

( )

( )

B A X A

B A X B

B A X

B B X B

Therefore A = B and hence all are correct answers.

 Answers: (A), (B), (C) and (D)

Worked-Out Problems 63
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2. S is a set and the Cartesian product S ´ S has 9  elem-
ents of which two elements are (-2, 1) and (1, 2). Then

(A) ( , )2 2- Î ´S S  (B) ( , )- - Î ´2 2 S S

(C) ( , )- Ï ´2 2 S S  (D) S = -{ , , }2 1 2

Solution: S ´ S has 9 = 32 elements and hence S must 
have 3 elements. Since (-2, 1) and (1, 2) Î S ´ S, we have 
-2, 1, 2 Î S and therefore S = {-2, 1, 2}. Therefore (2, 
-2) Î S ´ S and (-2, -2) Î S ´ S.

 Answers: (A), (B) and (D)

3. Let f : � ® � be a function satisfying the following:

(a) f x f x( ) ( )- = -

(b) f x f x( ) ( )+ = +1 1

(c) f
x

f x
x

1
2

æ
èç

ö
ø÷

=
( )

 for all x ¹ 0

Then

(A) f x x( ) =  for all x Î �
(B) f (x + y) = f (x) + f (y) for all x, y Î �
(C) f (xy) = f (x)f (y) for all x, y Î �

(D) f
x
y

f x
f y

æ
èç

ö
ø÷

=
( )

( )
 for all x, y Î � with y ¹ 0

Solution: We shall prove that f (x) = x for all  x Î � and 
hence (A), (B), (C) and (D) are all true. By (a), f is an odd 
function and hence f (0) = 0.

0 0 1 1 1 1= = - + = - +f f f( ) ( ) ( )  [by (b)]

Therefore f ( ) .- = -1 1  For any x ¹ 0 and -1, we have

 f
x

f x
x

f x
x

1

1

1

1

1

12 2+
æ
èç

ö
ø÷

=
+

+
=

+
+

( )

( )

( )

( )
 (1.6)

Also,
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x

f
x
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1 1
1
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+

+
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èç
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ø÷

 

=
-
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+
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+
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+
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+
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ö
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+

=
- +

f
x

x

f
x

x

f
x x

f x

1
1

1
1

1

1
1

1
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[( )/xx
x x

f x
x x

x f x
x

]

[( )/ ]

[ ( / )]

[( )/ ]

[ ( / ) ]

( )

+
+

=
- +

+
+

=
- +

+

1
1

1 1

1
1

1 1

1

2

2

2

22
1+

=
- +

+
+

=
- +

+
+

x f x x
x

f x x
x

2 2

2

2

2

1

1
1

1
1

[{ ( )/ } ]

( )

[ ( ) ]

( )

Therefore

 f
x

x x f x
x

1

1

1

1

2 2

2+
æ
èç

ö
ø÷

=
+ - -

+
( ) ( )

( )
 (1.7)

From Eqs. (1.6) and (1.7), we get

f x x x f x x f x( ) ( ) ( ) ( )+ = + - - = + -1 1 2 12 2

Therefore, 2 2f x x( ) =  and hence f x x( ) =  for all x Î �.

 Answers: (A), (B), (C) and (D)

4. If a ¹ b Î � and f : � ® � is a function such that

af x bf
x

x( ) + æ
èç

ö
ø÷

= -
1

1 for all 0 ¹ x Î �

Then

(A) f
a b

a b
( )

( )
2

2

2 2 2
=

+
-

 (B) f ( )1 0=

(C) f a b( ) /( )- = - +1 2  (D) f a b( ) ( )- = -1 2

Solution: We are given that

 a f x bf
x

x( ) + æ
èç

ö
ø÷

= -
1

1 (1.8) 

Replacing x with 1/x, we get

 bf x a f
x x

( ) + æ
èç

ö
ø÷

= -
1 1

1 (1.9)

From Eqs. (1.8) and (1.9), we have

( ) ( ) ( )a b f x a x b
x

2 2 1
1

1- = - - -æ
èç

ö
ø÷

Therefore

f
a b
a b

a b
a b

( )
/

( )
2

2 2

22 2 2 2
=

+
-

=
+
-

 f ( )1 0=

and f
a b

a b a b
( )- =

- +
-

=
-
+

1
2 2 2

2 2
 

 Answers: (A), (B) and (C)

5. Let P(x) be a polynomial function of degree n such that 

P k
k

k
( ) =

+ 1
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for k = 0, 1, 2, …, n. Then P(n + 1) is equal to

(A) -1 if n is even (B) 1 if n is odd

(C) 
n

n + 2
 if n is even (D)

n
n + 2

 if n is odd

Solution: Consider the polynomial

Q x P x x x( ) ( )( )º + -1

Then Q(x) is a polynomial of degree n + 1 and 0, 1, 2, …, n 
are the roots of the equation Q(x) = 0. Therefore

Q x Ax x x x n( ) ( )( ) ( )= - - -1 2 	

where A is a non-zero constant. Substituting x = -1, we 
get that

1 1 1 11= - = - ++Q A( ) ( ) ( )!n n

Therefore

P x
x

x
x x x x n

n

n

( )
( ) ( )( ) ( )

( )!
º

+
+

- - - -
+

é

ë
ê

ù

û
ú

+1

1

1 1 2

1

1 	

 

P( ) [( ) ( ) ]n
n

n

n

n
n

n

n+ =
+

+ + -

=
+

ì
í
ï

îï

+1
1

2
1 1

1

2

1

if is odd

if is even

 Answers: (B) and (C)

Matrix-Match Type Questions
1. If A = {1, 2, 4, 5}, B = {2, 3, 4, 5} and C = {4, 5, 6, 7}, then 

match the items in Column I with those in Column II.

Column I Column II

(A) (A - B) È C (p) {1, 2, 3}

(B) (A - B) È (B - C) (q) {1, 3, 4, 5, 6, 7}

(C) (A È B) - C (r) {1, 4, 5, 6, 7}

(D) (A D B) D C (s) {1, 2, 3, 4}

Solution: This can be solved by simple checking.

Answer: (A)Æ(r), (B)Æ(p), (C)Æ(p), (D)Æ(q) 

2. Let A, B and C be subsets of a finite universal set X. Let 
n(P) denote the number of elements in a set P. Then 
match the items in Column I with those in Column II.

Column I Column II

(A) n(A - B) (p) n(X) - n(A Ç B)

(B) n(A D B) (q) n(C) - n(C Ç B)

(C) n(Ac È Bc) (r) n(A) - n(A Ç B)

(D) n(C Ç Bc) (s) n(A) + n(B) - 2n(A Ç B)

Solution: This can be solved by simple checking.

 Answer: (A)Æ(r), (B)Æ(s), (C)Æ(p), (D)Æ(q)

3. Let P : [0, ¥) ® �+ be defined as

P
n

( )
,

x
x

n x n n
=

£ <
+ £ < + Î

ì
í
î

+

13 0 1

13 15 1

if

if �

Then match the items in Column I with those in 
Column II.

Column I Column II

(A) P(3 × 01) (p) 68

(B) P(4 × 9) (q) 63

(C) P(3 × 999) (r) 73

(D) P([4 × 99]) (s) 58

Solution: Given that P(x) = 13 + 15[x] for all x ³ 0, 
where [x] is the integral part of x. Then

P(3 × 01) = 13 + 15 ´ 3 = 58

Remaining parts can be solved similarly.

 Answer: (A)Æ(s), (B)Æ(r), (C)Æ(s), (D)Æ(r)

Note: Functions of this type are called Postage-stamp 
functions.

Comprehension-Type Questions

1. In a group of 25 students aged between 16 years and
18 years, it was found that 15 play cricket, 12 play 
tennis, 11 play football, 5 play both cricket and foot 

ball, 9 play both cricket and tennis, 4 play tennis and 
football and 3 play all the three games. Based on this, 
answer the  following questions.
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(i)  The number of students in the group who play 
only football is

(A) 2 (B) 3 (C) 4 (D) 5

(ii)  The number of students in the group who play 
only cricket is

(A) 1 (B) 2 (C) 3 (D) 4

(iii)  The number of students in the group who play 
only tennis is

(A) 1 (B) 2 (C) 3 (D) 4

(iv)  The number of students who do not play any of 
the three games is

(A) 1 (B) 2 (C) 3 (D) 4

Solution: Let C, T and F denote the sets of students in 
the group who play cricket, tennis and football, respec-
tively. Consider the Venn diagram.

C T

x a y

b
3

c

F

z

We are given that

n C x a c

n T y b a

n F z c b

( )

( )

( )

= + + + =

= + + + =

= + + + =

3 15

3 12

3 11

Then

n a

n b

n c

n

( )

( )

( )

( )

C T

T F

C F

C T F

Ç = + =

Ç = + =

Ç = + =

Ç Ç =

3 9

3 4

3 5

3

and by solving these, we get a = 6, b = 1, c = 2, x = 4, y = 2 
and z = 5. The number of students who do not play any of 
these games is 25 - (a + b + c + x + y + z + 3) = 2.

 Answer: (i) Æ (D); (ii) Æ (D); (iii) Æ (B); (iv) Æ (B)

2. Let f : � - {0, 1} ® � be a function satisfying the relation 

f x f
x

x
x( ) +

-æ
èç

ö
ø÷

=
1

for all x Î � - {0, 1}. Based on this, answer the follo-
wing questions.

(i) f (x) is equal to
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1

2

1

1

1
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1
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x
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(D) 
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2
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1

1
x
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x

x
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-
+

-é
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ê

ù

û
ú

(ii) f ( )-1  is equal to

(A) 3/4 (B) -3/4 (C) 5/4 (D) -5/4

(iii) f (1/2) is equal to

(A) 5/4 (B) -7/4 (C) 7/4 (D) 9/4

Solution: Given that

 f x f
x

x
x( ) +

-æ
èç

ö
ø÷

=
1

 (1.10)

for all x ¹ 0 1, . Replacing x with ( )/x x- 1  both sides, we 
get that

f
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x
f

x x
x x

x
x
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ø÷

+
- -

-
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èç

ö
ø÷

=
-1 1 1

1

1[( )/ ]

( )/

That is,
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x
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=
-1 1

1

1
 (1.11)

Again replacing x with ( )/x x- 1  in this, we get

 f
x

f x
x

1

1

1

1-
æ
èç

ö
ø÷

+ =
-

( )  (1.12)

Then by taking Eq. (1.10) + Eq. (1.12) - Eq. (1.11), we get that

2
1

1

1
f x x

x
x

x
( ) = +

-
-

-

or f x x
x

x
x

( ) = +
-

-
-é

ë
ê

ù

û
ú

1

2

1

1

1
 (1.13)

Substituting the values x = -1 and 1/2 in Eq. (1.13) we get 
the solution for (ii) and (iii).

 Answer: (i) Æ (A); (ii) Æ (D); (iii) Æ (C)
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Assertion–Reasoning Type Questions
In the following question, a Statement I is given and a 
corresponding Statement II is given just below it. Mark 
the correct answer as:

(A) Both I and II are true and II is a correct reason for I

(B)  Both I and II are true and II is not a correct reason for I

(C) I is true, but II is false

(D) I is false, but II is true

1. Statement I: If A = {1, 2, 3, 4} and B = {2, 3, 5, 6, 7}, 
then n((A ´ B) Ç (B ´ A)) = 4.

   Statement II: If two sets A and B have n elements in 
common, then the sets A ´ B and B ´ A have n2 elements 
in common.

Solution: Note that, for any sets A, B, C and D,

( ) ( ) ( ) ( )A B C D A C B D´ Ç ´ = Ç ´ Ç

and hence

( ) ( ) ( ) ( )

( ) ( )

A B B A A B B A

A B A B

´ Ç ´ = Ç ´ Ç

= Ç ´ Ç

Therefore

n n(( ) ( )) [ ( )]A B B A A B´ Ç ´ = Ç 2

 Answer: (A)

Integer Answer Type Questions
1. Let f : � ® � be a function such that f (1) = f (0) = 0 

and | f(x) - f( y)| < |x - y| for all x ¹ y in [0, 1]. If 
2| f(x) - f( y)| < K for all x, y Î [0,1], then K can be 

.

Solution: Let 0 < x < y < 1. Then

| ( ) ( )| | ( )| | ( )|

| ( ) ( )| | ( ) ( )|

| | |

f x f y f x f y

f x f f y f

x y

- £ +

= - + -

< - +

0 1

0 -- 1|

 = x + 1 - y (1.14)

Also,

 | ( ) ( )| | |f x f y x y y x- < - = -  (1.15)

By adding Eqs. (1.14) and (1.15), we have

2 1| ( ) ( )|f x f y- <

 Answer: 1

2. Let f : � ® � be a function such that f (x + y) = f (x) +
f (y) - xy - 1 for all x, y Î � and f (1) = 1. Then the 
number of positive integers n such that f (n) = n is 

.

Solution: By taking x y= =0 , we get that f ( ) .0 1=  By 
hypothesis,  f (1) = 1. For any integer n > 1,

f n f n f n f n

f n n f n

( ) [( ) ] ( ) ( ) ( )

( ) ( ) ( )

= - + = - + - - -

= - - - < -

1 1 1 1 1 1 1

1 1 1

Therefore, we have 1 1 2 3= > > >f f f( ) ( ) ( ) 	  and hence 
f (n) ¹ n for all n > 1. Thus 1 is the only positive integer n 
such that f (n) = n.

 Answer: 1

3. Let f : � ® � be a function such that f (2 + x) = f (2 - x)
and f (7 + x) = f (7 - x) for all real numbers x. If f (0) = 0 
and there are atleast m number of integer solutions 
for f (x) = 0 in the interval [–2010, 2010], then m can
be .

Solution: For all x Î �, we have

f x f x f x

f x f x

( ) ( ) [ ( )]

[ ( )] ( )

2 2 7 5

7 5 12

+ = - = - +

= + + = +

By replacing x with x – 2 we get that

 f x f x( ) ( )= + 10  for all x Î � (1.16)

Now,

 0 0 2 2 2 2 4= = - = + =f f f f( ) ( ) ( ) ( )  (1.17)

From Eqs. (1.16) and (1.17), we have f n( )4 10 0+ =  for 
all integers n. Also, since f f n( ) , ( )0 0 10 0= =we have  
for all integers n. There are 403 integers of the form 
10n and 402 integers of the form 10 4n +  in the interval 
[–2010, 2010]. Therefore, there are atleast 805 integers n 
in [–2010, 2010] for which f n( ) .= 0

 Answer: 805
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1.1 Set: Any collection of well-defined objects.

1.2 Elements: Objects belonging to a set.

1.3 Empty set: Set having no elements and is denoted Ø.

1.4 Equal sets: Two sets A and B are said to be equal, if 
they contain same elements or every element of A 
belong to B and vice-versa.

1.5 Finite set: A set having definite number of elements is 
called finite set. A set which is not a finite set is called 
infinite set.

1.6 Family or class of sets: A set whose numbers are 
family of sets or class of sets. Family of sets or class 
of sets are denoted by script letters �, �, �, �, P etc.

1.7 Indexed family of sets: A family C of sets is called 
indexed family if there exists a set I such that for 
each element i Î I, there exists unique member
A Î C associated with i. In this case the set I is called 
index set, C is called indexed family sets and we 
write C = {Ai : i Î I}.

1.8 Intervals: Let a, b be real numbers and a < b. Then

( , ) { }

[ , ) { }

( , ] { }

[ , ] {

a b x a x b

a b x a x b

a b x a x b

a b

= | < <

= | £ <

= | < £

=

Î

Î

Î

�

�

�

xx a x bÎ� | £ £ }

(-¥, +¥) or (-¥, ¥) is �

1.9 Subset and superset: A set A is called a subset of a set 
B, if every element of A is also an element of B. In this 

case we write A Í B. If A is a subset of B, then B is 

called  superset of A. If A is not a subset of B, then we 
write A BÍ .

1.10 Proper subset: Set A is called a proper subset of a 
set B if A is a subset of B and is not equal to B.

1.11 Powerset: If X is a set, then the collection of all 
subsets of X is called the powerset of X and is 
denoted by P(X).

1.12 Cardinality of a set: If X is a finite set having n 
elements, then n called cardinality of X and is 
denoted by |X | or n(X ).

1.13 If | X | = n, then |P(X)| = 2n.

1.14 Intersection of sets: For any two sets A and B, the 
 intersection of A and B is the set of all elements 
belonging to both A and B and is denoted by 

A B x x A x BÇ = | Î Î{ }and

1.15 Theorem:  The following hold for any sets A, B and C.

(1) A Í B Û A = A Ç B
(2) A Ç A = A

(3) A Ç B = B Ç A (Commutative law)

(4) (A Ç B) Ç C = A Ç (B Ç C) (Associative law)

(5) A Ç Ø = Ø, where Ø is the empty set.

(6) For any set X, X Í A Ç B Û X Í A and X Í B.

(7) In view of (4) we write A Ç B Ç C for A Ç (B Ç C).

(8)  For any sets A1, A2, ¼, An we write Aii

n

= 1∩  for
A1 Ç A2 Ç A3 Ç ¼ Ç An.

1.16 Disjoint sets: Two sets A and B are said to be 
disjoint sets if A Ç B = Ø.

1.17 Union of sets: For any two sets A and B, their union 
is defined to be the set of all elements belonging to 

either A or to B and this set is denoted by A È B. 

That is A B x x A x BÈ = Î Î{ }| .or

1.18 Theorem: For any sets A, B and C the following 
hold.

(1) A Ç B Í A È B
(2) For any set X, A È B Í X Û A Í X and B Í X

(3) A È A = A

(4) A È B = B È A (Commutative law)

(5)  (A È B) È C = A È (B È C) and we write A È B È C 
for (A È B) È C

(6) A Ç B = A Û A È B = B

(7) A È Ø = A

(8) A Ç (A È B) = A

(9) A È (A Ç B) = A

1.19 Theorem (Distributive laws): If A, B and C are 
three sets, then

(1) A Ç (B È C) = (A Ç B) È (A Ç C)

(2) A È (B Ç C) = (A È B) Ç (A È C)

1.20 Theorem: For any sets A, B and C, A Ç B = A Ç C and 
A È B = A È C Þ B = C.

   SUMMARY
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1.21 If {Ai}iÎI is an indexed family of sets then Aii IÎ∪  is 
the set of all elements x where x belongs to atleast 
one Ai.

1.22 Set difference: For any two sets A and B, A – B =
{ x Î A| x Ï B} = A – (A Ç B)

1.23 De Morgan’s laws: If A, B and C are any sets, then

(1) A - (B È C) = (A - B) Ç (A - C)

(2) A - (B Ç C) = (A - B) È (A - C)

1.24 Theorem: Let A, B and C be sets. Then

(1) B Í C Þ A - C Í A - B

(2) A Í B Þ A - C Í B - C

(3) (A È B) - C = (A - C) È (B - C)

(4) (A Ç B) - C = (A - C) Ç (B - C)

(5) (A - B) - C = A - (B È C) = (A - B) Ç (A - C)

(6) A - (B - C) = (A - B) È (A Ç C)

1.25 Universal set: If {Ai}iÎI is a class of sets, then the set 
X Aii I

=
Î∪  is called universal set. In fact the set X 

whose subsets are under our consideration is called 
universal set.

 Caution: Do not be mistaken that universal set 
means the set which contains all objects in the 
universe. Do not be carried away with word universal. 
In fact, the fundamental axiom of set theory is:

 Given any set, there is always an element which does 
not belong to the given set.

1.26 Complement of a set: If X is an universal set and 
A Í X then the set X - A is called complement of 
A and is denoted by A¢ or Ac.

1.27 Relative complement: If X is an universal set and 
A, B are subsets of X, then A - B = A Ç B¢ is called 
relative  complement of B in A.

1.28 De Morgan’s laws (General form): If A and B are 
two sets, then

(1) (A È B)¢ = A¢ Ç B ¢

(2) (A Ç B)¢ = A¢ È B ¢

1.29 Symmetric difference: For any two sets A and B, 
the set (A - B) È (B - A) is called symmetric differ-
ence of A and B and is denoted by A D B. Since A 
- B = A Ç B ¢ and B - A = B Ç A¢, A D B = (A Ç B ¢) 
È (B Ç A¢).

1.30 Theorem: The following hold for any sets A, B and C.

(1) A D B = B D A (Commutative law)

(2) (A D B) D C = A D (B D C) (Associative law)

(3) A D Ø = A

(4) A D A = Ø

1.31 Theorem: If A and B are disjoint sets, then

(1) n(A È B) = n(A) + n(B)

(2) If A1, A2, ¼, Am are pairwise disjoint sets, then 

n A n A n A n Ai
i

m

m
=

æ
èç

ö
ø÷

= + + +
1

1 2∪ ( ) ( ) ( )	

 Recall that for any finite set P, n(P) denotes the 
number of elements in P.

1.32 Theorem: For any finite sets A and B, n(A È B) = 
n(A) + n(B) - n(A Ç B).

1.33 Theorem: For any finite sets A, B and C,

n(A È B È C) =  n(A) + n(B) + n(C) - n(A Ç B)
-n(B Ç C) - n(C Ç A) + n(A Ç B Ç C)

1.34 Theorem: If A, B and C are finite sets, then the 
number of elements belonging to exactly two of the 
sets is

n(A Ç B) + n(B Ç C) + n(C Ç A) - 3n(A ÇB Ç C)

1.35 Theorem:

(1)  If A, B and C are finite sets, then the number of 
elements belonging to exactly one of the sets is 

n(A) + n(B) + n(C)  - 2n(A Ç B) - 2n(B Ç C)
- 2n(C Ç A) + n(A Ç B Ç C)

(2)  If A and B are finite sets, then the number of 
 elements belonging to exactly one of the sets 
equals

n(A D B) = n(A) + n(B) - 2n(A Ç B)

 = n(A È B) - n(A Ç B)

Relations

1.36 Ordered pair: A pair of elements written in a 
 particular order is called an ordered pair and is 
written by listing its two elements in a particular 
order, separated by a comma and enclosing the pair 
in brackets. In the ordered pair (x, y), x is the first 
element called first component and y is the second 
 element called second component. Also x is called 
first  coordinate and y is called second coordinate.

1.37 Cartesian product: If A and B are sets, then the 
set of all ordered pairs (a, b) with a Î A and b Î B 
is called the Cartesian product of A and B and is 
denoted by A × B (read as A cross B). That is

A B a b a A b B´ Î Î= |{ }( , ) and
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1.38 Let A, B be any sets and Ø is the empty set. Then

(1) A ´ B = Ø Û A = Ø or B = Ø.

(2)  If one of A and B is an infinite set and the 
other is a non-empty set, then A ´ B is an infi-
nite set.

(3) A ´ B = B ´ A Û A = B.

1.39 Cartesian product of n sets (n is a finite positive 
integer greater than or equal to 2): Let A1, A2, A3, 
¼, An be n sets. Then their Cartesian product is 
defined to be the set of all n-tuples (a1, a2, ¼, an) 
such that ai Î Ai for i = 1, 2, 3, ¼, n and is denoted by

A A A A A An i

n

i i
i

n

1 2 3
1

1

´ ´ ´ ´
= =

Õ	 or orX

That is,

A A A a a a a A i nn n i i1 2 1 2 1´ ´ ´ = Î £ £L K{( , , , )| }for

 The Cartesian product of a set A with itself n times 
is denoted by An.

1.40 Theorem: If A and B are finite sets, then n(A ´ B) = 
n(A) · n(B). In general, if A1,  A2, ¼, Am are infinite 
sets, then n(A1 ´ A2 ´ 	 ´ Am) = n(A1) ´ n(A2) ´ 
	 ´ n(Am). In particular, n(Am) = (n(A))m where A 
is a finite set.

1.41 Theorem: Let A, B, C and D be any sets. Then

(1) A ´ (B È C) = (A ´ B) È (A ´ C)

(2) (A È B) ´ C = (A ´ C) È (B ´ C)

(3) A ´ (B Ç C) = (A ´ B) Ç (A ´ C)

(4) (A Ç B) ´ C = (A ´ C) Ç (B ´ C)

(5) (A È B) ´ (C È D) =  (A ´ C) È (A ´ D) È (B ´ 
C) È (B ´ D)

(6) (A Ç B) ´ (C Ç D) =  (A ́  C) Ç (B ́  D) = (A ́  D) 
Ç (B ´ C)

(7) (A - B) ´ C = (A ´ C) - (B ´ C)

(8) A ´ (B - C) = (A ´ B) - (A ´ C)

1.42 Relation: For any two sets A and B, any subset of 
A ´ B is called a relation from A to B.

1.43 Symbol aRb: Let R be a relation from a set A to a 
set B (R Í A ´ B). If (a, b) Î R, then a is said to be 
R related to b or a is said to be related to b and we 
write aRb.

1.44 Domain: Let R be a relation from a set A to a set B. 
Then the set of all first components of the ordered 
pairs belonging to R is called the domain of R and 
is denoted by Dom(R).

1.45 Range: If R is a relation from a set A to a set B, 
then the set of all second components of the 
ordered pairs belonging to R is called range of R 
and is denoted by Range(R).

1.46 Theorem: If A and B are finite non-empty sets 
such that n(A) = m and n(B) = n, then the number 
of relations from A to B is 2mn which include the 
empty set and the whole set A ´ B.

1.47 Relation on a set: If A is a set, then any subset of 
A ´ A is called a binary relation on A or simply a rela-
tion on A.

1.48 Composition of relations: Let A, B and C be sets, R 
is a relation from A to B and S is a relation from B 
to C. Then, the composition of R and S denoted by 
S � R defined to be

S R there exist

such that R and S}

� = ´ |{( , )

( , ) ( , )

a c A C b B

a b b c

Î Î

Î Î

1.49 Theorem: Let A, B and C be sets, R a relation from
A to B and S a relation from B to C. Then the 
following hold:

(1) S � R ¹ Ø if and only if Range(R) Ç Dom(S) ¹ Ø

(2) Dom(S � R) = Dom(R)

(3) Range(S � R) Í Range(S)

1.50 Theorem: Let A, B, C and D be non-empty sets, 
R Í A ´ B, S Í B ´ C and T Í C ´ D. Then

(T � S) � R = T � (S � R) (Associative law)

1.51 Inverse relation: Let A and B be non-empty sets 
and R a relation from A to B. Then the inverse of R 
is defined as the set {( , ) ( , ) }b a B a bÎ ´ ÎA | R  and 
is denoted by R–1.

1.52 Theorem: Let A, B and C be non-empty sets, R a 
relation from A to B and S a relation from B to C. 
Then the following hold:

(1) (S � R)-1 = R-1 � S-1

(2) (R-1)-1 = R

Types of Relations

1.53 Reflexive relation: Let X be a non-empty set and R 
 relation from X to X. Then R is said to be reflexive 
on X if (x, x) Î R for all x Î X.

1.54 Symmetric relation: A relation R on a non-empty 
set X is called symmetric if (x, y) Î R Þ (y, x) Î R.
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1.55 Transitive relation: A relation R on a non-empty set 
X is called transitive if (x, y) Î R and (y, z) Î R Þ
(x, z) Î R.

1.56 Equivalence relation: A relation R on a non-empty 
set X is called an equivalence relation if it is reflexive, 
symmetric and transitive.

1.57 Partition of a set: Let X be a non-empty set. A 
class of  subsets of X is called a partition of X if they 
are pairwise  disjoint and their union is X.

1.58 Equivalence class: Let X be a non-empty set and R 
an equivalence relation on X. If x Î X, then the set 
{ |( , ) }y X x yÎ ÎR  is called the equivalence class of x 
with respect to R or the R-equivalence of x or simply 
the R-class of x and is denoted by R(x).

1.59 Theorem: Let R be an equivalence relation on a set 
X and a, b Î X. Then the following statements are 
equivalent:

(1) (a, b) Î R

(2) R(a) = R(b)

(3) R(a) Ç R(b) ¹ Ø

1.60 Theorem: Let R be an equivalence relation on X. 
Then the class of all R-classes form a partition of X.

1.61 Theorem: Let X be a non-empty and {Ai}i ÎI a parti-
tion of X. Then

R both and

belong to the same

= ´ |{( , )

, }

x y X X x y

A i Ii

Î
Î

 is an equivalence relation on X, whose R-classes are 
precisely Ai’s.

1.62 Theorem: Let R and S be equivalence relations on 
a non-empty X. Then R Ç S is also an equivalence 
relation on X and for any x Î X, (R Ç S)(x) = R(x) 
Ç S(x).

1.63 Theorem: Let R and S be equivalence relations 
on a set X. Then the following statements are 
equivalent.

(1) R � S is an equivalence relation on X

(2) R � S is symmetric

(3) R � S is transitive

(4) R � S = S � R

Functions

1.64 Function: A relation f from a set A to a set B is 
called a function from A into B or simply A to B, if 

for each a Î A, there exists unique b Î B such that 
(a, b) Î f. That is f Í A ´ B is called a function from 
A to B, if

(1) Dom ( f ) = A

(2) (a, b) Î f and (a, c) Î f Þ b = c

 If f is a function from A to B, then we write f : A ® B 
is a  function and for (a, b) Î f, we write b = f(a) and b 
is called f-image of a and a is called f-preimage of b.

1.65 Domain, codomain and range: Let f : A ® B be a 
function. Then A is called domain, B is called codo-
main and Range of f denoted by f(A) = { f(a) | a Î A}. 
f (A) is also called the image set of A under the 
function f.

1.66 Composition of functions: Let f : A ® B and g : 
B ® C be functions. Then the composition of f with 
g denoted by g � f is defined as g � f : A ® C given by

(g � f ) (a) = g(f (a)) for all a Î A

1.67 Theorem: Let f : A ® B, g : B ® C and h : C ® D be 
 functions. Then

(h � g) � f = h � (g � f)

1.68 One-one function or injection: A function f : A ® B 
is called “one-one function” if f (a1) ¹ f (a2) for any 
a1 ¹ a2 in A.

1.69 Theorem: If f : A ® B and g : B ® C be functions. 
Then the following hold:

(1) If f and g are injections, then so is g � f .
(2) If g � f is an injection, then f is an injection.

1.70 Onto function or surjection: A function f : A ® B 
is called “onto function” if the range of f is equal to 
the codomain B. That is, to each b Î B, there exists 
a Î A such that f (a) = b.

1.71 Theorem: Let f : A ® B and g : B ® C be functions. 
Then, the following hold:

(1) If f and g are surjections, then so is g � f.
(2) If g � f is a surjection, then g is a surjection.

1.72 Bijection or one-one and onto function: A function 
f : A ® B is called “bijection” if f is both an injection 
and a surjection.

1.73 Theorem: If f  : A ® B and g : B ® C are bijections, 
then g � f : A ® C is a bijection.

1.74 Identity function: A function f : A ® A is called 
an identity function if f (x) = x for all x Î A and is 
denoted by IA.
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1.75 Theorem: If f: A ® B is a function, then IB � f = f = f � IA.

Identity function is always a bijection.

QUICK LOOK 

1.76 Theorem: Let f : A ® B be a function. Then, f is 
a bijection if and only if there exists a function 
g : B ® A such that

g � f = IA and f � g = IB

 That is

g( f(a)) = a for all a Î A

 and f (g(b)) = b for all b Î B

1.77 Inverse of a bijective function: Let f : A ® B and 
g : B ® A be functions such that g � f = IA and f � g = 
IB. Then f and g are bijections. Also g is unique such 
that g � f = IA and f � g = IB. g is called the inverse of f 
and f is called the inverse of g. The inverse function 
of f is denoted by f   –1.

If f : A ® B is a bijection, then f   –1 : B ® A is also a 
bijection and f   –1(b) = a Û f (a) = b for b Î B.

QUICK LOOK 

1.78 Real-valued function: If the range of a function is 
a subset of the real number set �, then the function 
is called a real-valued function.

1.79 Operations among real-valued functions: Let f 
and g be real-valued functions defined on a set A. 
Then we define the real-valued functions f + g, -f, 
f - g and f × g on the set A as follows:

(1) ( f + g)(a) = f (a) + g(a)

(2) (-f )(a) = -f (a)

(3) ( f - g)(a) = f (a) - g(a)

(4) ( f · g)(a) = f (a) g(a)

(5) If g(a) ¹ 0 for all a Î A, then

f
g

a
f a
g a

æ
èç

ö
ø÷

=( )
( )

( )

(6) If n is a positive integer, then f n(a) = ( f (a))n.

1.80 Integral part and fractional part: If x is a real 
number, then the largest integer less than or equal 
to x is called the integral part of x and is denoted by 
[x].  x - [x] is called the fractional part of x and will 
be denoted by { x }.

0 ≤ {x} < 1 for any real number x.

QUICK LOOK 

1.81 Theorem: The following hold for any real numbers
x and y.

(1) [ ]
[ ] [ ] { } { }

[ ] [ ] { } { }
x y

x y x y

x y x y
+ =

+ + <

+ + + ³

ì
í
ï

îï

if

if

1

1 1

(2)  [x + y] ≥ [x] + [y] and equality holds if and only 

if { x } + {y} < 1.

(3) If x or y is an integer, then [x + y] = [x] + [y].

(4)  x
m

x
m

é
ëê

ù
ûú

= é
ëê

ù
ûú

[ ]  for any real number x and 

non-zero-integer m.

(5) If n and k are positive integers and k > 1, then

n
k

n
k

n
k

é
ëê

ù
ûú

+
+é

ëê
ù
ûú

£ é
ëê

ù
ûú

1 2

1.82 Periodic function: Let A be a subset of � and
f : A ® � a function. A positive real number p is 
called a period of f if f (x + p) = f (x) whenever x and 
x + p belong to A. A function with a period is called 
periodic function. Among the periods of f, the least 
one (if it exists) is called the least period.

1.83 Step function (greatest integer function): Let
f : � ® � be defined by f(x) = [x] for all x Î � where 
[x] is the largest integer less than or equal to x. This 
function f is called step function.

1.84 Signum function: Let f : � ® � be defined by

f x

x

x

x

( ) =
- <

=
>

ì
í
ï

îï

1 0

0 0

1 0

if 

if 

if 

 is called Signum function and is written as sign(x).

1.85 Increasing and decreasing functions: Let A be a 
subset of � and f : A ® � a function. Then, we say 
that f is an increasing function if f(x) ≤ f(y) whenever 
x ≤ y. f is said to be decreasing function if f(x) ≥ f(y) 
whenever x ≤ y. 

1.86 Symmetric set: A subset X of � is called a symmetric 
set if x Î X Û -x Î X.

1.87 Even function: Let X be a symmetric set and
f : X ® � a function. Then f is said to be even func-
tion if f(-x) = f(x) for all x Î X.
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1.88 Odd function: Let X be a symmetric set and
f : X ® � a function. Then f is said to be odd 
 function if f (-x) = -f(x ) for all x Î X.

If f is an odd function on a symmetric set X and 0 
belongs to X, then f(0) is necessarily 0.

QUICK LOOK 

1.89 Theorem: Let X be a symmetric set and f, g be func-
tions from X to �. Then, the following hold:

(1)  f · g is even if either both f and g are even or both 
are odd.

(2)  f · g is odd if one of them is odd and the other 
is even.

1.90 Theorem: Let f be a real valued function defined 
on a symmetric set X. Then the following hold:

(1)  f is even if and only if af is even for any non-zero  
a Î �.

(2)  f is odd if and only if af is odd for any non-zero 
a Î �.

(3)  f is even (odd) if and only if -f is even (odd).

1.91 Theorem: If f and g are even (odd) functions then so 
is f ± g.

1.92 Theorem: Every real-valued function can be 
uniquely expressed as a sum of an even function 
and an odd function. The representation is

f x f x f x f x f x( ) [ ( ) ( )] [ ( ) ( )]= + - + - -
1

2

1

2

1.93 Number of partions of a finite set: Let P0 = 1 and 

Pn be the number of partions on a finite set with n 
elements. Then for n ≥ 1,

P
n

r
Pn

r

n

r+
=

=
æ

èç
ö

ø÷
å1

1

 where
n

r

æ

èç
ö

ø÷
 is the number of selections of r objects

(0 ≤ r ≤ n) from n distinct objects and this number 

is equal to

n
r n r

!

! !-( )

   EXERCISES

Single Correct Choice Type Questions
1. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 2, 3, 4}, B = {2, 4, 

6, 8} and C = {3, 4, 5, 6}. Then

(A) (B Ç C)c = {2, 4, 5, 6, 7} 

(B) (A Ç C)c = {1, 2, 3, 4, 5, 8, 9}
(C) (B È C)c = {1, 7, 8, 9}
(D) (A Ç B)c = {1, 3, 5, 6, 7, 8, 9}

2. If A and B are two non-empty subsets of a set X, then 
which one of the following shaded diagrams represent 
the  complement of B A-  in X?

(A) 
X

A B

(B) 

A B

X

(C) 

A B

X

(D) 
X

A B

3. Let A Δ B denote the symmetric difference of A and B. 
Then, for any sets, A, B and C, which one of the following 
is not correct?

(A) A B C A B CD = Û = D
(B) A B C B A CD = D Û =
(C) ( ) ( )A B B AD D D = f
(D) A B A BD = Û Íf
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 4. A, B, C are three finite sets such that A B CÇ Ç  has 
10  elements. If the sets A B B CD D,  and C AD  have 
100, 150 and 200 elements, respectively, then the 
number of elements in A B CÈ È  is

(A) 325 (B) 352 (C) 235 (D) 253

 5. In a class of 45 students, it is found that 20 students liked 
apples and 30 liked bananas. Then the least number of 
students who liked both apples and bananas is

(A) 5 (B) 10 (C) 15 (D) 8

 6. In a class of 45 students, 25 play chess and 26 play 
cricket. If each student plays chess or cricket, then 
the number of  students who play both is

(A) 5 (B) 6 (C) 7 (D) 4

 7. The number of subsets of the empty set is

(A) 1 (B) 2 (C) 0 (D) 3

 8. The number of non-empty subsets of the set {1, 2, 3,
4, 5} is

(A) 30 (B) 32 (C) 31 (D) 33

 9. The number of subsets of a set A is of the form 10 
n + 4, where n is a single-digit positive integer. Then 
n is equal to

(A) 8 (B) 4 (C) 5 (D) 6

10. If A and B are sets such that n(A È B) = 40, n(A) = 25
and n B n A B( ) , ( )= Ç =20 then

(A) 1 (B) 2 (C) 5 (D) 4

11. Let � be the set of all natural numbers and

R g.c.d. of= Î ´ ={( , ) | { , } }a b a b� � 1

Then R is

(A) reflexive on �
(B) symmetric
(C) transitive
(D) an equivalence relation

12. Let �* denote the set of non-zero rational numbers 
and

R = Î ´ ={( , ) | }a b ab� �* * 1

Then R is

(A) symmetric
(B) reflexive on �*

(C) an equivalence relation
(D) transitive

13. Which one of the following diagrams represents a 
function?

(A) 

3

2

1

2

1

(B) 

4

3

2

1

3

2

1

(C) 

4

3

2

1

3

2

1

(D) 

4

3

2

1

3

2

1

14. Let A = {1, 2, 3, 4}, B = {5, 6, 7} and c = {a, b, c, d, e}. If 
f = {(1, 5), (2, 5), (3, 6), (4, 7)} and g = {(5, a), (6, d), 
(7, c)} are functions from A to B and from B to C, 
respectively, then

(A) ( (4)g f d� ) =  (B) ( )( )g f a� 3 =
(C) ( )( )g f c� 2 =  (D) ( )( )g f a� 1 =

15. Which one of the following diagrams does not repre-
sent a function?

(A) 

3

4
c

b

a
2

1
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(B) 

c

b

a

3

4

2

1

(C) 

c

b

a

3

4

2

1

(D) 

c

b

a

3

4

2

1

16. Which one of the following graphs does not represent 
a function from the real number set � into �?

(A) 

�

�

O

(B) 

�

�

O

(C) 

�

�

O

(D) 

O
�

�

17. Let f : [ , ) [ , )1 2¥ ® ¥  be the function defined by 

f x x
x

( ) = +
1

If g : [2, ¥) ® [1, ¥), is a function such that (g � f )(x) = x 
for all x ³ 1, then g t( ) =

(A) t
t

+
1

 (B) t
t

-
1

(C ) 
t t+ -2 4

2
 (D) 

t t- -2 4

2

18. Let f and g be the functions defined from � to � by 

f x

x

x

x

g x x( ) ( ) { }=
- <

=
>

ì
í
ï

îï
= +

2 0

0 0

2 0

1

if

if

if

and

where {x} is the fractional part of x. Then, for all x Î  �, 
f (g(x)) is equal to

(A) –2 (B) 0 (C) x (D) 2

19. The number of surjections of {1, 2, 3, 4} onto {x, y} is

(A) 16 (B) 8 (C) 14 (D) 6

20. If f (x) is a polynomial function satisfying the relation 

f x f
x

f x f
x

( ) ( )+ æ
èç

ö
ø÷

= æ
èç

ö
ø÷

1 1

for all 0 ¹ x Î � and if f (2) = 9, then f (6) is

(A) 216 (B) 217 (C) 126 (D) 127
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21. Let a be positive real number and n a positive 
integer. If f x a xn n( ) ( ) ,/= - 1  then ( )( )f f� 5  is

(A) 5 (B) 2 (C) 3 (D) 4

22. For any 0 ≤ x ≤ 1, let f (x) = max {x2, (1 - x)2, 2x(1 - 
x)}. Then which one of the following is correct?

(A) f x

x x x

x x

x x

( )

( ), /

( ) , / /

, /

=

- £ £

- < £

< £

ì

í
ïï

î
ï
ï

2 1 0 1 3

1 1 3 2 3

2 3 1

2

2

(B) f x

x x

x x x

x x

( )

( ) , /

( ), / /

, /

=

- £ £

- < £

< £

ì

í
ïï

î
ï
ï

1 0 1 3

2 1 1 3 2 3

2 3 1

2

2

(C) f x

x x

x x x

x x

( )

, /

( ), / /

( ) , /

=

£ £

- < £

- < £

ì

í
ïï

î
ï
ï

2

2

0 1 3

2 1 1 3 2 3

1 2 3 1

(D) f x

x x

x x

x x x

( )

( ) , /

, / /

( ), /

=

- £ £

< £

- < £

ì

í
ïï

î
ï
ï

1 0 1 3

1 3 2 3

2 1 2 3 1

2

2

23. Let [x] denote the greatest integer £ x. Then the 
number of ordered pair (x, y), where x and y are 
positive integers less than 30 such that

x x y y x y
2

2

3 4

4

5

7

6

21

20

é
ëê

ù
ûú

+ é
ëê

ù
ûú

+ é
ëê

ù
ûú

+ é
ëê

ù
ûú

= +

is

(A) 1 (B) 2 (C) 3 (D) 4

24. Let P : [0, ¥) ® � be defined by

P x
x

n n x n n
( )

,
=

£ <
+ £ < + Î

ì
í
î

13 0 1

13 15 1

if

if �

Then P is

(A) an injection
( B) a surjection
(C ) a surjection but not an injection
(D) neither an injection nor a surjection

25. If [x] and {x} denote the integral part and the  fractional 
part of a real number x, then the number of negative 
real  numbers x for which 2[ ] { } { }x x x x- = +  is

(A) 0 (B) 2 (C) 3 (D) infinite

26. The number of real numbers x ³ 0  which are solutions 
of [ ] { } { }x x x x+ = +3  is

(A) 1 (B) infinite (C) 0 (D) 2

27. The number of solutions of the equation 2x + {x + 1} = 
4[x + 1] – 6 is

(A) 1 (B) 2 (C) 3 (D)

28. Let [x] denote the integral part of x. If a is a positive real 
number and f : � ® � is defined by f (x) = x - [x - a], 
then a period of f is

(A) 1 (B) a (C) 2[a] (D) 2a

29. If f (x) = k (constant) for all x Î �, then the least 
period of f is

(A) 1/3 ( B) 1/2
(C ) 2/3 (D) does not exist

30. Let a > 0 and f : � �®  a function satisfying

f x a f x f x f x( ) [ ( ) ( ) ( ) ] /+ = + - + -1 2 3 3 2 3 1 3

for all x Î� . Then a period of f x( )  is ka where k is 
a positive integer whose value is

(A) 1 (B)  2 (C) 3 (D) 4

31. Let a c b< <  such that c a b c- = - .  If f :� �®  is a
function satisfying the relation

f x a f x b f x c( ) ( ) ( )+ + + = +  for all x Î�

then a period of f is

(A) ( )b a-  ( B) 2( )b a-
(C ) 3( )b a-  (D) 4( )b a-

32. If f : � - {0, 1} ® � is a function such that

f x f
x

x
x x

( )
( )

( )
+

-
æ
èç

ö
ø÷

=
-
-

1

1

2 1 2

1
 for all x ¹ 0, 1

then the value of f(2) is

(A) 1 (B) 2 (C) 3 (D) 4

33.  If f : � ® � is a function satisfying the relations 
f (2 + x) = f (2 – x) and f (7 + x) = f (7 – x) for all x Î � 
then a period of f  is

(A) 5 (B) 9 (C) 12 (D) 10

34. If f : � ® � is defined by

f x x x x x( ) [ ]= + +é
ëê

ù
ûú

+ +é
ëê

ù
ûú

- +
1

2

2

3
3 5

where [x] is the integral part of x, then a period of f is

(A) 1 (B) 2/3 (C) 1/2 (D) 1/3

35. If a function f : � ® � satisfies the relation

f x f x f x( ) ( ) ( )+ + - =1 1 3 for allx Î�

then a period of f is

(A) 10 (B) 12 (C) 6 (D) 4
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36. The domain of f x x x( ) / | |= -1  is

(A) [ , )0 1  (B) ( , )0 ¥  (C) ( , )- ¥ 0  (D) ( , )1 ¥

37. The domain of the function defined by f (x) = min{1 + x, 
1 - x}  is

(A) ( , )1 ¥  (B) ( , )-¥ ¥  (C) [ , )1 ¥  (D) ( , ]- ¥ 1

38. The domain of definition of the function f x y( ) =  
given by the equation 2 2 2x y+ =  is

(A) ( , )- ¥ 1  (B) ( , )- ¥ 1  (C) ( , )- ¥ 0  (D) ( , )0 1

39. The function f : [ , ) [ , )1 2¥ ® ¥  is defined by f (x) = x + 
(1/x). Then f x-1( )  is equal to

(A) x
x1 2+

 ( B) 
1

2
42( )x x+ -

(C ) 1

2
42( )x x- -  (D) 1 42+ -x

40. Let 0 ¹ Îa �  and f x ax x( ) /( )= + 1  for all - ¹ Î1 x �.  
If f x f x( ) ( )= -1  for all x, then the value of a is

(A) 1 (B) 2 (C) –1 (D) –2

41. If f x k( ) (constant= ) for all real numbers x, then the 
least period of f is

(A) 1/6 ( B) 1/4 (C ) 1/3 (D) does not exist

42. Let f x x( ) ( )= + 1 2  for all x ³ -1. If g x( ) is the 
function whose graph is the reflection of the graph 
of f x( )  with respect to the line y x= ,  then g x( ) is 
equal to

(A) x + 1  ( B) x - 1

(C ) x + 1 (D) 1

1 2( )x +
43. Let f : � ® A is defined by

f x
x

x x
( ) =

-
- +

1

3 32

If f is to be a surjection, then A should be

(A) 0
1

3
,

é
ëê

ù
ûú

 ( B) -é
ëê

ù
ûú

1

3
0,

(C ) -é
ëê

ù
ûú

1

3
1,  (D) -é

ëê
ù
ûú

1

3
2,

44. Let f : [0, 1] ® � be defined by f (x) = 1 + 2x. If g : 
� ® � is an even function such that g x f x( ) ( )=  for 
all x Î[ , ],0 1  then, for any x g xÎ�, ( ) is equal to

(A) 1 2- x  ( B) 2 1x -
(C ) 1 2- | |x  (D) 1 2+ | |x

45. Let � be the set of natural numbers and � the set of 
real numbers. Let f : � �®  be a function satisfying 
the following:

 (i) f ( )1 1=

 (ii) r f r n n f n
r

n

( ) ( ) ( )
=

å = + ³
1

1 2for all n

Then the integral part of f ( )2009  is

(A) 0 (B) 1 (C) 2 (D) 3

46. A school awarded 22 medals in cricket, 16 medals in 
 football and 11 medals in kho-kho. If these medals 
went to a total of 40  students and only two students got 
medals in all the three games, then how many received 
medals in exactly two of the three games.

(A) 7 (B) 6 (C) 5 (D) 4

47. Let P( )x  be a polynomial of degree 98 such that 
P(K) = 1/K for K = 1 2 3 99, , , , .…  Then ( ) ( )50 100P  
equals

(A) 1 (B) 2 (C) 3 (D) 4

48. For any positive integer K, let f1( )K  denote the 
square of the sum of the digits in K. For example 
f1

212 1 2 9( ) ( ) .= + =  For n ³ 2, let f K f f Kn ( ) ( ( )).= -1 1n  
Then f2010 11( ) is equal to

(A) 1005 (B) 256  (C) 169 (D) 201

Multiple Correct Choice Type Questions

1. Let Ã( )X  denote the power set of a set X. For any 
two sets A and B, if Ã = Ã( ) ( ),A B  then

(A) A B A BÈ = D  ( B) A B=
(C ) A BÇ = f  (D) A BD = f

2. Let A and B be two sets such that the number of 
elements in A ´ B is 6. If three elements of A ´ B are 
(x, a), (y, b) and (z, b) then

(A) A x y z= { , , }
( B) B a b= { , }

(C ) B a b x y= { , , , }
(D) A B x a x b y a y b z a z c´ = {( , ), ( , ), ( , ), ( , ), ( , ), ( , )}

3. Let A B= ={ , , }, { , }1 2 3 3 4  and C = { , , }.1 3 5  Then

(A) n( ( ))A B C´ È = 12  ( B) n( ( ))A B C´ Ç = 3

(C ) n( ( ))A B C´ - = 3  (D) n B A C( ( ))´ - = 2

4. For any three sets A, B and C,

(A) A B C A B A C´ È = ´ È ´( ) ( ) ( )
( B) A B C A B A C´ Ç = ´ Ç ´( ) ( ) ( )
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(C ) A B C A B A C´ - = ´ - ´( ) ( ) ( )
(D) A B C A B A C´ = ´ ´( ) ( ) ( )D D

 5. Let A be the set of all non-degenerate triangles in 
the Euclidean plane and

R is congruent to= Î ´{( , ) | }x y A A x y

Then R is

(A) reflexive on A
(B) transitive
(C ) symmetric
(D) an equivalence relation on A

6. Let n be a positive integer and

R divides= Î ´ -{( , ) | }a b n a b� �

Then R is

(A) transitive
(B) reflexive on �
(C) symmetric
(D) an equivalence relation on �

7. Let A be the set of all human beings in a particular 
city at a given time and

R and live the same locality= Î ´{( , ) | in }x y A A x y

Then R is

(A) symmetric
(B) reflexive on A
(C) transitive
(D) not an equivalence relation

8. For any integer n, let In be the interval (n, n + 1). 
Define

R |both , for some= Î Î Î{( , ) }x y x y I nn� �

Then R is

(A) reflexive on �
(B) symmetric
(C) transitive
(D) an equivalence relation

9. Let � be the set of all real numbers and S = {(a, b) Î 
� ´ � | a - b £ 0}. Then S is

(A) reflexive on �
(B) transitive
(C) symmetric
(D) an equivalence relation on �

10. For any ordered pairs (a, b) and (c, d) of real numbers, 
define a relation, denoted by R, as follows:

(a, b) R (c, d) if a < c or (a = c and b ≤ d)

Then R is

(A) transitive
(B) an equivalence relation on � ´ �
(C ) symmetric
(D) reflexive on � ´ �

11. Let M2 be the set of square matrices of order 2 over 
the real number system and

R for some

non-singular

T= Î ´ =
Î

{( , ) |

}

A B M M A P BP

P M
2 2

Then R is

(A) symmetric
(B) transitive
(C ) reflexive on M2

(D) not an equivalence relation on M2

12. Let L be the set of all straight lines in the space and

R and are coplanar= Î ´{( , ) | }l lm L L m

Then R is 

(A) reflexive on L
( B) not an equivalence relation on L
(C ) symmetric
(D) transitive

13. Let �* be the set of all non-zero rational numbers and

R *= Î ´ ={( , ) | }*a b ab� � 1

Then R is

(A) reflexive on �* ( B) not reflexive on �*

(C ) symmetric (D) not symmetric

14. Let � be the set of all rational numbers, � the set of 
all integers and

R }= Î ´ - Î{( , ) |a b a b� � �

Then which of the following are true?

(A) ( , )x x2 Î�  for all x Î�
( B) � �´ Í R
(C ) ( , )3 5 4 5× × Î�
(D) ( , )6 3 7 2× × Î�

15. Let A B= ={ , , , }, { , , }1 2 3 4 5 6 7  and C a b c d e= { , , , , }. 

Define mappings f A B: ®  and g B C: ®  by

f = {(1, 5), (2, 6), (3, 5), (4, 7)} and  g = {(5, b), 
(6, c), (7, a)}

Then which of the following are true?

(A) ( )( )g f c� 2 =  ( B) ( )( )g f b� 4 =
(C ) ( )( )g f b� 3 =  (D) ( )( )g f a� 1 =
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16. Let A = {1, 2, 3, 4} and f : A ® A and g : A ® A 
be mappings defined by f (1) = 2, f (2) = 3, f (3) = 4, 
f (4) = 1; g (1) = 1, g (2) = 3, g (3) = 4 and g (4) = 2. 
Then which of the following are true?

(A) f is a bijection ( B) g is an injection
(C ) g is a surjection (D) f is an injection

17. Let f : � �®  and g : � �®  be mappings defined by 
f x x x( ) = + +2 3 2 and g x x( ) .= -2 3  Then which of 
the following are true?

(A) ( )( )f g� 1 0=  ( B) ( )( )g f� 1 9=
(C ) ( )( )f g� 3 20=  (D) ( )( )g f� 3 20=

18. Let f :� �®  and g :� �®  be mappings defined by 
f x x( ) = 2  and g (x) = 2x + 1. If ( )( ) ( )( ),f g x g f x� �=  
then x is equal to

(A) - +2
1

2
 ( B) –2

(C ) - -2
1

2
 (D) 0

19. Let f : [–1, ¥) ® � be defined by f (x) = (x + 1)2 – 1. If 
( )( ) ,f f x x� =  then the value of x is

(A) 1 (B) 0 (C) –1 (D) –2

20. Let f : � ® � be a function such that f (x + y) = f (x) + 
f (y) for all x, y Î �. Then which of the  following hold?

(A) f (0) = 0
( B) f is an odd function
(C ) f (n) = nf (1) for n Î�
(D) f is an even function

21. If f : � ® � is a function such that f (0) = 1 and f (x + f ( y)) =
f (x) + y for all x y, ,Î�  then

(A) 1 is a period of f
( B) f (n) = 1 for all integers n
(C ) f (n) = n for all integers n
(D) f (–1) = 0

22. Let f, g : � ® � be functions defined by f(x) = ax + b 
and g(x) = cx + d, where a, b, c, d are given real 
numbers and c ¹ 0. If ( )( ) ( ),f g x g x� =  then

(A) a = 1 ( B) b = 0
(C ) ab = 1 (D) f (4) = 4

23. If f : � �®  is defined by f x ax b( ) ,= +  where a and 
b are given real numbers and a ¹ 0,  then

(A) f is an injection ( B) f is a surjection
(C ) f is not a bijection (D) f is a bijection

24. If f : [ , ) [ , )0 0¥ ® ¥  is the function defined by 

f x
x

x
( ) =

+ 1

then

(A) f is an injection but not a surjection
( B) f is a bijection
(C ) Each 0 1£ <y  has an inverse image under f
(D) f is a surjection

25. Let f be a real-valued function defined on the inte-
rval [–1, 1]. If the area of the equilateral triangle with 

(0, 0) and (x, f (x)) as two vertices is 3 4/ ,  then f (x) 

is equal to

(A) 1 2- x  ( B) 1 2+ x

(C ) - -1 2x  (D) - +1 2x

26. Consider the equation x y2 2 1+ = .  Then

(A) y in terms of x is a function with domain [–1, 1]

(B) y x= + -1 2  is a function with domain [–1, 1]

(C) y x= + -1 2  is an injection of [0,1] into [0, 1]

(D) y x= + -1 2  is a bijection of [0,1] onto [0, 1]

27. Let f x x( ) = 2  for all x Î -[ , ].2 2  Then f is

(A) an even function
( B) not an even function
(C ) a bijection
(D) not an injection

Matrix-Match Type Questions

In each of the following questions, statements are given in 
two columns, which have to be matched. The statements 
in Column I are labeled as (A), (B), (C) and (D), while 
those in Column II are labeled as (p), (q), (r), (s) and 
(t). Any given statement in Column I can have correct 

matching with one or more statements in Column II. The 
appropriate bubbles corresponding to the answers to 
these questions have to be darkened as illustrated in the 
following example.
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Example: If the correct matches are (A) ® (p), (s); 
(B) ® (q), (s), (t); (C) ® (r); (D) ® (r), (t) that is if the 
matches are (A) ® (p) and (s); (B) ® (q), (s) and (t); (C) 
® (r); and (D) ® (r), (t) then the correct darkening of 
bubbles will look as follows:

A

B

C

D

p q r s t

1. Let X be the universal set and A and B be subsets of X. 
Then match the items in Column I with Column II.

Column I Column II

(A) A B A A B- = Û Ç =

(B) ( )A B B- Ç =

(C) ( ) ( )A B B A- È - =

(D) A BD = Ûf

(p) f
(q) A = B
(r) A – B

(s) B AÍ
(t) ( ) ( )A B A BÈ - Ç

2. Let A, B and C be sets. Then match the items in 
Column I with those in Column II.

Column I Column II

(A) A B CD = Û

(B) A B C- È =( )

(C) A B CÇ - =( )

(D) A B A BD = È Û

(p) A BÇ = f
(q) ( ) ( )A B A CÇ - Ç
(r) B CD = f
(s) A B C= D
(t) ( ) ( )A B A C- Ç -

3. Let A, B, C and D be sets. Then match the items in 
Column I with those in Column II.

Column I Column II

(A) A B C´ È( )

( B) ( ) ( )A B C DÈ ´ È

(C ) ( ) ( )A B C DÇ ´ Ç

(p) ( ) ( )A B A C´ Ç ´
(q) ( ) ( )A C B D´ Ç ´
(r) ( ) ( )A B A C´ È ´
(s) ( ) ( )A C B D´ È ´

(D) A B C´ Ç( ) (t) ( ) ( )

( ) ( )

A C A D

B C B D

´ È ´
È ´ È ´

4. Let f g, : � �®  be the functions defined by

f (x) = x2 + 1 and g(x) = 2[x] - 1

where [x] is the largest integer £x. Then match the items 
given in Column I with those in Column II.

Column I Column II

(A) ( )g f�
1

2

æ
èç

ö
ø÷

(p) 3

(q) 0

(r) –1

(s) 1

(t) 2

( B) ( )f g�
3

2

æ
èç

ö
ø÷

(C ) ( )f g f� �
3

4

æ
èç

ö
ø÷

(D) ( )g f g� �
2

3

æ
èç

ö
ø÷

5. Let S be the set of all square matrices of order 3 over 
the real number system. For A S AÎ , | | is the determi-
nant value of A. Define f : S ® � by f A A( ) | .=  for all 
A SÎ .  Then match the items in Column I with those 
in Column II.

Column I Column II

(A) If

A

a b c

b c a

c a b

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

with a + b + c = 0, then f (A) =

(p) 1

(q) –1

(r) 3abc - a3 -b3 - c3

(s) 2

(t) 0

(B)  If w ¹ 1 is a cube root of unity

 
and A

w w

w w

w w

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

1

1

2

2

2

then f (A)=

(C) If

A =
-

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 5 7

5 0 11

7 11 0
 

then f (A) =

(D)  If A SÎ  and AAT = I (the unit 
matrix) then f A( ) =
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6. Match the items in Column I with those in Column II

Column I Column II

(A)  If f is a function such 
that f (0) = 2, f (1) = 3 and 

f x f x f x( ) ( ) ( ),+ = - +2 2 1  
then f(5) is equal to

(p) 4

(q) 3

(r) 12

(s) 11

(t) 13

(B) If

f x
x x

x x
( )

,

,
=

³
<

ì
í
î

2 0

0

for

for

then f ( )13 =

(C)  If f x f x x( ) + 2 (1 ) 2- = + 2 for 
all x Î�,  then f(5) is

(D)  If f x
x

x( ) =
+

4

4 2
 for all

x Î� , then f
k

k 71

6 æ
èç

ö
ø÷

=
=

å  

7. For any 0 < Îa � ,  let

f x
a

a a
a

x

x
( ) =

+

for all x Î� . Then match the items in Column I with 
those in Column II.

Column I Column II

(A) f
k

k
9

1

1997

1998

æ
èç

ö
ø÷

=
=

å (p) 998.5

(B) f
k

k
4

1

1997

1998

æ
èç

ö
ø÷

=
=

å

(C) f
k

k
16

1

2009

2010

æ
èç

ö
ø÷

=
=

å

(q) 994

(r) 993

(s) 1004

(t) 1004.5
(D) f

k

k
25

1

2008

2009

æ
èç

ö
ø÷

=
=

å

8. Consider the following graphs G1, G2, G3 and G4 and 
match the items in Column I with those in Column II.

Column I Column II

(A) G1

(B) G2

(C) G3

(p) Does not represent a function

(q) Represents an increasing function

(r) Represents an increasing injection

(s) Represents a periodic function

(D) G4 (t) Represents a bijection

Y

X

(0,1)

Group G1

O

Y

X
O

Group G2

Y

X
O

Group G3

2p 3p 4pp

Y

1O 2
X

Group G4
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1.  Passage: f is a real-valued function satisfying the 
 functional relation:

2 3
2 29

2
100 80f x f

x
x

x( ) +
+
-

æ
èç

ö
ø÷

= +  for all x ¹ 2

Answer the following questions:

 (i) f (0) is equal to

(A) 754 (B) –754 (C) 854 (D) –854

 (ii) f
-æ

èç
ö
ø÷

29

2
 is equal to

(A) 659 (B) –596 (C) 596 (D) –659

 (iii) f (–4) is equal to

(A) 34 (B) –34 (C) 43 (D) –43

2. Passage: Let f : { }� �- ®0  be a function satisfying

f x f
x

x( ) + æ
èç

ö
ø÷

=2
1

3

for all 0 ¹ Îx �. Answer the following questions.

 (i) xf x( ) =
(A) 2 2- x  (B) x2 2-  (C) x2 1-  (D) 1 2- x

 (ii)  The number of solution of the equation f (x) = 
f (-x) is

(A) 1 (B) 2 (C) 3 (D) 0

 (iii)  The number of solutions of the equation f (-x) = 
-f (x) is

(A) 1 (B) 2 (C) 0 (D) Infinite

3. Passage: It is given that f x x( ) | |= - -2 2 5 .

Answer the following questions.

 (i) The range of the function f is

(A) ( , )-¥ -1  (B) ( , )-¥ 2

(C) ( , ]-¥ 2  (D) ( , )2 ¥

 (ii)  The sum of all positive possible values of x such 
that f(x) = 1 is

(A) 4 (B) 6 (C) 8 (D) 5

 (iii) The number of values of x such that f x( ) = 3 is

(A) 1 (B) 0 (C) 3 (D) 2

4.  Passage: Let f(x) = x + |x|. Answer the following ques-
tions.

 (i) The range of f (x) is

(A) [ , )0 ¥  (B) ( , ]-¥ 0  (C) ( , )0 ¥  (D) �
 (ii) The number of values of x such that f x x( ) =  is

(A) 0 (B) 1 (C) 2 (D) infinite

 (iii) The number of values of x such that f x( ) = 0 is

(A) 0 (B) 1 (C) 2 (D) infinite

5.  Passage: Let f : � �®  be a function satisfying the 
 functional relation

( ( )) ( ( )) ( )f x f y f xyy x+ = 2

for all x y, Î�  and it is given that f (1) = 1/ 2. Answer 
the  following questions.

 (i) f x y( )+ =
(A) f x f y( ) ( )+  ( B) f x f y( ) ( )

(C ) f x yy x( ) (D) f x
f y
( )

( ) (ii) f xy( ) =
(A) f x f y( ) ( ) ( B) f x f y( ) ( )+
(C ) ( ( ))f x y  (D) ( ( ))f xy xy

 (iii) f k
k

( )
=

¥

å =
0

(A) 5/2 (B) 3/2 (C) 3 (D) 2 

Assertion–Reasoning Type Questions
Statement I and statement II are given in each of the 
 questions in this section. Your answers should be as per 
the following pattern:

(A)  If both statements I and II are correct and II is a correct 
reason for I

( B)  If both statements I and II are correct and II is not a 
correct reason for I

(C ) If statement I is correct and statement II is false

(D) If statement I is false and statement II is correct

1.  Statement I: In a survey of 1000 adults in a village, it 
is found that 400 drink coffee, 300 drink tea and 80 

drink both coffee and tea. Then the number of adults 
who drink neither coffee nor tea is 380.

    Statement II: If A and B are two finite sets, then

n A B n A B n A n B( ) ( ) ( ) ( )È + Ç = +

2.  Statement I: In a class of 40 students, 22 drink Sprite, 
10 drink Sprite but not Pepsi. Then the number of 
students who drink both Sprite and Pepsi is 15.

    Statement II: For any two finite sets A and B,

n A n A B n A B( ) ( ) ( )= - + Ç

Comprehension-Type Questions 
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3.  Statement I: In a class of 60, each student has to enroll 
for atleast one of History, Economics and Political 
Science. 20 students have enrolled for exactly two of 
these subjects and 8 enrolled for all the three. Then 
the number of students who have enrolled for exactly 
one subject is 32.

    Statement II: For any three finite sets A, B and C.

n A B C

n A B C

n B C A n C A B

n A B C n B

( )

[ ( )]

[ ( )] [ ( )]

[( ) ] [(

È È

= - È

+ - È + - È

+ Ç - + Ç CC A

n C A B n A B C

) ]

[( ) ] ( )

-

+ Ç - + Ç Ç

   ANSWERS

Single Correct Choice Type Questions

1. (D)
2. (B)
3. (D)
4. (C)
5. (A)
6. (B)
7. (A)
8. (C)
9. (D)

10. (C)
11. (B)
12. (A)
13. (C)
14. (D)
15. (A)
16. (B)
17. (C)
18. (D)
19. (C)
20. (B)
21. (A)
22. (B)
23. (D)
24. (D)

25. (A)
26. (B)
27. (B)
28. (A)
29. (D)
30. (B)
31. (C)
32. (C)
33. (D)
34. (A)
35. (B)
36. (C)
37. (D)
38. (A)
39. (B)
40. (C)
41. (D)
42. (B)
43. (C)
44. (D)
45. (A)
46. (C)
47. (A)
48. (C)

Multiple Correct Choice Type Questions
1. (B), (D)
2. (A), (B), (D)
3. (A), (B), (C), (D)
4. (A), (B), (C), (D)
5. (A), (B), (C), (D)
6. (A), (B), (C), (D)
7. (A), (B), (C)
8. (B), (C)
9. (A), (B)

10. (A), (D)
11. (A), (B), (C)
12. (A), (B), (C)
13. (B), (C)
14. (B), (C)

15. (A), (C)
16. (A), (B), (C), (D)
17. (A), (B), (C)
18. (B), (D)
19. (B), (C)
20. (A), (B), (C)
21. (A), (B)
22. (A), (B), (D)
23. (A), (B), (D)
24. (A), (C)
25. (A), (C)
26. (B), (C), (D)
27. (A), (D)
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Matrix-Match Type Questions
1. (A) ® (p), (B) ® (p), (C) ® (t), (D) ®(q)
2. (A) ® (s), (B) ® (t), (C) ® (q), (D) ® (p)
3. (A) ® (r), (B) ® (t), (C) ® (q), (D) ® (p)
4. (A) ® (s), (B) ® (t), (C) ® (t), (D) ® (p)
5. (A) ® (r), (t),  (B) ® (t),  (C) ® (t),
  (D) ® (p), (q)

6. (A) ® (t), (B) ® (t), (C) ® (q), (D) ® (q)
7.   (A) ® (p), (B) ® (p), (C) ® (t),   (D) ® (s)
8. (A) ®(q), (r), (t),  (B) ® (p),  (C) ® (s),
  (D) ® (s) 

Comprehension-Type Questions

1. (i) (D); (ii) (C); (iii) (B)
2. (i) (A); (ii) (B); (iii) (D)
3. (i) (C);  (ii) (D); (iii) (B)

4. (i) (A); (ii) (B); (iii) (D)
5. (i) (B); (ii) (C); (iii) (D)

Assertion–Reasoning Type Questions

1. (A)
2. (D)

3. (A)



Exponentials and 
Logarithms 2

Exponential Function: For 
any positive real number a, 
the function f(x) = ax for x Î �
is called exponential function 
with base a.

Logarithmic Function: Let
a > 0 and a ¹ 1. Consider the 
function g : �+ ® � defined 
by g( y) = x Û y = ax for all 
y Î �+ and x Î � . The func-
tion g is the logarithmic 
function denoted by loga.

Contents
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2.4 Logarithmic Equations
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2.6  Exponential and 
Logarithmic 
Inequalities
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In this chapter, we will discuss various properties of exponential and logarithmic functions which are often used in 
solving equations, systems of equations, and inequalities containing these functions.

2.1 | Exponential Function

For any positive real number a, we can define ax for all real numbers x. This function is called an exponential function, 
whose domain is the set of all real numbers and codomain is also the set of real numbers.

DEFINITION 2.1   Let a be any positive real number. Then the function f : ,� �®  defined by f(x) = ax for all real 
 numbers x, is called the exponential function with base a.

As usual, we simply say that ax is the exponential function with base a, with the idea that, as x varies over the set of 
real numbers, we get a function mapping x onto ax. Note that a must be necessarily positive for ax to be defined for all 
x Î�.  For example ( )-1 1 2 is not defined in �;  for this reason, we take a to be positive.

(1) 2x is the exponential function with base 2.
(2) (0.02)x is the exponential function with base 0.02.
(3) (986)x is the exponential function with base 986.

(4) The constant map which maps each x onto the real 
number 1 is also an exponential function with base 1, 
since 1 1x =  for all x Î�.

Examples

The following theorems are simple verifications and give certain important elementary properties of exponential 
function.

THEOREM 2.1 Let a be a positive real number. Then the following hold for all real numbers x and y:

1. a a ax y x y= +

2. ax > 0

3. a a ax y x y/ = -

4. ( )a ax y xy=

5. a
a

x
x

- =
1

6. a0 1=

7. a a1 =

8. 1 1x =

THEOREM 2.2 1. If a > 1,  then ax is an increasing function; that is, x y a ax y£ Þ £ .

2. If 0 1< <a ,  then ax is a decreasing function; that is, x y a ax y£ Þ ³ .

3. If a > 0 and a ¹ 1,  ax is an injection; that is, a ax y¹  for all x y¹ .

4. For any a > 0 and a ax¹ =1 1,  if and only if x = 0.
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(1) The function y x= 2  is increasing and its graph is given in Figure 2.1.

(2) The function y x= ( / )1 2  is decreasing and its graph is given in Figure 2.2.

Examples

0

(0,1)

Y = �

X = �

y = 2x

FIGURE 2.1 Graph of the function y = 2x.

(0,1)

X = �

Y = �

0

y =æ
èç

ö
ø÷

1
2

x

FIGURE 2.2 Graph of the function y = (1/2)x.
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2.2 | Logarithmic Function

We have observed in the previous section that, when a > 0 and a ¹ 1, the exponential function with base a is an  injection 
of � into � and its range is �+ = +( , ).0 ¥  Therefore the function f : ( , ),� ® +¥0  defined by f(x) = ax, is a bijection and 
hence f has an inverse. This implies that there exists a function g : ( , )0 +¥ ® �  such that

f x y x g y y a g y xx( ) ( ) ( )= Û = = Û =or

for any x Î�  and 0 < Îy �. This function g is called the logarithmic function with base a. Formally, we have the 
 following definition.

DEFINITION 2.2  Let 0 < Îa �  and a ¹ 1. Then the function g : ,� �+ ®  defined such that

g y x y ax( ) = Û =

for all y Î �+ and x Î �, is called the logarithmic function with base a and is denoted by log .a

It is a convention to write loga y  instead of log ( ).a y  Note that loga y  is defined only when a a> ¹0 1,  and y > 0 
and that

loga
xy x y a= Û =

for any y Î �+ and x Î �.
The following are easy verifications and these are the working tools for solving exponential and logarithmic 

 equations and inequalities.

THEOREM 2.3 Let 0 1< Î ¹a a�, .  Then the following hold for any y, y1, y2 Î �+ and x, x1, x2 Î �:

1. a ya ylog =

2. loga
xa x=  

3. loga
xy x y a= Û =

4. log ( ) log loga a ay y y y1 2 1 2= +

5. log ( / ) loga ay y1 = -

6. log ( / ) log loga a ay y y y1 2 1 2= -

7.  log ( ) loga
z

ay z y=  for all z Î �

8. loga a = 1 and loga 1 0=

FORMULA FOR 
TRANSIT ION TO 

A NEW BASE

PROOF

1. For any a, b Î �+ - {1} and for any y Î �+,

 log
log

log
log log logb

a

a
a a by

y

b
y b y= =or

2. log ( ) log
a ay ya a

= 1
 for any a ¹ 0.

1. Let log , loga by x y t= =  and log .a b z=  Then a y b yx t= =,  and a bz =  and hence 

a a b yzt z t t= = =( )

 Therefore log log log .a a by zt b y= = ×

2. For a ¹ = =a a0, ( )(1/ )log loga a ya ay y  and therefore

 
log ( ) log

a ay ya a
= 1

 ■
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THEOREM 2.4

PROOF

1. If a > 1, then loga x  is an increasing function.
2. If 0 1< <a ,  then loga x  is a decreasing function.

This is a consequence of Theorem 2.2 and the fact that, where two functions f and g are inverses to 
each other and one function is increasing (decreasing), then so is the other. ■

THEOREM 2.5

PROOF

For any a > 0 and a ¹ 1,  the function loga x  is a bijection from the set �+  onto �.

This follows from the fact that ax and loga x are functions which are inverses to each other. ■

2.3 | Exponential Equations

It is known from the previous two sections that, for any a a> ¹0 1, ,  the equation ax = b possesses a solution for any  
b > 0 and that the solution is unique. In general, the solution is written as x ba= log . If a = 1,  then the equation 1x = b 
has a solution for b = 1 only. Any real number x can serve as a solution for 1 1x = . Further, for any a a> ¹0 1, ,  the equa-
tion loga x b=  has a solution for any b Î�  and the solution is unique and is written as x ab= . Since the  exponential 
function ax and the logarithmic function loga x  are inverses to each other, the exponential function is often called the 
antilogarithmic function.

We often make use of the two transformations, taking logarithms and taking antilogarithms for solving  exponential 
and logarithmic equations. Taking logarithms to the base a a> ¹0 1,  is a transition from the equality

 x y=  (2.1)

to the equality

 log loga ax y=  (2.2)

(x and y here can be numbers or the expressions containing the variables). If Eq. (2.1) is true and both sides are 
 positive, then Eq. (2.2) is also true. Taking antilogarithms to the base a a> ¹0 1, ,  is similar as transition from Eq. (2.2) 
to Eq. (2.1). If Eq. (2.2) is true, then Eq. (2.1) is true as well.

Example     2.2   

Solve the equation

4 9 3 21 2 1´ =- +x x

Solution: First note that both sides of the given equa-
tion are positive. Taking logarithms with base 2, we get the 
equation

2 1 9 3
1

2
2 12 2+ - = + +( ) log log ( )x x

which has the same solutions as the original equation. 
Since log ( / ) log ,2 23 1 2 9=  we get that 

x(log ) (log )2 29 1
3

2
9 1- = -

Since log ,2 9 1¹  it follows that x = 3 2/ .

Example     2.1   

Solve the equation

5 5 0 2 261 2x x- -+ =( . )

Solution: First observe that

0 2
2

10
5 1. = = -

and hence

( . ) ( )0 2 5 52 2 2x x- - - -= =x

Therefore, the given equation reduces to

5 5 261 3x x- -+ =

Put 5x-1 = t. The equation reduces to 

t t

t t

t t

t

+ =

- + =
- - =

=

-25 26

26 25 0

( 1)( 25) 0

1 or 25

2

1

Since 5 1x t- = .  We get 5 11x- =  or 52.

Solving we get x = 1 or 3.
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2.4 | Logarithmic Equations

Transforming a given logarithmic equation into an exponential equation, we can find solutions of the equations. For 
any a a> ¹0 1, ,  the logarithmic equation

log loga ax y=

is equivalent to x y= ,  where x and y are positive real numbers or expressions containing the variable. We simply write 
log x for log10 x or loge x. One has to take it depending on the context. Since

log
log

(log )10

1

10
x x

e
e=

it is easy to pass from logarithms with base 10 to those with base e.

Example     2.5   

Find the solution(s) of the equation log2 x + log2 (x -1) = 1.

Solution: The equation is meaningful only when x > 1.  
Transforming the sum of logarithms to the logarithm of a 
product, we have

log [ ( )] log2 21 1 2x x - = =
Therefore

x x( )- =1 2

or x x2 2 0- - =

or (x - 2) (x + 1) = 0

Now we have

x x
x x

- = Þ =
+ = Þ = -

2 0 2

1 0 1

Therefore this has two solutions, namely, 2 and –1. 
However, for the given equation to be meaningful, we 
should have x > 1.  Therefore, 2 is the only solution of
the given equation.

Example     2.3   

Find the solution(s) of the equation

5 2 502 1 1x x x´ =- +( )/( )

Solution: The given equation is equivalent to

5 2

5 2

2 1 2 1 1

2 2 1

x x x

x x x

- - - +

- - +

=
=

[ ( )/( )]

( )/( )

By transforming this into logarithmic equation (taking 
logarithms with base 5), we get

x
x

x
- =

- -
+

2
2

1
25

( )
log

Then

x = 2

or 1
1

1
2

1
1

2

1

2
5

1

10

5

5

5 5 5

=
-
+

+ =

= - =

x

x

x

log

log

log log log

Therefore the given equation has two solutions, namely, 
2 and log5(1/10).

Example     2.4   

Find the solution(s) of the equation

 2 2 752log( ) log( )x x= +  (2.3)

Solution: The equation is meaningful only when x > 0. 
The given equation can be transformed into

 log( ) log( )4 752 2x x= +  (2.4)

Note that this is meaningful for all x ¹ 0, whereas the 
given equation is valid only when x > 0. It follows that

4 75

25

2 2

2

x x

x

= +
=

Therefore x = 5 or -5. Equation (2.3) has only 5 as a solu-
tion, whereas Eq. (2.4) has two solutions, namely 5 and –5.
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2.5 | Systems of Exponential and Logarithmic Equations

In this section we consider finding solutions simultaneously satisfying a given system of exponential and logarithmic 
equations.

Example     2.8   

Solve the simultaneous equations

log log .x yy x

xy

+ =

=

2 5

27

Solution: We have to find a common solution to both 
the above equations. Note that 0 < x ¹ 1 and 0 < y ¹ 1. By 
taking logx y t=  in the first equation we get that

t
t

t t

t t

+ =

+ =

- - =

1 5

2

2 2 5

2 2 1 0

2

( )( )

Therefore t = 2 or 1/2. Now

t y y x

t x x y

x

y

= Þ = Þ =

= Þ = Þ =

2 2

1 2 2

2

2

log

/ log

From the equation xy = 27,  it follows that when y = x2 
we get

x x3 27 3= Þ =

Substituting this value of x we get y = (3)2 = 9. Therefore 
(3, 9) is one solution. Similarly (9, 3) is another solution. 
Therefore, ( , )3 9  and ( , )9 3  are common solutions for the 
given two equations.

Example     2.6   

Find the solution(s) of the equation

log ( )3 3 8 2x x- = -

Solution: Taking antilogarithms with the base 3 of the 
given equation, we get

3x - 8 = 32 - x

32x - 8 ´ 3x - 9 = 0

(3x - 9)(3x + 1) = 0

This gives

3 9 3 1x x= = -or

The equation 3x = -1 has no solution and the equation 
3x = 9 has unique  solution, namely 2. Thus, 2 is the only 
solution of the given equation.

Example     2.7   

Find the solution(s) of the equation

x xlog 2 5=

Solution: By taking logarithms with base 10, we get an 
equation

log log log

log (log log ) log

2 5

2 5

x x
x x

´ =
+ =

This gives

log log log log2 2 5 0x x+ ´ - =

This is equivalent to the original equation and is mean-
ingful only when x > 0. Also, the above equation is a 
quadratic equation with respect to log .x  Therefore

log ( log log log )x = - ± +
1

2
2 2 4 52

Since log log ,5 1 2= -  we find that

log log (log )2 22 4 5 2 2+ = -

and therefore,

log [ log (log )]x = - ± -
1

2
2 2 2

Therefore, log x = -1 or 1 - log 2(= log 5). Thus 1/10 and
5 are solutions of the given equation.
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2.6 | Exponential and Logarithmic Inequalities

Let us recall that, if  a > 1, the function ax increases and that, 0 < a < 1, the function  ax decreases. Also, the  function loga x 
increases if  a > 1, and decreases if 0 < a < 1. These properties can be used to solve some exponential and  logarithmic 
inequalities.

Example     2.9   

Solve the simultaneous equations 

x y

y x

y

x

log

log

3

3

27

81

=

=

Solution: Taking logarithms with base 3, these equations 
can be transformed into

 log log log3 3 33y x y= +  (2.5)

 log log log3 3 34x y x= +  (2.6)

Comparing Eqs. (2.5) and (2.6) we get

3 4

1

3 3

3 3

+ = +

= +

log log

log log

y x

y x

From Eq. (2.6), we get

( log ) log log

(log )

log

1 4

4

2

3 3 3

3

2

3

+ = +

=

= ±

x x x

x

x

Now two situations occur:

(1) log , log ,3 32 9 3 27x x y y= Þ = = =

(2) log , log ,3

2

32 3
1

9
1

1

3
x x y y= - Þ = = = - =-

Thus, ( , )9 27  and ( / , / )1 9 1 3  are the solutions of the given 
system of equations.

Example     2.10  

Solve the system of equations

log ( ) (log log )

log
log

log

8 8 8

8
8

8

3

4

xy x y

x
y

x

y

= ×

æ
èç

ö
ø÷

=

Solution: This system of equations can be transformed to

log log log log

(log log )
log

log

8 8 8 8

8 8
8

8

3

4

x y x y

x y
x

y

+ = ´

- =

By putting s x= log8  and t y= log ,8  we get 

s t st

s t s t

+ =

- =

3

4( ) /

By solving these two equations, we get that t = 1/2 or 1/6. 
Therefore, we have

 t y y= Þ = Þ =1 2 1 2 2 28/ log /

 s x x= Þ = Þ =1 1 88log

 
t y y= Þ = Þ = =1 6 1 6 8 28

1 6/ log / /

s x x= - Þ = - Þ = = =- -1 3 1 3 8 2 1 28

1 3 1/ log / //

Therefore, ( , )8 2 2  and ( / , )1 2 2  are the solutions of the 
given system of equations.

Example     2.11  

Solve the inequality

 
1

2

2

1
9<

+
log

x
x

 (2.7)

Solution: This can be written as

 log log9 93
2

1
<

+
x

x
 (2.8)

These expressions are meaningful only when  2x/(x + 1) > 0.
Also, the function log9 x  is increasing and hence the inequ-
ality (2.7) is equivalent to the inequality

 3
2

1
<

+
x

x
 (2.9)

Now x cannot be positive [for, if x > 0, then x + >1 0  and 
hence, by Eq. (2.9), 3 1 2( )x x+ <  and hence x + <3 0,  a 
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Example     2.12  

Solve the inequality

 ( . )x x x2 12 5 1 1- + £+  (2.10)

Solution: This is equivalent to the collection of two 
systems of inequalities

 
0 2 5 1 1

1 0

2< - + £

+ ³

ü
ý
ï

þï

x x

x

.
 (2.11)

 
x x

x

2 2 5 1 1

1 0

- + ³

+ £

ü
ý
ï

þï

.
 (2.12)

The system Eq. (2.11) of inequalities has solutions 
0 0 5£ <x .  and 2 2 5< £x . . The system Eq. (2.12) has 
solutions x £ - 1. Therefore, the set of solutions of the 
inequality Eq. (2.10) is 

[ , ] , ,-¥ - È æ
èç

ö
ø÷

È æ
èç

ö
ø÷

é
ëê

ù
ûú

1 0
1

2
2

5

2

Example     2.13  

Solve the inequality

 2 31x x< /
 (2.13)

Solution: First note that both sides of this inequality 
are positive for all x ¹ 0  and therefore, their logarithms 
are defined with respect to any base. In particular, since 
the function log2 x  is increasing, the inequality (2.13) is 
equivalent to the inequality 

 log ( ) log /

2 2

12 3x x<  (2.14)

This implies

x <

- <

1
3

3
0

2

2

2

x

x
x

log

log
 (2.15)

If x is a solution of Eq. (2.15) and x > 0, then x2 - log2 3 < 0 

and hence 0 32< <x log .  If x < 0  and is a solution of 

Eq. (2.15), then x2

2 3 0- >log  and hence x < - log .2 3  

Therefore, the set of solutions of the inequality (2.13) is 

( ,- - È¥ log ) ( , log )2 23 0 3

contradiction to the fact that 2 1 0x x/( )+ > ]. Therefore  
x < 0. Then x + <1 0  and hence x < - 1. Again by Eq. (2.9)

3 1 2( )x x+ >

and therefore, x > - 3. Thus, the interval ( , )- -3 1  is the 
set of solutions of the given inequality.

1. ( . )log [( / ) ( / ) ].0 16 2 5
21 3 1 3+ + +¥ =	

(A) 2 2  (B) 2 (C) 4 2  (D) 4

Solution: We know that, for any - < <1 1r ,

a ar ar
a

r
+ + + + ¥ =

-
2

1
	

Therefore

1

3

1

3

1 3

1 1 3

1

22
+ + + ¥ =

-
=	

/

/

Finally we have

( . )log [( / ) ( / ) ]

log ( / )

.

.

0 16
2

5
2 5

2
2 5

1 3 1 3

2 1 2

+ + +¥ = æ
èç

ö
ø÷

	

= æ
èç

ö
ø÷

= æ
èç

ö
ø÷

=
-

2

5

5

2
4

2 2 42 5 5 2log ( ) log ( ). /

 Answer: (D)

2. If log ,12 27 = a  then log6 16 =

 (A) 4
3

3

+
-

æ

è
ç

ö

ø
÷

a
a

  (B) 4
3

3

-
+

æ

è
ç

ö

ø
÷

a
a

 (C) 2
3

3

-
+

æ

è
ç

ö

ø
÷

a
a

  (D) 2
3

3

+
-

æ

è
ç

ö

ø
÷

a
a

Solution:

 log log
log log

6 6

2 2

16 4 2
4

6

4

1 3
= = =

+
 (2.16)

   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions



Chapter 2  Exponentials and Logarithms94

Now,

a = = = =
+

log log
log log

12 12

3 3

27 3 3
3

12

3

1 2 2

Therefore

a

a
a

a
a

a
a

a

( log )

log

log

log

1 2 2 3

2 2
3

1
3

2

3

3

3
2

3

3

3

2

2

+ =

= - = -

= -

=
-

Substituting in Eq. (2.16), we get that

log
[ /( )]

6 16
4

1 2 3
4

3

3
=

+ -
=

-
+

æ
èç

ö
ø÷a a

a
a

 Answer: (B)

3. If log( ) log( ) log( ),a c a b c a c+ + - + = -2 2  then

(A) 2b a c= +   (B) a c b2 2 22+ =

(C) b ac2 =   (D) 
2ac
a c

b
+

=

Solution:

log[( )( )] log( )

( )( ) ( )

( ) (

a c a b c a c

a c a c b a c

a c b

+ - + = -

+ + - = -

+ -

2

2

2

2

2

2 aa c a c

b
ac

a c

+ = -

=
+

) ( )2

2

 Answer: (D)

4. The solution of the equation log7 log5( )x x+ +5  = 0 is

(A) 2 (B) 3 (C) 4 (D) 1

Solution:

log log ( )

log ( )

7 5

5

0

5 0

5 7 1

5 5 5

5 25 10

10

1

x x

x x

x x

x x x

x

+ + =

+ + = =

+ + = =

+ = - +

==

=

=

20

2

4

x

x

Therefore, x = 4 satisfies the given equation.

 Answer: (C)

5.  If log3 2 + log3( / ) log ( ),2 7 2 2 2 53

x x- = -  then the value 
of x is

(A) 3 (B) 2 (C) 1 (D) 4

Solution: First note that 2 7 2x > /  and 2 5x > .  Therefore 

x > 2. From the hypothesis, we have

2 2 7 2 2 5 2( / ) ( )x x- = -

Therefore

2 2 7 2 10 2 252´ - = - ´ +x x x

Put a x= 2 . Then 2 7 10 252a a a- = - + . Therefore

a a

a a

2 12 32 0

8 4 0

- + =
- - =( )( )

Now a = 4 or 8. That is

2 4 8

2 3

x

x

=
=

or

or

But x > 2. Therefore x = 3.

 Answer: (A)

6.  If log ( ) log ( ),( ) ( )2 3

2

3 7

26 23 21 4 4 12 9x xx x x x+ ++ + = - + +  
then the value of -4x is

(A) 0 (B) 1 (C) 2 (D) -1/4

Solution: First note that 2x + 3 > 0 and 2x + 3 ¹ 1, that 
is, x > -3 2/  and x ¹ -1. Also, 3 7 0x + >  and 3x + 7 ¹ 1, 
that is, x > -7 3/  and x ¹ -2.  Suppose x x> - ¹ -3 2 1/ , .  
Then the given equation can be written as

log[( )( )]

log( )

log( )

log( )

log(

2 3 3 7

2 3
4

2 2 3

3 7

1
3 7

x x
x

x
x

x

+ +
+

= - +
+

+ + ))

log( )

log( )

log( )2 3
4

2 2 3

3 7x
x

x+
= - +

+

Put

log( )

log( )

3 7

2 3

x
x

y
+
+

=

Then

1 4
2

+ = -y
y

Therefore

y
y

y y

y y

= -

- + =

- - =

3
2

3 2 0

1 2 0

2

( )( )

This gives y = 1 or 2.
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Case 1: Suppose that y = 1. Then

log( ) log( )3 7 2 3

3 7 2 3

4

x x

x x

x

+ = +

+ = +

= -

This is rejected because x > -3/2.

Case 2: Suppose that y = 2. Then

log( ) log( ) log( )3 7 2 2 3 2 3 2x x x+ = + = +

Therefore

3 7 4 12 92x x x+ = + +

4 9 2 0

4 1 2 0

1 4 2

2x x

x x

x

+ + =

+ + =

= - -

( )( )

/ or

Here x x= - > -1 4 3 2/ ( / ).since  So

-4x = 1

 Answer: (B)

7.  The number of the solutions of the equation log(x2 - 
6x + 7) = log(x - 3) is

(A) 6 (B) 5 (C) 7 (D) 4

Solution: We have, for the term in parentheses on the 
RHS of the given equation,

x x x x2 26 7 3 2 0 3 2- + = - - > Û - >( ) | |

Also, log(x - 3) is defined for all x > 3. From the given 
equation, x x x x2 6 7 3 3- + = - >, . Therefore

x x x

x x x

x

2 7 10 0 3

2 5 0 3

5

- + = >

- - = >

=

,

( )( ) ,

 Answer: (B)

8. The number of solutions of the equation

| |( )/( )x x x x- =- + -3 1
2 8 15 2

is

(A) 1 (B) 2 (C) 0 (D) 4

Solution:

| |

, log | |

( )/( )x

x x
x x

x
x

x

x x x- =

Þ ¹ ¹ - +
-

- =

Þ ¹

- + -3 1

3 2
8 15

2
3 0

2 8 15 2

2

and

22 3 3 1 8 15 22, | |x x x x¹ - = - + =and or

Þ ¹ ¹ = - - =

Þ = =

x x x x x

x x

2 3 2 4 3 5 0

4 5

, [ ( )( ) ]and or or

or

Therefore, the number of the solutions of the given 
 equation is 2.

 Answer: (B)

Alternative Method

| |

, | |

,

( )/( )x

x x x x x

x

x x x- =

Þ ¹ ¹ - = - + =

Þ ¹

- + -3 1

2 3 3 1 8 15 0

2

2 8 15 2

2and or

xx x x

x x

¹ = =

Þ = =

3 4 2 3 5

4 5

and  or or or

or

( )

9.  If (x1, y1) and (x2, y2) are solutions of the system of 
simultaneous equations

log ( ) log log

log
log

log

8 8 8

8
8

8

3

4

xy x y

x
y

x

y

= ×

æ

è
ç

ö

ø
÷ =

then x x y y1 2 1 2+  equals to

(A) 4 (B) 6 (C) 2 (D) 8

Solution: Clearly x y> >0 0,  and y ¹ 1, so as to make 
the equations meaningful. The given equations are 
equivalent to

log log log log

(log log ) log /log

8 8 8 8

8 8 8 8

3

4

x y x y

x y x y

+ =

- =

Put log8 x m=  and log .8 0y n= ¹  Then the equivalent 
system is

m n mn

m n m n

+ =
- =

ü
ý
þ

3

4( ) /
 (2.17)

Multiplying both the equations of the equivalent system 
we get

4 32 2 2( )m n m- =

Therefore

m n m n2 24 2= = ±or

Putting m n= 2  in Eq. (2.17), we get that

3 6
1

2
12n n n n m= =or = ce 0 and(sin )¹

Now

m x x

n y y

= Þ = Þ =

= Þ = Þ =

1 1 8

1

2

1

2
2 2

8

8

log

log



Chapter 2  Exponentials and Logarithms96

Therefore

x y1 18 2 2= =,

Again by taking m n= -2 , we get that

n n n m= = = -6 1 62 or  and  1/3/

- = = Þ = = =- -1 3 8 2
1

2
8

1 3 3 1 3/ log ( )/ /m x x

1 6 8 2 28

1 6 3 1 6/ log ( )/ /= = Þ = = =n y y

For x2 1 2= /  and x2 2= . Therefore

x x y y1 2 1 2 8
1

2
2 2 2 4 4 8+ = ´ + ´ = + =

 Answer: (D)

10. If

log (log )10 10

1

2 1
5 1x x

x
+ -

æ
èç

ö
ø÷

= -

then x is equal to

(A) 1 (B) 2 (C) 3 (D) 0

Solution: Given equation is equivalent to

log (log log )

log

log

10 10 10

10

10

1

2 1
5 10

5

10

x x
x

x

+ -
æ
èç

ö
ø÷

= -

= æ
èç

ö
ø÷

=
11

2x

Therefore

1

2 1

1

2x xx+ -
=

This gives x – 1 = 0 or x = 1 which satisfies the equation.

 Answer: (A)

11. The set of all values of x satisfying the inequality 

log (log )/2 1 4

22 1 0x x- + >  is the interval

(A) (0, 1)  (B) ( , )4 ¥

(C) 
1

2
4,

æ
èç

ö
ø÷

  (D) 
1

4

1

2
,

æ
èç

ö
ø÷

Solution: The given inequality is meaningful for x > 0  
and is equivalent to

1

2
2

1

2
1 0

1

2

1

2
1 0

2 2

2

2 2

2

2

2

log log

log (log )

(log )

x x

x x

x

- -é
ëê

ù
ûú

+ >

- + >

-- - <

- + <

- < <

< <

log

(log )(log )

log

2

2 2

2

2

2 0

2 1 0

1 2

1

2
2

x

x x

x

x

 Answer: (C)

12. If log ( ) ,3 2 1x x + =  then x is equal to 

(A) 3 or -1  (B) 1 or -4

(C) -3 or -1  (D) 1 or -3

Solution: log ( )3 2 1x x + =  is meaningful if x x( )+ ¹2 0 
and x x( )+ >2 0. Also, this equation implies 

x x

x x

x x

x

( )

( )( )

+ =

+ - =
+ - =

= -

2 3

2 3 0

3 1 0

3 1

2

or

 Answer: (D)

13. A solution of the equation

log( ) log( )2
1

4
15 4x x= -

is

(A) 4 (B) 5 (C) 2 (D) -15

Solution: The given equation is meaningful if x > 0  and 

x ¹ 15. If x > 15,  then the given equation is  equivalent to

log log( )2 15x x= -

and hence 2 15x x= -  and therefore x = -15,  which is 
false (since x > 0).  Therefore 0 15< <x . Then, from the 
given equation

log( ) log( ) log( )2
1

4
15 154x x x= - = -

and hence 2 15x x= - ,  so that x = 5.

 Answer: (B)
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Multiple Correct Choice Type Questions
1. Which of the following are true?

(A) 
1 1 1

43
2 3 43log log log

log ( )!
n n n n+ + + =	

(B) 
1 1 1

2
log ( ) log ( ) log ( )xy yz zxxyz xyz xyz

+ + =

(C) If n = ( )!,2009  then

1 1 1
1

2 3 2009log log logn n n
+ + + =	

(D) 
log

log
loga

ab
a

n

n
b= - 1

Solution:

(A) 
1

43
2

43

2

43

2

43

log
log log log ( )!

kk
n

k
n

k
nn

k k
= = =

å å å= = =

(B) 
1 1 1

log ( ) log ( ) log ( )

log ( ) log ( )

xy yz zx

xyz xyz

xyz xyz xyz

xy yz

+ +

= + + llog ( )

log ( )

xyz

xyz

zx

xy yz zx= × × = 2

(C) By (A), the given sum is log ( )! logn n n2009 1= = .

(D) 
log

log

log

log

log log

log

log

log
lo

a

ab

n

n

n n

n

n

n

n

n

ab

a

a b

a

b

a

= =
+

= + = +1 1 gga b

 Answers: (A), (B), (C)

2. Which of the following are correct?

(A) log log log logb c d aa b c d× × × = 1

(B) 2 2
4

5

2 52× =- log

(C) 3 27 7414 5 363 9log log( )+ =
(D) 8 2422

3 121 1 3log ( / )+ =

Solution:

(A) log log log log log log log

log log

b c d a c d a

d a

a b c d a c d

a d

× × × = × ×

= × = 1

(B) 2 2 4 2
4

5

2 5 52 2
1

× = × =- -log log ( )

(C) 3 27 5 3

625 36 625 21

4 5 36 4 3 1 2 36

3 2

3 9 3log log ( / ) log ( )

/

( ) ( )

( )

+ = +

= + = + 66 841=

(D) 8 2

2 121 2 242

2
3

2
1 3

2

121 1 3 3 121 1 3

121 1

log ( / ) [log ( ) / ]

log

/+ +

+

=

= = ´ =
 Answers: (A), (B), (D)

3. If x, y, z simultaneously satisfy the equations

log log log

log log log

log log log

2 4 4

3 9 9

4 16 16

2

2

x y z

y z x

z x y

+ + =

+ + =

+ + = 22

then which of the following is (are) true?

(A) xy = 9 4/  (B) yz = 36

(C) zx = 64 9/  (D) x y z xyz+ + =

Solution: First observe that

log log ( )

log log ( )

log log ( )

2 4

2

3 9

2

4 16

2

x x

y y

z z

=

=

=

From log log log ,2 4 4 2x y z+ + =  we get that

log4

2 2x yz =

and hence

 x yz2 24 16= =  (2.18)

Similarly,

 y zx2 29 81= =  (2.19)

 z xy2 216 256= =  (2.20)

From Eqs. (2.18) – (2.20), we get that x4 y4z4 = 16 ´ 81 ´ 256.
Therefore

xyz = ´ ´ =2 3 4 24

Since x yz2 16=  and xyz = 24, we get that 

x = =
16

24

2

3

Similarly, y= 27 8/  and z= 32 3/ . Therefore, xy yz= =9 4 36/ ,  
and zx = 64 9/ .

 Answers: (A), (B), (C)
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1. Match the items in Column I with those in Column II.

Column I Column II

(A)  The number of real 
solutions of the equation 

log ( ) log ( )4 21 3x x- = -  is

(B)  The number of solutions of the 
equation

x xx x[ / (log ) log / ]3 4 5 42
2

2 2+ - =  is

(p) 3

(q) 0

(r) 2

(C)  The smallest positive 
integer x such that 
log ( ) log ( ). .0 3 0 091 1x x- < -  is

(s) 4

(D)  The minimum value of 

loga x +  logx a, where
1 < a < x is

(t) 1

Solution:
(A)

 

log ( ) log ( )

log ( ) log ( )

( )

4 2

2 2

2

2

1 3

1

2
1 3

1 3

7

x x

x x

x x

x x

- = -

Þ - = -

Þ - = -

Þ - ++ =

Þ =

10 0

2 5x or

But the given equation is defined for x > 3.
Therefore x = 5.

Answer: (A) Æ (t)

(B)

x x x[ / (log ) log / ]3 4 5 42
2

2 2+ - =

Taking logarithms on both sides to the base 2,

3

4

5

4

1

2
2

2

2 2(log ) log logx x x+ -é
ëê

ù
ûú

=

Put log2 x = t. Then

3

4

5

4

1

2

2t t t+ -é
ëê

ù
ûú

=

Therefore

3 4 5 2 03 2t t t+ - - =

Clearly, t = 1 is root of this equation. Now, 

( )( )

, , /

t t t

t

- + + =

= - -

1 3 7 2 0

1 2 1 3

2

Therefore

x = - -2 2 22 1 3, , /

Answer: (B) Æ (p)
(C)

log ( ) log ( ) log ( ) log ( ). . ( . ) .0 3 0 09 0 3 0 31 1 1
1

2
12x x x x- < - = - = -

Therefore

2 1

0 3

1

0 3

2 1

10

10

10

10

10 1

log ( )

log ( . )

log ( )

log ( . )

log ( ) log

x x

x

-
<

-

- > 00

10

1

1 0

1 1 2

( )

log ( )

x

x

x x

-

- >

- > >or

Therefore, the smallest integer x satisfying the given equa-
tion is 3.

Answer: (C) Æ (p)
(D)

1 0 0< £ Þ > >a x x aa xlog , log

Therefore

log log (log loga x a xx a x a+ ³ × =2 2)1/2

and equality occurs if and only if x = a. Therefore mini-
mum value is 2.

Answer: (D) Æ (r)

2. Match the items in Column I with those in Column II.

Column I Column II

(A) log (log )2 3 81 = (p) 0

(q) 1

(r) 3

(s) 2

(t) 4

(B) 3 74 79log ,= k kthen =

(C) 2 53 35 2log log- =

(D) log [log ( )]3 2 512 =

Solution:

(A) log (log ) log (log ) log2 3 2 3

4

281 3 4 2= = =

Answer: (A) Æ (s)
(B)

3 7 7

3 7

4

9

4 1 2 73

log

( / ) log

=

Þ =´

k

k

Matrix-Match Type Questions



Worked-Out Problems 99

Þ =

Þ =

Þ =

( )log3 7

7 7

2

3 7 2

2

k

k

k

Answer: (B) Æ (s)
(C)

2 5 2 5

2 5

5

3 3 2 3 3

2 3 3

5 2 5 2 2

5 2 2

log log log log log

log log log

lo

( )

- = -

= -

=

×

gg log3 32 25 0- =
Answer: (C) Æ (p)

(D)

 log [log ( )] log (log )

log

3 2 3 2
9

3

512 2

9 2

=

= =

Answer: (D) Æ (s)

1.  Statement I: If a, b, c are the sides of a right-angled 
triangle with c as the hypotenuse and both c + b and 
c - b are not equal to unity, then

log log log logc b c b c b c ba a a a+ - + -+ = ´2

 Statement II: a2 = c2 - b2

(A)  Both Statements I and II are correct and State-
ment II is a correct explanation of Statement I.

Assertion–Reasoning Type Questions

1. Passage: It is given that

log ( ) log log , , , ,

log log log

a a a

a a

bc b c a a b c

b
c

b

= + ¹ > > >

æ
èç

ö
ø÷

= -

1 0 0 0

aa

a

n
a

a

c a a b c

b
n
m

b a a b m

b

m

, , , ,

log log , , , ,

log lo

¹ > > >

= ¹ > > ¹

=

1 0 0 0

1 0 0 0

gg /log , , , , ,

log
log

, , , ,

c c

a
b

b a a c a b c

b
a

a b a b

¹ ¹ > > >

= ¹ ¹ > >

1 1 0 0 0

1
1 1 0 0

Answer the following questions:

 (i) If a > 0, b > 0 and a2 + b2 = 7ab, then

 (A) 2
3

log log( )
a b

ab
+æ

èç
ö
ø÷

=

 (B) log log( )
a b

ab
+æ

èç
ö
ø÷

=
3

 (C) log log
a b a

b
+æ

èç
ö
ø÷

= æ
èç

ö
ø÷3

2

 (D) log
| |

log log
a b

a b
-æ

èç
ö
ø÷

= +
3

 (ii) log

log

log

log
3

15

3

405

135

3

5

3
-  is equal to

(A) 4 (B) 5 (C) 3 (D) 0

 (iii) log logp p ppppp 		
æ

èç
ö

ø÷
 (n radicals) =

(A) np (B) –n (C) –np (D) n

Solution:
 (i)

a b ab

a b ab

2 2

2

7

9

+ =

+ =( )

2 2 3

2
3

log( ) log log( )

log log( )

a b ab

a b
ab

+ = +

+æ
èç

ö
ø÷

=

 Answer: (A)

 (ii) The given number can be written as

log ( ) log ( ) log log

(log )( log ) (log )

3 3 3 3

3 3 3

135 15 5 405

5 3 1 5 5

- ×

= + + - ((log )3 5 4 3+ =

 Answer: (C)

(iii) log log log log ( )

log

p

n

p p
p

p n

p

pppp n

p p

p

		
 ��� ���

æ

è
ç
ç

ö

ø
÷
÷

=

=
æ
èç

1/

1 öö
ø÷

= -n

 Answer: (B)

Comprehension-Type Questions
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2.1  Exponential function: For any positive real number a, 
the function f(x) = ax for x Î�  is called exponential 
function with base a.

2.2 Properties of ax:

 (1) ax·ay = ax+y

 (2) ax > 0

 (3) 
a
a

a
x

y
x y= -

 (4) (ax)y = axy

 (5) a-x = 1/ax

 (6) a0 = 1

 (7) a1 = a

 (8) 1x = 1

 (9)  For a > 1, if x ≤ y, then ax ≤ ay (i.e., ax is an 
increasing function).

 (10)  If 0 < a < 1, then x ≤ y Þ ax ≥ ay (i.e., ax is a 
decreasing function).

 (11) If a > 0, then ax is an infection.

 (12) For a > 0 and a ≠ 1, then ax = 1 Û x = 0.

2.3  Logarithmic function: Let a > 0 and a ≠ 1. Consider  
the function g: � �+®  defined by g(y) = x Û y = ax 
for all y Î�+  and xÎ� . This function g is denoted 
by loga meaning that loga y = x Û y = ax. Note that 
loga y is defined only 0 < a ≠ 1 and y > 0.

2.4 Properties of logarithmic function:

 (1) a ya ylog =
 (2) log a(ax) = x

 (3) loga y = x Û y = ax

 (4) loga(y1y2) = logay1 + logay2

 (5) log ( / ) loga ay y1 = -
 (6) loga( y1/y2) = logay1 - logay2

 (7) log log  for all a
z

ay z y z( ) = Î�
 (8) logaa = 1 and loga1 = 0

2.5 Some more important formulae:

 (1)  Change of base: If a, b are both positive and dif-
ferent from 1, and y is positive, then

logay = logby × logab

 (2) log log or log
log

b a b
a

ba a
b

´ = =1
1

 (3)  logx y y x= log /log  where both numerator and 

denominator have common base.

 (4) log log
a an y

n
y( ) = 1

 (5) If 0 < a < 1, then loga x is a decreasing function.

 (6) If a > 1, then loga x is an increasing function.

   SUMMARY

(B)  Both Statements I and II are correct and 
Statement II is not a correct explanation of 
Statement I.

(C) Statement I is true, but Statement II is false.

(D) Statement I is false, but Statement II is correct.

Solution: In a right-angled triangle, it is known that 
the square of the hypotenuse is equal to the sum of the 
squares of the other two sides. Therefore Statement II is 
correct. Also,

log log
log ( ) log ( )

c b c b
a a

a a
c b c b+ -+ =

+
+

-
1 1

=
+ + -
+ -

=
-

+

log ( ) log ( )

log ( ) log ( )

log ( )

log (

a a

a a

a

a

c b c b

c b c b

c b

c b

2 2

)) log ( )

log

log ( ) log ( )

log log

a

a

a a

c b c b

c b

a

c b c b

a a

-

=
+ -

= ´+ -

2

2

 Answer: (A)

   EXERCISES

Single Correct Choice Type Questions

1.  If a > 0, b > 0 and a2 + 4b2 = 12ab, then log(a + 2b) -
2 log 2 is equal to

(A) log loga b+  (B) 2(log log )a b+

(C) 3(log log )a b+  (D) 
1

2
(log log )a b+
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2. If 1 < £a b, then

2 4 4

4 4

[ log log

log / log / ] log

a b

a b a

ab ab

b a a b b

+

- + =

(A) 1 (B) 2 (C) 3 (D) 4

3. log log log log log log3 4 5 6 7 82 3 4 5 6 7× × × × × =

(A) 1

2
 (B) 3 (C) 

1

3
 (D) 2

4. log 2(2x2) + (log2 x) × ++x x xlog (log )2 1 1

2
(log 4  x

4)2 + 2 3 1 2 2- log log/ x  =

(A) ( log )1 2

3+ x  (B) 1 2+ log x

(C) ( log )1 2

2+ x  (D) ( log )1 2

4+ x

5.  The number of pairs (x, y) satisfying the equations 

log logy xx y+ = 2  and x y2 20= +  is

(A) Infinite  (B) 2 (C) 0 (D) 1

6.  The set of solutions of the inequality logx (2x - 3 / 4) > 
2 is

(A) 0
1

2

1

2
1, ,

æ
èç

ö
ø÷

È æ
èç

ö
ø÷
 (B) 

3

8

1

2
1

3

2
, ,
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ö
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È æ
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ö
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(C) 0
3

8
1

3

2
, ,

æ
èç

ö
ø÷

È æ
èç

ö
ø÷
 (D) ( , ) ,0 1 1

3

2
È æ

èç
ö
ø÷

7.  The set of solutions of the inequality 2 log2 (x - 1) >
log2 (5 - x) + 1 is

(A) (1, 5) (B) (5, ¥)
(C) (3, 5) (D) (-¥, -3)

8.  If loga  2 = m and loga 5 = n, where 0 < a ¹ 1, then 
loga 500 =

(A) 2m + 3n (B) 3m + 2n
(C) 3m + 3n (D) 2m + 2n

9.  The domain of the function f (x) = [1 / log10 (1 - x)] + 
x + 2  is

(A) ( , )- ¥ - 3   (B) (2, ¥)

(C) (-2, -1)  (D) ( , ) ( , )- È2 0 0 1

10. If | log ( / )| ,2

2 2 1x £  then x lies in

(A) (0, 1)  (B) [ , ] [ , ]- - È2 1 1 2

(C) (3, ¥)  (D) ( , )-¥ - 2

11. The domain of the function

f x
x

x x
( )

log ( )= +
+ +
2

2

3

3 2

is

(A) � - - -{ , }1 2  (B) (-2, ¥)

(C) � - - - -{ , , }1 2 3  (D) ( , ) { , }- ¥ - - -3 1 2

12. Let f : [ , ) [ , )1 1¥ ® ¥  be defined by f x x x( ) .( )= -2 1  
Then f x-1( )  is equal to

(A) 2 1- -x x( )   (B) 
1

2
1 1 4 2( log )+ + x

(C) 
1

2
1 1 4 2( log )- + x  (D) f x-1( ) does not exist

13. Let f x x x x( ) log( | |)= + + +2 1  for 0 1£ £x . If F(x)
is defined on [-1, 1] such that F(x) is odd and 
F(x) = f(x) for 0 1£ £x ,  then

(A) F x
f x x

x x x x
( )

( )

log( | |)
=

£ £
- + - + - £ £

ì
í
î

for

for

0 1

1 1 02

(B) F x x x x( ) log( | |)= + - +2 1  for - £ £1 0x
(C) F x f x( ) ( )= -  for - £ £1 0x

(D) F x x x x( ) log( | |)= - + + +2 1  for - £ £1 0x

14. Let W be the set of whole numbers and f W W: ®  
be defined by

f x
x

x
f

x
xx

( )

[log ]

=
- é

ëê
ù
ûú

æ
èç

ö
ø÷

+ é
ëê

ù
ûú

æ
èç

ö
ø÷

>10
10

10
10

0

0

10 if

iff x =

ì

í
ï

î
ï

0

where [ y] denotes the largest integer £ y. Then 
f (7752) =

(A) 7527 (B) 5727 (C) 7257 (D) 2577

Multiple Correct Choice Type Questions

1. If log ( ) log ( ),x xx x6 1 2- >  then x belongs to

(A) 
1

6

1

4
,

æ
èç

ö
ø÷

  (B) 
1

6
, +¥æ

èç
ö
ø÷

(C) ( , )1 + ¥   (D) 
1

8
, +¥æ

èç
ö
ø÷

2. If 
x y z x

x
y z x y

y
z x y z

z
( )

log

( )

log

( )

log

+ -
=

+ -
=

+ -
 then

(A) x y y zy x z y=  (B) y z x zz y z x=
(C) x z y zz y z x=  (D) x y z xy x x z=
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3. A solution of the equation x xlog 2 5=  is

(A) 0.2 (B) 0.1 (C) 5 (D) 4

4. A solution of the system of equations

x y x yx y x y- += × =and 1

is

(A) (1, 1)  (B) ( , )1 33

(C) ( / , )1 9 13   (D) ( / , )1 9 33 3

5. A solution of the inequality log ( ).0 2

2 4 1x - ³ -  satisfies

(A) 1 2< <x   (B) 2 3< £x
(C) 3 4< £x   (D) 1 3< £x

6. If f x x x( ) log ( ),= - +10

23 4 5  then

(A) Domain of f is �
(B) Range of f is [log ( / ), )10 11 3 + ¥
(C) f is defined in ( , )0 + ¥
(D) Range of f is ( , log ( / )]-¥ 10 11 3

7. If e e ex g x+ =( ) , then

(A) Domain of g is ( , )-¥ 1

(B) Range of g is ( , )-¥ 1

(C) Domain of g is ( , ]-¥ 0

(D) Range of g is ( , ]-¥ 1

Matrix-Match Type Questions

In each of the following questions, statements are given in 
two columns, which have to be matched. The statements in 
Column I are labeled as (A), (B), (C) and (D), while those 
in Column II are labeled as (p), (q), (r), (s) and (t). Any 
given statement in Column I can have correct matching 
with one or more statements in Column II. The appropriate 
bubbles corresponding to the answers to these questions 
have to be darkened as illustrated in the following example.

Example: If the correct matches are (A) ® (p), (s); 
(B) ® (q), (s), (t); (C) ® (r), (D) ® (r), (t); that is if the 
matches are (A) ® (p) and (s); (B) ® (q), (s) and (t); 
(C) ® (r); and (D) ® (r), (t); then the correct darkening 
of bubbles will look as follows:

A

B

C

D

p q r s t

1. Match the items in Column I with those in Column II.

Column I Column II

(A)  The number of solutions 
of the equation 

2 3 2 3 55 5

2- + = - -x x xlog log ( )  is

(p) 3

(B)   The number of values of 
x satisfying the equation 
(log ) (log )2

2

25 6 0x x- + =  is

(C)   The number of roots of the equation 

log log ( )10 101
1

2
2 15 1x x- + + =  is

(q) 1

(r) 4

(s) 0

(D)  The number of solutions of the 
equation log ( )7 2 6x x+ = -  is

(t) 2

2. Match the items in Column I with those in Column II.

Column I Column II

(A)  The number of solutions of the 
equation log10(3x2 + 12x + 19) -
log10(3x + 4) = 1 is

(p) 0

(q) 3

(r) 2

(s) 4

(t) 1

(B)   log ( ) log ( )
5 5

4 6 2 2 2x x- - - = is 

satisfied by x whose number is

(C)   The number of solutions of the 
equation log ( )3 3 8 2x x- = -  is

(D)  The number of values of 
x that satisfy the equation 

2 2 4 03 3

2log ( ) log ( )x x- + - =  is

3. Match the items in Column I with those in Column II.

Column I Column II

(A)     f x
x

x
( )

log .=
-0 3 2

 is defined for x 

belonging to

(p) [1, 2)

(q) (–2, 1)
(B)  Domain of the function 

     f x x x( ) log[ log ( )]= - - +1 5 1610

2  is (r) (2, 3)

(C)  f x x x( ) ( log ( )).= - + -
0 5

2 17 13  is 

defined for x belonging to

(s) (3, 4)

(t) (2, 3]
(D)   Domain of the function 

f x
x
x

( ) log=
-
-

æ

è
ç

ö

ø
÷

4

1

2

 is
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Assertion–Reasoning Type Questions
Statement I and Statement II are given in each of the 
 questions in this section. Your answers should be as per 
the following pattern:

(A)  If both Statements I and II are correct and II is a 
correct reason for I

(B)  If both Statements I and II are correct and II is not a 
correct reason for I

(C) If Statement I is correct and Statement II is false

(D) If Statement I is false and Statement II is correct.

1.  Statement I: If a = x2, b = y2 and c = z2, where x, y, 
z are non-unit positive reals, then 8(loga x

3)(logb y
3)

(logc z
3) = 27.

 Statement II: log logb aa b× = 1

2. Statement I: If x x xlog ( ) ,1 2

9- =  then x = 3.

 Statement II: a xa xlog =  where 0 1< ¹a  and x > 0

3.  Statement I: The equation log ( )
2

2
1 5

+( )- + =
x

x  
log ( )

3 2 15
+

+
x

x  has no solution.

Statement II: log log
b bm a

m
a=

1

4.  Statement I: The equation 9 3 2log (log )x  = log2 x - (log2 x)2 + 1 
has only one solution.

Statement II: a a xlog  = x and logax
n = nlogax, where 

x > 0.

5.  Statement I: If n is a natural number greater than 1 
such that n p p pk

k= 1 2
1 2a a a	 , where p p pk1 2, , ,¼  are dis-

tinct primes and a a a1 2, , ,… k  are positive integers, 
then log log .n k³ 2

 Statement II: log loga ax y>  when x > y and a > 1.
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Integer Answer Type Questions

The answer to each of the questions in this section is a 
 non-negative integer. The appropriate bubbles below the 
respective  question numbers have to be darkened. For 
 example, as shown in the figure, if the correct answer to 
the question number Y is 246, then the bubbles under Y 
labeled as 2, 4, 6 are to be darkened.

X Y Z

0 0 0 0

1 1 1 1

2 2 2

3 3 3 3

9 9 9 9

8 8 8 8

7 7 7 7

6 6 6

5 5 5 5

4 4 4

W

1.  5
4

3 7

1

10 2 21
1 5 1 2

2 1 2

log ( / )

/
/ log log+

+
æ
èç

ö
ø÷

+
+

æ
èç

ö
ø÷

=

.

2. 
81 3

409
7 125

1 9 3 3

2 7 6
5 6

25 25
( ) +

- ( ) =
/ log / log

/ log log
[( ) ] .

3.  The value of x satisfying the equation 62x+4 = (33x) (2x+8) 
is .

4.  The number of solutions of the equation | |x x- =-2 10 12

 

| |x x- 2 3  is .

5.  The number of ordered pairs (x, y) satisfying the 

two equations 8 2 0 5 3( ) ( . )x y y- -=  and log3 (x - 2y) +  
log3 (3x + 2y) = 3 is .

6.  If (x1, y1) and (x2, y2) are the solutions of the simultane-

ous equations x + y = 12 and 2 2 52 1( log log ) ,/y xx y- =  

then x1 x2  - y1 y2 is equal to .

7.  The number of solutions of the system of equations  
y = 1 + log4  x, xy = 46 is .

8.  The number of integers satisfying the inequality 
3 3 835 2 12 33 2( / )log log-( ) - >x x  is .

9.  The number of integer values of x satisfying the 
ine quality 2 1 2 32x x+ < +log ( )  is .
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   ANSWERS

Single Correct Choice Type Questions

1. (D)
2. (B)
3. (C)
4. (A)
5. (D)
6. (B)
7. (C)

 8. (A)
 9. (D)
10. (B)
11. (D)
12. (B)
13. (A)
14. (D)

Multiple Correct Choice Type Questions

1. (A), (C)
2. (A), (B), (D)
3. (B), (C)
4. (A), (D)

 5. (B), (D)
 6. (A), (B), (C)
 7. (A), (B)

Matrix-Match Type Questions

1. (A) ® (q), (B) ® (t), (C) ® (q), (D) ® (q)
2. (A) ® (r), (B) ® (t), (C) ® (t), (D) ® (t)

 3.  (A) ® (p), (r), (t); (B) ® (r),
(C) ® (s), (D) ® (q)

Assertion–Reasoning Type Questions

1. (A)
2. (D)
3. (A)

 4. (A)
 5. (A)

Integer Answer Type Questions

1. 6
2. 1
3. 4
4. 2 
5. 1

 6. 0
 7. 2
 8. 2
 9. 4



Any ordered pair (a, b) where 
a and b are real numbers is 
called a complex number. 
The set of all  complex num-
bers is denoted by � which is 
� ´ �.
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Complex Numbers 3

A: What do you mean?
B: Well, what if we make up a
     number, say ‘i’, so that
             i×i = -1
A: Can we do that?
B: Why not! 
A: But there is no such number
     that has that size.
B: I know, but the idea can exist in
    our imagination! I think we should
    call it an imaginary number.

(a+bi)(c+di)
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It is well known that there is no real number a for which a2 = -1. In other words, the equation x2 + 1 = 0 has no root 
in the real number system �. Likewise, the equation x2 + x + 1 = 0 has no root in �. For this reason, the real number 
system � is enlarged to a system � in such a way that every polynomial equation, with coefficients in �, has a root in �. 
The members of � are called complex numbers. Infact, the system � of complex numbers is the smallest  expansion of 
the real number system � satisfying the above property. In this chapter we will discuss the construction and several 
properties of the system of the complex numbers.

3.1 | Ordered Pairs of Real Numbers

A complex number can be defined as an ordered pair of real numbers. Let � denote the set of real numbers and

� = � ´ �

That is, � is the set of all ordered pairs (a, b) such that a and b are real numbers. We will introduce all the 
arithmetical concepts of addition, subtraction, multiplication, and division among members of �. The members of � are 
called complex numbers. First let us recall that two ordered pairs (a, b) and (c, d) are said to be equal if a = c and b = d.

Mathematical Operations on Complex Numbers

DEFINITION 3.1  For any complex numbers (a, b) and (c, d), let us define

(a, b) + (c, d) = (a + c, b + d)

(a, b) - (c, d) = (a - c, b - d)

 (a, b) + (c, d) is called the sum of (a, b) and (c, d) and the process of taking sum is called the 
 addition. Similarly (a, b) - (c, d) is called the difference of (c, d) with (a, b) and the  process of 
taking difference is called the subtraction.

Try it out Verify the following properties:

1. ((a, b) + (c, d)) + (s, t) = (a, b) + ((c, d) + (s, t))

2. (a, b) + (c, d) = (c, d) + (a, b)

3. (a, b) + (0, 0) = (a, b)

4. (a, b) + (-a, -b) = (0, 0)

5. (a, b) + (c, d) = (s, t) Û (a, b) = (s, t) - (c, d)

 Û (c, d) = (s, t) - (a, b)

DEFINITION 3.2  For any complex numbers (a, b) and (c, d), let us define

( ) ( ) ( )a b c d ac bd ad bc, , ,× = - +

 This is called the product of (a, b) and (c, d) and the process of taking products is called 
multiplication.

Try it out Verify the following properties for any complex numbers (a, b), (c, d) and (s, t).

1. [( ) ( )] ( ) ( ) [( ) ( )]a b c d s t a b c d s t, , , , , ,× × = × ×
2. ( ) ( ) ( ) ( )a b c d c d a b, , , ,× = ×
3. ( ) [( ) ( )] ( ) ( ) ( ) ( )a b c d s t a b c d a b s t, , , , , , ,× + = × + ×
4. ( ) ( ) ( )a b a b, , ,× =1 0

5. ( ) ( ) ( )a c d ac ad, , ,0 × =
6. ( ) ( ) ( )a c ac, , ,0 0 0× =
7. ( ) ( ) ( )a c a c, , ,0 0 0+ = +
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Properties 6 and 7 in “Try it out” suggest that, when we identify any real number a with the complex number 
(a, 0), then the usual arithmetics of real numbers are carried over to the complex numbers of the form (a, 0). Further 
one can easily observe that the mapping a a� ( ), 0  is an injection of � into �. Therefore, we can identify � with the 
subset � ´ {0} of �. This also suggests that any real number a can be considered as a complex number (a, 0). Thus � is 
an enlargement of � without disturbing the arithmetics in �.
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Examples

Zero and Unity in Complex Numbers

DEFINITION 3.3  The complex numbers (0, 0) and (1, 0) are called the zero and unity, respectively, and are 
simply denoted by 0 and 1. Note that these are the real numbers 0 and 1 also, since, for any  
real number a, we identify a with the complex number (a, 0).

THEOREM 3.1

PROOF

For any non-zero complex number z, there exists a unique complex number s such that z × s = 1 [= (1, 0)].

Let z = (a, b) be a non-zero complex number; that is, z ¹ (0, 0) and hence either a ¹ 0 or b ¹ 0 so 
that a2 + b2 is a positive real number. Put

s
a

a b
b

a b
=

+
-
+2 2 2 2

,
æ
èç

ö
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Then

 z s a b
a

a b
b

a b
× = ×

+
-
+
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2 2 2 2
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a
a b

b b
a b

a b
a b

ba
a b

2

2 2 2 2 2 2 2 2

1 0 1

( ) ( )

( )

,

,
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If (c, d) is any complex number such that

 (a, b) × (c, d) = (1, 0)

then ac - bd = 1 and ad + bc = 0. From these we can derive that

c
a

a b
=

+2 2
 and d

b
a b

=
-
+2 2

Thus, s is the unique complex number such that z × s = 1. ■

Multiplicative Inverse

DEFINITION 3.4  The unique complex number s such that z × s = 1 is called the multiplicative inverse of z and
is denoted by 1/z or z-1. Also, z1 × (1/z2) will be simply expressed as z1/z2.
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COROLLARY 3.1 For any complex numbers z1 and z2,

z z z z1 2 1 20 0 0× = Û = =or

(1) If z = (2, 3), then

1 2

2 3

3

2 3

2

13

3

132 2 2 2z
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(2) If z = (4, 0), then

1 4
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4 0
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  Infact, if z = (a, 0), then

1 1
0

z a
= ,
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(3) If z = (0, 1), then

1
0 1

z
= -( ),

  Infact, if z = (0, b), then

1
0

1

z b
=

-
,

æ
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(4) (0, 1) × (0, 1) = (-1, 0)

Examples

3.2 | Algebraic Form a + ib

Even though there is no real number a such that a2 = -1, there is a complex number z such that z z z2 1( )= × = - ; for 
consider the complex number (0, 1). We have

(0, 1) × (0, 1) = (-1, 0) = -1

Also,

(0, -1) × (0, -1) = (-1, 0) = -1

Infact, (0, 1) and (0, -1) are the only complex numbers satisfying the equation z2 = -1. For if z a b z= = -( ) ,, and 2 1 then

( ) ( ) ( ) ( )- = - = × = -1 0 1 22 2, , , ,a b a b a b ab

and hence a b ab2 2 1- = - =and 2 0. Since b ¹ 0 (for, if b = 0, then a is a real number such that a2 = -1), it follows that 
a b= = ±0 1and  and hence z = -( ) ( )0 1 0 1, ,or .

Note: We will denote the complex number (0, 1) by the symbol i (indicating that it is an imaginary number). By the 
above discussion, we have i2 = -1 = (-i)2. Recall that we are identifying a real number a with the complex number 
(a, 0). With this notation, we have the following theorem.

THEOREM 3.2

PROOF

Any complex number z can be uniquely expressed as

z = a + ib

where a and b are real numbers and i = (0, 1). This expression is called the algebraic form of z.

Let z be a complex number. Then z = (a, b) where a and b are real numbers. Now consider

 z a b a b a ib= = + = +( ) ( ) ( )( ), , , ,0 0 1 0

Clearly a and b are unique real numbers such that z = a + ib. ■

Note: We can perform the algebraic operations addition and multiplication with much ease when we consider the 
complex numbers in the form a + ib. We can sum or multiply as in the real number system by substituting -1 for i2.

DEFINITION 3.5  Let z be a complex number and z = a + ib, where a and b are real numbers. Then a is called the real 
part of z and is denoted by Re(z). Also, b is called the imaginary part of z and is denoted by Im(z).
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By the uniqueness of the real and imaginary parts of a complex number, it follows that, for any complex numbers 
z1 and z2,

z z z z z z1 2 1 2 1 2= Û = =Re( ) Re( ) Im( ) Im( )and

Example     3.1  

Write ( ) ( )2 3 3 22+ +i i  in the form a + ib.

Solution: Consider

( )( )( ) ( )( )2 3 2 3 3 2 4 9 12 3 2+ + + = - + +i i i i i

= - + +

= - - + - +

= - +

( )( )

( ) ( )

5 12 3 2

15 24 10 36

39 26

i i

i

i

Example      3.2  

Find the real and imaginary parts of

z i i= + +( )( )1 5 2 2

Solution: Consider

z i i i i

i i

= + + = + - +

= + +

( )( ) ( )( )

( )( )

1 5 2 1 25 4 20

1 21 20

2

= - + +

= +

21 20 21 20

1 41

( )i

i

Therefore, Re( ) Im( )z z= =1 41and .

Example      3.3  

Find the real and imaginary parts of

z
i i
i i

=
+ -
- +

( )( )

( )( )

1 2 3

1 2 3

Solution: Consider

z
i i
i i

i
i

i
i

=
+ -
- +

=
+ + -

+ + - +

=
-
+

( )( )

( )( )

( ) ( )

( ) ( )

1 2 3

1 2 3

2 3 2 3

2 3 2 3

5

5
=

(( )

( )( )

5

5 5

2-
+ -

i
i i

=
- -

+

= +
-

= +
-

25 1 10

25 1

24

26

10

26

12

13

5

13

i

i iæ
èç

ö
ø÷

æ
èç

ö
ø÷

Therefore Re( ) and Im( ) .z z= = -12 13 5 13/ /

Example      3.4  

Cube roots of unity
Compute all the complex numbers z such that z3 = 1.

Solution: Let z = a + ib. Then

z a ib a ib3 21 1= Þ + + =( ) ( )

Þ - + + =

Þ - - + + - =

Þ -

( )( )

( ) ( )

(

a b abi a ib

a b a ab a b a b b i

a

2 2

2 2 2 2 2 3

3

2 1

2 2 1

3aab a b b i i

a ab a b b

a a b

2 2 3

3 2 2 3

2 2

3 1 0

3 1 0

3 1

) ( )

( )

+ - = +

Þ - = - =

Þ - =

and 3

and bb a b

b a b a a a b

( )

( ) [ ( ) ]

3 0

0 1 3 3 1

2 2

2 2 2 2

- =

Þ = = = - =and or and

Þ = - = = ±z a b a1 8 1 33 2or and( )

Þ = = - = ±

Þ = = - + = - -

z a b

z z i z

1
1

2

3

2

1

2

3

2

1

2

3

2

or and

or or

æ

èç
ö

ø÷

æ

èç
ö

ø÷
1; ; ii

Therefore

1
1 3

2

1 3

2
,

- + - -i i
and

are all the complex numbers z for which z3 = 1.
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Aliter:

z z z z3 21 0 1 1 0- = Û - + + =( )( )

Û =z 1 or z z2 1 0+ + =

Û =z 1 or z
i

=
- ±1 3

2

Thus, cube roots of unity are

1
1 3

2
,

- ± i

Now

- + - -1 3

2

1 3

2

i i
and

are having the property that each is the square of the 
other. If we denote one of them as w, then the other will 
be w2 and, further, 1 + w + w2 = 0.

Example      3.5  

Express the complex number

z
i

i i
=

+
+ -

3

1 1 2( )( )

in the algebraic form.

Solution: Consider

z
i

i i
=

+
+ -

3

1 1 2( )( )

=
+

+ + -

=
+
-

=
+

- +

=
- +

+
=

+
=

+

3

1 2 2

3

3

3

3 3

9 1 6

9 1

8 6

10

4 3

2

i
i i

i
i

i
i i

i i i

( )

( )( )

55

4

5

3

5
= + i

DEFINITION 3.6  A complex number z is called purely real if Im(z) = 0 and is called purely imaginary if
Re(z) = 0.

Note: A complex number is both purely real and purely imaginary if and only if it is 0 (= 0 + i0).

(1)  If x is a positive real number such that (x + i)2 is 
purely imaginary, then

0 1 2 12 2 2= + = - + = -Re( Re[ ]x i x xi x)

  and hence x = 1 (since x > 0).

(2)  If x is a real number such that (2x + i)2 is purely real, 
then

0 2 4 1 4 42 2= + = - + =Im( Im[ ]x i x xi x)

  and hence x = 0.

Examples

QUICK LOOK 1

Let us summarize and record the arithmetical opera-
tions on the complex numbers in algebraic form.

1. ( ) ( ) ( ) ( )a ib c id a c i b d+ + + = + + +

2. ( ) ( ) ( ) ( )a ib c id a c i b d+ - + = - + -

3. ( ) ( ) ( ) ( )a ib c id ac bd i ad bc+ × + = - + +

4. 
1

2 2 2 2a ib
a

a b
i

b
a b+

=
+

-
+

5. 
a ib
c id c d

c id a ib

c d
ac bd i bc ad

+
+

=
+

- +

=
+

+ + -

1

1

2 2

2 2

( )( )

[( ) ( )]



THEOREM 3.3

PROOF

The sum of any four complex numbers which are consecutive powers of i is zero.

Let z z z z1 2 3 4, , ,  be any four consecutive powers of i. Then, there is an integer n such that

z i z i z i z in n n n
1 2

1

3

2

4

3= = = =+ + +, , and

Among the powers of i, 1, i, -1, -i occur cyclically and hence z z z z1 2 3 4 0+ + + = .  ■

(1) i i i i i i2009 4 502 1 4 502 1 5021= = × = × =+( ) ( )

(2) i i i i i i i i1947 1948 1949 1950 3 4 5 6+ + + = + + +
= - + + - =i i1 1 0

(3) i i i i i in

n

n

n= =
= + + = - + = - +

1

2010 2

3

2010
1 0 1å å

(4) i i i i i in

n

n

n

n

n= = =
= - = - + =

1003

3005

1

3005

1

1002 2 1å å å ( )

Examples

DEFINITION 3.7  For any complex number z = a + ib (a and b are real numbers), the conjugate of z is defined as 

z a ib= -

In the following theorem, whose proof is a straight forward verification, we list several properties of the conjugates of 
complex numbers.
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QUICK LOOK 2

Let us turn our attention to all the integral powers of i.
Recall that i [= (0, 1)] is a complex number such that 

i2 1= - .  Now,

i i i i i i i0 1 2 3 41 1 1= = = - = - =, , , ,

Also,

i
i

i i i i i- - - -= = - = - = =1 2 3 41
1 1

æ
èç

ö
ø÷

, , , ,…

Infact, for any integer n,

i

n

i n

n
n =

-
- -

 if is a multiple of

  if 1 is a multiple of

if is a mult

1 4

4

1 2 iiple of

if is a multiple of

4

3 4- -

ì

í
ïï

î
ï
ï i n

QUICK LOOK 3

The following hold for any complex numbers z,  z1 and z2.

1. z z( ) =

2. Re( )z
z z

=
+
2

3. Im( )z
z z

i
=

-
2

4. z z z= Û  is purely real

5. z z z= - Û  is purely imaginary

6. z z z z1 2 1 2+ = +

7. z z z z1 2 1 2
- = -

 8. z z z z1 2 1 2× = ×

 9. If z
z
z

z
z2

1

2

1

2

0¹ =,
æ
èç

ö
ø÷

10. z z×  is a non-negative real number

11. zz z z= Û = Û =0 0 0

12. z z z z z z z z1 2 1 2 1 2 1 22 2+ = =Re( ) Re( )

13. z z z z i z z i z z1 2 1 2 1 2 1 22 2- = - =Im( ) Im( )

14.  For any polynomial f(x) with real coefficients, f z( ) =
f z( )
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THEOREM 3.4

PROOF

For any complex numbers z and w, with w ¹ 0, there exists a complex number z1 such that

wz z1 =

This z1 is unique and is denoted by z/w.

Let z a ib w c id= + = +and , where a, b, c and d are real numbers such that c d2 2 0+ > . Put 

z
c d

zw1 2 2

1
=

+

Then

wz w
c d

zw c id c id z
c d

z1 2 2 2 2

1 1
= ×

+
= + -

+
=[( )( ) ]

Also, for any complex number z2,

wz z wwz wz2 2= Þ =

 Þ =
+

=z
c d

wz z2 2 2 1

1

 ■

Example     3.6  

Find a complex number z such that (2 + 3i)z = 3 - i.

Solution: Take

z i i=
+

- -
1

2 3
2 3 3

2 2
( )( )

Then

( ) ( )( )( )2 3
1

2 3
2 3 2 3 3

2 2
+ =

+
- + -i z i i i

=
+
+

- = -
2 3

2 3
3 3

2 2

2 2
( )i i

Example   3.7  

Express 
4 3

2

+
+

i
i

 in the form a + ib.

Solution: Consider

4 3

2

4 3

2

2

2

+
+

=
+
+

-
-

i
i

i
i

i
i

( )

( )

( )

( )

=
+

+ + -
1

2 1
8 3 6 4

2 2
( )i i

= +
11

5

2

5
i

3.3 | Geometric Interpretation

We have introduced the concept of a complex number as an ordered pair of real numbers that can be viewed as a point 
in the plane with respect to a given coordinate system. Infact, given a coordinate system in the plane, there is a one-
to-one correspondence between the complex numbers and the points in the plane. This makes it possible to consider 
a complex number a + ib as the point (a, b) in the coordinate plane. For this reason, the plane is called ARGAND’S
plane or complex plane. The abscissa axis is called the real axis or the axis of real numbers, containing the points 
of the form (a, 0), where a is a real number. The ordinate axis is called the imaginary axis or axis of imaginaries, 
 containing the points of the form (0, b), where b is a real number.

For any complex number z = a + ib, it is often convenient to represent z by the vector OM
� ����

, where M is the point 
(a, b) in the plane and O is the origin. Also, every vector in the plane begining at the origin O(0, 0) and terminating 
at the point M(a, b) can be associated with the complex number a + ib. The origin O(0, 0) is associated with the zero 
vector (Figure 3.1).
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b
M

z = a + ib

y

aO
x

FIGURE 3.1 Graphical representation of a complex number of the form z = a + ib.

Representation of complex numbers as vectors facilitates a simple geometrical interpretation of operations on 
complex numbers. First, let us consider the addition of complex numbers. Let z a ib z a ib1 1 1 2 2 2= + = +and  be two 
 complex numbers represented by the points M1 and M2 in the plane as shown in Figure 3.2.

Mb1+b2

z2= a2+ ib2 z1= a1+ ib1

z1+z2= (a1+a2)+ i(b1+b2)

M2

M1

b2

b1

Oa2 a1+a2 a1
x

y

FIGURE 3.2 Geometrical interpretation of operations on complex numbers.

When z1 and z2 are added, their real and imaginary parts are added up (see Figure 3.2). When adding up vectors 

OM OM
� ���� � ����

1 2and  corresponding to z1 and z2, their coordinates are added. Therefore, with the correspondence which we 

have established between complex numbers and vectors, the sum z1 + z2 of the numbers z1 and z2 will be associated with 

the vector OM
� ����

 which is equal to the sum of the vectors OM OM
� ���� � ����

1 2and . Thus, a sum of complex numbers can be inter-
preted in terms of geometry as a vector equal to the sum of the vectors corresponding to the complex numbers (in other 

words, it also corresponds to the fourth vertex of the parallelogram constructed with OM OM
� ���� � ����

1 2and  as adjacent sides).
For any complex number z = a + ib, the length of the vector OM

� ����
 corresponding to z has special importance. This 

is same as the distance of the point (a, b) from the origin O in the plane. This is termed as modulus of z and is denoted 
by | z |. The concept of the modulus of a complex number plays a vital role in the analysis of complex numbers. By the 

Pythagorean Theorem, it follows that the modulus of a ib a b+ +is 2 2 . The following is a formal definition of the 
modulus of a complex number.

Modulus of z

DEFINITION 3.8  Let z = a + ib be a complex number, where a and b are real numbers. The modulus of z is 

defined as a b2 2+ ,  the non-negative square root of a2 + b2 and is denoted by | z |. That is,

| | [Re( )] [Im( )]z a b z z2 2 2 2 2= + = +
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Try it out It can be easily seen that zz a ib a ib a b z= + - = + =( )( ) | |2 2 2

In the following theorem, we list various properties of the modulus of a complex number and the proofs of these 
are straight forward routine verifications.

Property 12 above says that | z1 | + | z2 | is the greatest possible value of | z1 ± z2 | and || z1 | - | z2 || is the least possible 
value of | z1 ± z2 |.

Unimodular Complex Number

DEFINITION 3.9  A complex number z is said to be unimodular if its modulus is 1, that is, | z | = 1.

Note that, for any non-zero complex number z, z / | z | is always unimodular and

z z
z
z

= ×| |
| |

This implies that z can be expressed as

z rw=

where 0 < r Î � and | w | = 1. Moreover, this expression is unique, since

| | | | | || | and
| |

z rw r w r r w
r

z
z
z

= = = × = = =1
1

Example   3.8  

If z1 and z2 are non-zero complex numbers such that 
(z1 - z2)/(z1 + z2) is unimodular, then prove that iz1/z2 is 
a real number.

Solution: We are given that

z z
z z

1 2

1 2

1
-
+

=

Therefore

( )

( / )

z z
z z

z
z

z
z

1 2

1 2

1

2

2

2

2

1

1
1

1 1

/ -
+

=

- = +
æ
èç

ö
ø÷

æ
èç

ö
ø÷

QUICK LOOK 4

The following hold for any complex numbers z, z1 and z2:

1. | z | is a real number and | z | ³ 0

2. | z | = 0 if and only if z = 0

3. | |z z z z= - = = -| | | | | |

4. | | | || |z z z z1 2 1 2=

5. | |z zz2 =

6. 
z
z

z
z

1

2

1

2

=
| |

| |
,  if z2 ¹ 0

7. | | | | | |z z z z1 2 1 2± £ +

  Note that | | | | | |z z z z1 2 1 2+ = +  if and only if the points 
z1, z2 are collinear with the origin and lie on the same 
side of the origin.

 8. | | | |z zn n=  for all integers n

 9. |z z z z z z z z z z z z

z z

1 2

2

1 2 1 2 1

2

2

2

2 1 2 1

1

2

2

+ = + + = + + +

= +

| ( )( ) | | | | ( )

| | | |22

1 22+ Re( )z z

10. |z z z z z z z z z z z z

z z

1 2

2

1 2 1 2 1

2

2

2

2 1 2 1

1

2

2

- = - - = + + +

= +

| ( )( ) | | | | ( )

| | | |22

1 22- Re( )z z

11. | | | | [| | | | ]z z z z z z1 2

2

1 2

2

1

2

2

22+ + - = +

12. || | | || | | | | | |z z z z z z1 2 1 2 1 2- £ ± £ +

   Note that || | | || | |z z z z1 2 1 2- = -  if and only if z1, z2 are 
collinear with the origin on the same side of the origin.
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By properties 9 and 10 of Quick Look 4, we have

z
z

z
z

z
z

z
z

1

2

2

1

2

1

2

2

1

2

1 2 1 2+ - = + +Re Re
æ
èç

ö
ø÷

æ
èç

ö
ø÷

 

Therefore

Re
z
z

z
z

1

2

1

2

0
æ
èç

ö
ø÷

= or

is purely imaginary

This implies

z
z ia1

2

=

where a is a real number and

i
z
z a1

2

= -

which is a real number.

The complex numbers z having the same modulus | z | = r evidently correspond to the points of the complex plane 
located on the circle of radius r with center at the origin. If r > 0, then there are infinitely many complex numbers with 
the given modulus r. If r = 0, then there is only one complex number, namely z = 0, whose modulus is 0.

b

O

q
a r

x

z = a+ ib

y

FIGURE 3.3 Geometrical determination of z using the angle q and the modulus a b2 2+ .

From the geometrical point of view, it is evident that the complex number z ¹ 0 is not completely determined 
by its modulus and depends on the direction also; for example, in Figure 3.3, z is determined by the angle q and the 

modulus a b2 2+ .  Next, we introduce another important concept which, together with the modulus, completely 
determines a complex number.

Argument of z

DEFINITION 3.10  Let z ¹ 0 be a complex number and OM
� ����

 be the vector in the plane representing z. Then the 
argument of z is defined to be the magnitude of the angle between the positive direction of 
the real axis and the vector OM

� ����
,  measured in counterclockwise sense. The angle will be con-

sidered positive if we measure counterclockwise and negative if we measure clockwise.

Note: For the complex number z = 0 the argument is not defined, and in this and only this case the number is  specified 
exclusively by its modulus. Specification of the modulus and argument results in a unique representation of any 
 non-zero complex number.

Unlike the modulus, the argument of a non-zero complex number is not defined uniquely. For example, the 
 arguments of the complex number z = a + ib shown in Figure 3.4 are the angles q1, q2 and q3. Note that 

q p q q q p2 1 3 12 2= + = -and

In general, q is an argument of z if and only if q = q1 + 2np for some integer n, where q1 is also an argument of z; 
that is, any two arguments of a complex number differ by a number which is a multiple of 2p. The set of all arguments 
of z will be denoted by arg z or arg(a + ib). That is, if q is an argument of z, then

arg |z n n= +q p2 is an integer{ }
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b
M M

O

q1
q2

q3
a

x x x

(z =a + ib) (z =a + ib)
M

(z =a + ib)

y y y

FIGURE 3.4 Different arguments of the complex number z = a + ib.

However, there is a unique q such that -p < q £  p and arg z = {q + 2np | n is an integer}. This q is called the  principal 
argument of z and is denoted by Arg z (note that A here is uppercase). Note that

-p p< £Arg z

Also arg z and Arg z are related to each other by the relation

arg |z z n n= +Arg is an integer2 p{ }
Frequently, we denote arg z by Arg z + 2np, where Arg z is the principal argument of z.

Example     3.9  

Find the arguments of the complex numbers z1 = -i, 
z2 = 1 and z3 = -1 + i.

Solution: From Figure 3.5, we have

q
p

q q
p

1 2 3
2

0
3

4
=

-
= =, and

Therefore

Arg arg( ) and ( )- =
-

- =
-

+i i n
p p

p
2 2

2

Arg (1) = 0 and arg (1) = 2np

Arg arg( ) and ( )- + = - + = +1
3

4
1

3

4
2i i n

p p
p

-i

-1

M3(-1+ i )

M1

M2
q1

q3

x xx
1

1

y y y

FIGURE 3.5 Example 3.9.

The real and imaginary parts of the complex number z = a + ib can be expressed in terms of the modulus | z | = r 
and argument q as follows:

a = r cos q and b = r sin q

(see Figure 3.6) and hence
z = r(cosq + i sinq)
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z =a + ib

q
x

y

b

O a r

r

FIGURE 3.6 Geometrical interpretation of z in polar form.

Therefore, the arguments q of a complex number a + ib can be easily found from the following system of equations:

 cos sinq q=
+

=
+

a

a b

b

a b2 2 2 2
and  (3.1)

Example     3.10  

Find the arguments of the complex number z i= - -1 3 .

Solution: In this case, we have a = -1 and b = - 3.  
Equation (3.1) takes the form

cos and sinq q=
-

=
-1

2

3

2

Solving these we find that

Arg z =
-2

3

p

and hence

arg z n n=
-

+ Î
2

3
2

p
p , �

The arguments of a complex number can be found by another method. It can be seen from formula (3.1) that each 
of the arguments satisfies the equation

tanq =
b
a

This equation is not equivalent to the system of equations (3.1). It has more solutions, but the selection of the required solu-
tions (the arguments of the complex number) does not present any difficulties since it is always clear from the algebraic 
notation of the complex number in what quadrant of the complex plane it is located. This is elaborated in the following.

Key Points
Let z = a + ib and q = Arg z, the principal argument of z. Note that z is necessarily non-zero for the arg z to be 
defined.

1. If a b= >0 0and , then

Arg and argz z n n= = + Î
p p

p
2 2

2 , �

If a b= <0 0and , then

Arg and argz z n n=
-

=
-

+ Î
p p

p
2 2

2 , �
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If b = 0 then z = a lies on the x-axis and hence

Arg or and arg orz z n n n= = + Î0 2 2 1p p p( ) , �

q = 

y y

b

b

x x

-p
2 

= q -p
2

2.  Let (a, b) belong to the first quadrant of the complex plane, that is, a > 0 and b > 0. Then the principal argument of 
z is given by

Arg z
b
a= = -q tan 1 æ

èç
ö
ø÷

where tan q = b/a. This is an acute angle 0 < q < p/2 and positive. Therefore,

arg tanz n
b
a

n= + Î-2 1p æ
èç

ö
ø÷

, �

a

q

y

b

b

a x

z =a + ib

3.  Let (a, b) belong to the second quadrant of the complex plane, that is, a < 0 and b < 0. Then the principal argument 
of z is given by

Arg z
b
a

= = - -q p tan
| |

1 æ
èç

ö
ø÷

This is an obtuse angle and is positive. Therefore,

arg ( ) tanz n
b

a
n= + -

-
Î-2 1 1p æ

èç
ö
ø÷

, �

q

y

b

bM

|a |a
x

z =a + ib
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4.  Let (a, b) lie in the third quadrant of the complex plane, that is, a < 0 and b < 0. Then the principal argument of z is 
given by

Arg z
b
a= = - + -q p tan 1 æ

èç
ö
ø÷

This is an obtuse angle and negative. Therefore

arg ( ) tanz n
b
a n= - + Î-2 1 1p æ

èç
ö
ø÷

, �

y

b

a

M

x

z =a + ib

q

2p -q

|b|

|a|

5.  Let (a, b) lie in the fourth quadrant of the complex plane, that is, a > 0 and b < 0. Then the principal argument of z 
is given by

Arg z
b
a= = - -q tan

| |1 æ
èç

ö
ø÷

This is an acute angle and negative. Therefore

arg tan
| |

tanz n
b
a n

b
a

n= - = -
-

Î- -2 21 1p pæ
èç

ö
ø÷

æ
èç

ö
ø÷

, �

|b|

y

b

a

M
a

x

z =a + ib

q

Note: Arg z is the smallest angle of rotation of OX
� ����

 (positive x-axis) to fall on the vector OM M a b
� ����

[ ( )]= , . Arg z >< 0 
according to whether the rotation of OX

� ����
 is anticlockwise or clockwise, respectively.

Example     3.11  

Find the arguments of the complex number z i= - +3 . 

Solution: In this case z = a + ib, where a = - 3  and b = 1. 
Therefore z lies in the second quadrant of the  complex 
plane and hence the principal argument is

Arg z
b
a

= - = - = - =- -p p p
p p

tan
| |

tan1 1 1

3 6

5

6

æ
èç

ö
ø÷

æ
èç

ö
ø÷

Therefore

arg( )- + = + Î3
5

6
2i n n

p
p , �
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Next we will discuss the geometrical constructions of difference, product and quotient of two complex numbers 
z1 and z2.

Construction of z2 − z1

Let us construct the vector z z2 1-  as the sum of the vectors z2 and −z1 (Figure 3.7). By the  definition of the modulus, the 
real number | |z z2 1-  is the length of the vector z z2 1- ; that is, the length of the vector OM

� ����
, where M M M N, ,1 2 1and  

represent the points in the complex plane corresponding to the complex numbers z z z z z2 1 1 2 1- -, , and , respectively. 

The congruence of the triangles OMN M M O1 2and 1  yields | | | |OM M M
� ���� � ������

= 1 2 . Therefore the length of the vector z z2 1-  is 
equal to the distance between the points z1 and z2. Thus we can say that the modulus of the difference of two complex 
numbers is the distance between the points of the complex plane corresponding to those complex numbers. This important 
 geometrical interpretation of the modulus of the difference between two complex numbers makes it possible to use 
simple  geometrical facts in solving certain problems. See examples given in Section 3.3.

y

x
O

M2

M

M1

z1

N1

z2

z2-z1

-z1

FIGURE 3.7 Construction the vector z z2 1-  as the sum of the vectors z2 and −z1.

Before going to illustrate the construction of the product and quotient of complex numbers, we present the  following 
definition: 

DEFINITION 3.11   Two triangles ABC and A¢B¢C¢ are said to be directly similar if ÐA = ÐA¢, ÐB = ÐB¢ and 
ÐC = ÐC¢ and the ratios of the sides opposite to equal angles are equal.

Note that directly similar triangles are similar and not vice-versa. For example, if D DABC A B Cand ¢ ¢ ¢ are directly 
similar, then D DABC B A Cand ¢ ¢ ¢ are not directly similar (unless they are equilateral triangle).

Construction of z1 z2 and z1/z2 (z2 π 0)
Step 1:  Let z1 and z2 be complex numbers and P and Q the points representing them, respectively. Let O be the origin 

so that the vectors OP OQ
� ��� � ����

and  represent z1 and z2, respectively. Let A be the point (1, 0). Join A and P, and 

on the base OQ, construct the triangle OQR directly similar to the triangle OAP (Figure 3.8). Then

Ð = Ð Ð = Ð Ð = ÐQOR AOP OQR OAP QRO APO, ,

and further,

OR
OP

OQ
OA

QR
AP

= =

Therefore

 OR OP OQ OA= × =( )∵ 1  (3.2)

Let Ð = Ð =XOP XOQq q1 2and . Then

 

Ð = Ð + Ð

= Ð + Ð
= + = +

XOR XOQ QOR

XOQ AOP
q q q q2 1 1 2

 (3.3)
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From Eqs. (3.2) and (3.3),

z z r r i1 2 1 2 1 2 1 2= + + +[cos( ) sin( )]q q q q

where r OP r OQ1 2= =and . Therefore R represents z z1 2× .

y

x
O

R(z1z2)

Q(z2)

P(z1)

A(1, 0)

FIGURE 3.8 Step 1.

Step 2:  Draw a triangle OPR directly similar to the triangle OQA. By the above construction, if R is represented by z,
then z z z× =2 1  (Figure 3.9). Notice that Ð =QOP z zarg( / )1 2  is the angle through which OQ

� ����
 must be rotated 

in order that it may lie along OP z z
� ���

and arg( / )1 2  is positive or negative according as the rotation of OQ
� ����

 is 
anticlockwise or clockwise.

y

x
O

P (z1)

Q (z2)r2

r1 R

A(1, 0)

z2

z1

FIGURE 3.9 Step 2.

In the following theorem, an important consequence of arg(z1/z2) is derived. This can help the reader in solving 
many problems in the geometry of complex numbers.

THEOREM 3.5

PROOF

Let z1, z2 and z3 be three complex numbers represented by P, Q and R, respectively. If a is the angle 
ÐPRQ , then

z z

z z
RQ
RP

i2 3

1 3

-
-

= +(cos sin )a a

Let the points A and B represent z1 - z3 and z2 - z3, respectively, so that RP OA RQ OB= =,  
and PQ AB=  (Figure 3.10). Therefore D DPQR ABOand  are congruent and hence ÐAOB = a. 
By Step 2 above,

a =
-æ

è
ç

ö

ø
÷arg

z z
z z

2 3

1 3-

Therefore

z z

z z

z z

z z
i

RQ
RP

i

2 3

1 3

2 3

1 3

-
-

=
-
-

+

= +

| |

| |
(cos sin )

(cos )

a a

a asin
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y

x
O

Q(z2)

P(z1)
R(z3)

A(z1-z3)

B(z2-z3)

a

a

FIGURE 3.10 Theorem 3.5.  ■

Example     3.12  

Determine the sets of complex numbers defined by each 
of the following conditions.

(1) | |z i- = 1

(2) | | | |2 2+ < -z z

(3) 2 1 2 3£ - + <| |z i

Solution:

(1)  | z - i | = 1 is satisfied by those and only those points of the 
complex plane which are at a distance equal to 1 from 
the point i. Therefore, the set of complex  numbers z satis-
fying the condition | z - i | = 1 is precisely the circle of unit 
radius with center at the point i (see the figure below).

y

x
O

i

(2)  We can give a different formulation of the problem, 
using the geometrical interpretation of the modulus of 
the difference between two complex numbers. We are 
asked to determine the set of points in the complex 
plane that are located closer to the point z = -2 than to 
the point z = 2. It is clear that this property is possessed 
by all the points of the plane that lie to the left of the 
imaginary axis and only by those points. In the figure 
given below, the shaded portion of the complex plane 
represents the set of points satisfying | 2 + z | < | 2 - z |.

y

x
O–2

QUICK LOOK 5

1.  arg
z z

z z
2 3

1 3

-
-

æ
èç

ö
ø÷

 is the angle of rotation of the vector RP
� ���

 

to fall along RQ
� ����

.

z1

z4z2

z3

2.  For any four points z1, z2, z3 and z4, the angle of 
 inclination of the line joining z1 to z2 with the line 
joining z3 to z4 is

arg
z z

z z
3 4

1 2

-æ
èç

ö
ø÷-

3.  The lines joining z1 to z2 and z3 to z4 are at right angles 
if and only if

arg
z z

z z
3 4

1 2 2

-æ
èç

ö
ø÷

= ±
-

p

   and hence

z z
z z

i3 4

1 2

-
-

= ±l

   where l > 0.
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(3) The given condition is

2 1 2 3£ - - <| ( )|z i

  A complex number z satisfies the given condition if 
and only if its distance from the point 1 - 2i is greater 
than or equal to 2 but less than 3. Such points lie in 
the interior and on the inner boundary of the ring 
formed by two concentric circles with centers at the 
point 1 - 2i and the radii r = 2 and R = 3. The required 
set is indicated by the shaded portion of the figure at 
the right side.

r =2

R =3

l =1-2i

x

y

Next, we will turn our attention to general equations of certain geometrical figures in the complex plane, in terms 
of a complex variable.

THEOREM 3.6

PROOF

The general equation of a straight line in the complex plane is

lz lz m+ + = 0

where l is a non-zero complex number and m is a real number.

Let l = a + ib be a non-zero complex number and m a real number. Consider the equation

lz lz m+ + = 0

Let z = x + iy be an arbitrary point on this curve. Then

( )( ) ( )( )a ib x iy a ib x iy m+ + + + + + = 0

Therefore

( )( ) ( )( )a ib x iy a ib x iy m- + + + - + = 0

Solving we get

2 2 0 0 0ax by m a b+ + = ¹ ¹ ¹, ( )or since l 0

This represents a straight line in the plane. Conversely, if px + qy + r = 0 is a straight line, where 
p, q, r are reals and p ¹ 0 or q ¹ 0 and if z = x + iy is a point on this line, then

p
z z

q
z z

i
r

+æ
èç

ö
ø÷

+ -æ
èç

ö
ø÷

+ =
2 2

0

Therefore

 pz pz qiz qi z r

p qi z p qi z r

+ - + + =

- + + + =

2 0

2 0( ) ( )

By taking l = p + qi and m = 2r, the above equation takes the form

lz lz m+ + = 0

Note that l ¹ 0, since p ¹ 0 or q ¹ 0. ■

THEOREM 3.7 In the complex plane the equation of the line joining the points z1 and z2 is

z z

z z

z z

1

1

1

01 1

2 2

=
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PROOF Let the points z1 and z2 be A and B, respectively. Then P(z) is a point on the line AB if and only if 
A, P and B are collinear which implies

arg
z z
z z

1

2

0
-æ

èç
ö
ø÷

=
-

or p

Û
z z
z z

1

2

-
-

is pure real

Û =
z z
z z

z z
z z

1

2

1

2

-
-

-
-

Û - - = - -( )( ) ( )( )z z z z z z z z1 2 2 1

Û =
z z

z z

z z

1

1

1

01 1

2 2 ■

THEOREM 3.8

PROOF

The equation of the perpendicular bisector of the line segment joining the points z1 and z2  is

( ) ( )z z z z z z z z z z1 2 1 2 2 2 1 1 0- + - - =+

Let A(z1) and B(z2) be the given points and L be the perpendicular bisector of the line segment 

AB. Then P(z) is point on L.  This implies

PA PB

z z z z

z z z z z z z z

z z z z

=

Û - = -

Û - - = - -

Û - +

| | | |

( )( ) ( )( )

( ) (

1 2

1 1 2 2

1 2 1 -- + - =z z z z z z2 2 2 1 1 0)
 ■

In the following theorem we obtain a necessary and sufficient condition for two points in the complex plane to be 
images of each other in a given straight line in the same plane.

THEOREM 3.9

PROOF

Two points z1 and z2  are images of each other in the line lz lz m l m+ + = ¹ Î Î0 0( )� �and  if 
and only if lz lz m1 2 0+ + = .

Suppose that z1 and z2 are images of each other in the line lz lz m+ + = 0. Then this line is the 
perpendicular bisector of the line segment joining z1 and z2. By Theorem 3.7, the equation of the 
perpendicular bisector is

( ) ( )z z z z z z z z z z1 2 1 2 2 2 1 1 0- - -+ + =

Therefore

l
z z

l
z z

m
z z z z

k
1 2 1 2 2 2 1 1-

=
-

=
-

= ( )say

QUICK LOOK 6

1.  The complex number ( )/( )z z z z1 2 1 2- -  is called the 
complex slope of the line joining z1 and z2.

2.  For any two points z1 and z2  on the straight line lz  + 
lz + m = 0 (where l is a non-zero complex number 

and m is a real number), the complex number (z1 - 

z2)/( )z z1 2-  is equal to - l l/  and hence - l l/  is the com-

plex slope of the line lz lz m+ + = 0.
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Now,

lz lz m k z z z k z z z z z z z k

k z z z z z

1 2 1 2 1 1 2 2 2 2 1 1

1 1 2 1

+ + = - + - + -

= - +

( ) ( ) ( )

[ 11 2 2 2 2 2 1 1

0 0

z z z z z z z

k

- + -

= =

]

( )

Conversely, suppose that lz lz m1 2 0+ + = . Let z be any point on the given line. Then

lz lz m+ + = 0

and therefore 

l z z l z z( ) ( )- + - =1 2 0

which implies that 

| ( )| | ( )|l z z l z z- = - -1 2

and hence 

| | | | | |z z z z z z- = - = -1 2 2

That is, z is equidistant from both the points z1 and z2. Therefore the line lz lz m+ + = 0 is the 
 perpendicular bisector of the line segment joining z1 and z2. ■

THEOREM 3.10

PROOF

The perpendicular distance of the straight line lz lz m l m+ + = ¹ Î Î0 0( )� �and  from a given 
point z0 is

lz lz m
l

0 0

2

+ +

Let z = x + iy, so that the equation of the given line is

( ) ( )l l x i l l y m+ + - + = 0

which is a first degree equation in x and y with real coefficients. Therefore, the distance of the line 
from the point z0 = a + ib is

( ) ( )

( ) ( )

( ) ( )l l a i l l b m

l l l l

l a ib l a ib m

l l

+ + - +

+ - -
=

+ + - +
2 2 4

 
=

+ +lz z m

l
0 0

2  ■

THEOREM 3.11

PROOF

The general equation of a circle in the complex plane is 

zz bz bz c+ + + = 0

where b is a complex number and c is a real number.

Let z0  be a fixed point in the complex plane and r a non-negative real number. Then the equation

| |z z r- =0

represents the locus of the point z whose distance from the point z0 is the constant r. We know that 
this locus is a circle with centre at z0  and radius r. This equation is equivalent to

 ( )( )z z z z r- - =0

2

0
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That is, zz z z z z z z r+ - + - + - =( ) ( ) ( )0 0 0 0

2 0 which is of the form zz bz bz c+ + + = 0, where 

b z c zz r= - = -0 0

2and .  On the other hand, any equation zz bz bz c+ + + = 0 can be written as

( )( )z b z b bb c+ + = -

That is,

| |z b bb c+ = -

which represents a circle with center at -b and radius bb c- . Note that bb cand  are real 
numbers and bb c- > 0 or = 0 or < 0. ■

Example     3.13  

Find the center and radius of the circle

zz i z i z- + - - - =( ) ( )2 3 2 3 3 0

Solution: This equation is of the form

zz bz bz c+ + + = 0

where b = -(2 + 3i) and c = -3. Therefore -b(= 2 + 3i) is 

the center of the circle and bb c-  [ ( )( )= + - +2 3 2 3 3i i  

= =16 4] is the radius.

Example     3.14  

If 2 + i and 4 + 3i represent the extremities A and C,  
respectively, of a diagonal of a square ABCD, described 
in counterclock sense, then find the other two vertices 
B and D.

Solution: Let E be the intersection of the diagonals. 
Then E is represented by

( ) ( )2 4 3

1 1
3 2

+ + +
+

= +
i i

i

A B

D C

E

FIGURE 3.11 Example 3.14.

In Figure 3.11 DEAB is right angled at E. If z represents B, 
then

z i
i i

i i
- +

+ - +
= + =

( )

( ) ( )
cos sin

3 2

2 3 2 2 2

p p

and therefore, z i i i i= - - + + = +( )1 3 2 4 . Similarly, from 

DECD, if z¢ represents D, then

¢ - +
+ - +

=
z i

i i
i

( )

( ) ( )

3 2

4 3 3 2

and hence ¢ = +z i2 3 .

QUICK LOOK 7

1.  Note that the circle zz bz bz c+ + + = 0 is real or 
point circle or imaginary circle according as bb c-  
is a positive real number or bb c=  or  negative real 
number, respectively.

2.  If A(z1) and B(z2) are points in the complex plane 
and P(z) is a point on the line joining A(z1) and 
B(z2) dividing the line segment AB in the ratio 
m n m n: ( )+ ¹ 0 , then 

z
mz nz

m n
=

+
+

2 1

3.  If A(z1), B(z2) and C(z3) are the vertices of a  triangle, 
then the complex number (z1 + z2 + z3) / 3 represents 
the centroid of the triangle ABC.
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Example     3.15  

If z1, z2, z3 and z4 are the vertices of a square described in 
the counterclock sense, then express z2 and z4 in terms of 
z1 and z3, and z1 and z3 in terms of z2 and z4 (Figure 3.12).

D(z4) C(z3)

B(z2)A(z1)

90°

90° 90°

90°

FIGURE 3.12 Example 3.15.

Solution: Rotate BC about B through 90° in anticlock-
wise sense. Then

z z
z z

i i

z z i z z

z iz i z

z

1 2

3 2

1 2 3 2

1 3 2

2

2 2

1

1

2

-
-

= + =

- = -

- = -

=

cos sin

( )

( )

p p

[[( ) ( ) ]1 11 3+ + -i z i z

Similarly

z i z i z

z i z i z

z i z

4 1 3

3 2 4

1 2

1

2
1 1

1

2
1 1

1

2
1

= - + +

= + + -

= - +

[( ) ( ) ]

[( ) ( ) ]

[( ) (( ) ]1 4+ i z

Example     3.16  

Let l z l z m1 1 1 0+ + =  and l z l z m2 2 2 0+ + =  be two strai-
ght lines in the complex plane. Then prove that

(1) the lines are parallel if and only if l l l l1 2 2 1= .

(2)  the lines are perpendicular if and only if l l l l1 2 2 1 0+ = .

Solution: Writing z x iy x y= + ( )and real , the equa-
tions of the given straight lines are transformed into

( ) ( )l l x i l l y m1 1 1 1 1 0+ + - + =

and ( ) ( )l l x i l l y m2 2 2 2 2 0+ + - + =

which are first degree equations with real coefficients 
[recall that z z+  and i z z( )-  are always real numbers 
for all complex numbers z]. Therefore, we can use the 
conditions for parallelness and perpendicularity as in 
two-dimentional geometry.

Calculations are left for students as an exercise.

Example     3.17  

Let lz lz m+ + = 0 be a straight line in the complex plane 
and P(z0) be a point in the plane. Then prove that

(1)  the equation of the line passing through P(z0) and 
parallel to the given line is

l z z l z z( ) ( )- + - =0 0 0

(2)  the equation of the line passing through P(z0) and 
perpendicular to the given line is

l z z l z z( ) ( )- - - =0 0 0

Solution: Let Q(z) be any point on the given line.

(1) We have

-
=

-
-

l

l

z z

z z
slope of the line = 0

0

  which gives the required equation.

(2)  If Q(z) is any line passing through P(z0) and is 
 perpendicular to the given line, then

z z

z z
l

l

-
-

=0

0

 (see Example 3.16)

  which gives the required equation.

Example     3.18  

Find the foot of the perpendicular drawn from a point 

P(z0) onto to a line lz lz m+ + = 0.

Solution: The given line is

 lz lz m+ + = 0  (3.4)
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The line passing through P(z0) and perpendicular to the 
given line is

 l z z l z z( ) ( )- - - =0 0 0  (3.5)

The foot of the perpendicular from P(z0) satisfies
both Eqs. (3.4) and (3.5). Therefore, eliminating z from

Eqs. (3.4) and (3.5), we have

z
lz lz m

l
=

- -0 0

2

which is the foot of the perpendicular.

Example     3.19  

Find the radius and the center of the circle

zz i z i z+ - + + + =( ) ( )2 3 2 3 4 0

Solution: If b = 2 + 3i, then the given equation is

zz bz bz+ + + =4 0

This equation represents a circle with center at 

-b (= -2 -3i) and radius bb - = + - =4 4 9 4 3( ).

Example     3.20  

Prove that the equation | | | |z z+ = +1 2 1  represents a 
circle and find its center and radius.

Solution: The given equation is equivalent to

( )( ) ( )( )z z z z+ + = - -1 1 2 1 1

That is,

zz z z+ - + - + =( ) ( )3 3 1 0

which represents a circle with centre at 3 [= (3, 0)] and 

radius 3 1 2 22 - = .

3.4 | The Trigonometric Form

In the previous section, we have noted that the real and imaginary parts of a complex number z = a + ib can be 
expressed in terms of the modulus | z | = r and argument q as

a r b r= =cos sinq qand

Therefore, any non-zero complex number z can be expressed as

z r i= +(cos sin )q q

where r is the modulus of z and q is an argument of z. This expression of a complex number is called the trigonometric 
notation or trigonometric form or polar form of z. 

Let us recall that the expression z = a + ib, where a and b are real numbers and i2 = -1, is called the algebraic form 
of z. To pass from algebraic form to trigonometric form, it is sufficient to find the modulus of a complex number and 
one of its arguments. Let us consider certain examples.

Example     3.21  

Express the following complex numbers in trigonometric  
form:

(1) z1 = -1 - i
(2) z2 = -2

(3) z3 = i

Solution:

(1) | | /z z1 12 3 4= = -and Arg p  and hence

z i1 2
3

4

3

4
=

-æ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

é
ëê

ù
ûú

cos sin
p p

(2) | |z z2 22= =and Arg p  and hence

z i2 2= +(cos sin )p p

(3) | | /z z3 31 2= =and Arg p  and hence

z i3
2 2

= æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

cos sin
p p
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Example     3.22  

Express the following complex numbers in  trigonometric 
form:

(1) z i1 2
7

4
2

4
= æ

èç
ö
ø÷

- æ
èç

ö
ø÷

cos sin
p p

(2) z i2
17 17

= - æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

cos sin
p p

Solution: Note that in these cases, we need not find the 
modulus and arguments, although it is easy to find these. 
Instead, we will make use of the facts that

cos cos cos
7

4
2

4 4

p
p

p pæ
èç

ö
ø÷

= -æ
èç

ö
ø÷

=
-æ

èç
ö
ø÷

and - æ
èç

ö
ø÷

=
-æ

èç
ö
ø÷

sin sin
p p
4 4

Now, we have

z i

z i

1

2

2
4 4

17

=
-æ

èç
ö
ø÷

+
-æ

èç
ö
ø÷

é
ëê

ù
ûú

= - æ
èç

ö
ø÷

+

cos sin

cos sin

p p

p p
117

17 17

16

17

æ
èç

ö
ø÷

= -æ
èç

ö
ø÷

+ -æ
èç

ö
ø÷

= æ
èç

ö
ø÷

+

cos sin

cos s

p
p

p
p

p

i

i iin
16

17

pæ
èç

ö
ø÷

The operations of multiplication and division of complex numbers can be easily performed by transforming the given 
complex numbers into trigonometric form. We have already noted that the modulus of the product (quotient) of any 
two complex numbers is the product (quotient) of their moduli.

Now, let us turn our attention to the arguments of products and quotients.

THEOREM 3.12

PROOF

The following hold for any two non-zero complex numbers z1 and z2.

1. z z z z z z1 2 1 2 1 2= Û = =| | | | argand arg

2. arg( ) ,z z z z n n1 2 1 2 2= + + ÎArg Arg p �

3. arg ,
1

2
2

2z
z n n

æ

è
ç

ö

ø
÷ = - + ÎArg p �

4. arg ,
z

z
z z n n1

2

1 2 2
æ

è
ç

ö

ø
÷ = - + ÎArg Arg p �

First let us express the given non-zero complex numbers z1 and z2 in trigonometric form. Let 
z r i1 1 1 1= +(cos sin ),q q  r1 10> - < £, p q p and z r i r2 2 2 2 2 20= + > - < £(cos sin ), ,q q p q p . That is, |z1| = 

r z r z z1 2 2 1 1 2 2, | | , .= = =Arg and Argq q

1. This part is clear since arg ,z z n n1 1 2= + ÎArg p � .

2. Consider the product,

z z r i r i

r r

1 2 1 1 1 2 2 2

1 2 1 2

= + +

= -

(cos sin ) (cos sin )

[(cos cos sin

q q q q

q q qq q q q q q

q q q

1 2 1 2 1 2

1 2 1 2

sin ) (cos sin sin cos )]

[cos( ) sin(

+ +

= + +

i

r r i 11 2+ q )]

and therefore

| | arg( ) ,z z r r z z n z z n n1 2 1 2 1 2 1 2 1 22 2= = + + = + + Îand Arg Argq q p p �
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3. This follows from the fact that

1

cos sin

cos sin

(cos sin )(cos sin )

cos sin

c

q q
q q

q q q q

q q

+
=

-
+ -

=
-

i
i

i i

i
oos sin

cos( ) sin( )

2 2q q

q q

+

= - + -i

Therefore,

arg ,
1

2
2

2z
z n n

æ

è
ç

ö

ø
÷ = - + ÎArg p �

4. It follows from (2) and (3). ■

Example     3.23  

Let

z i1 2
11

4

11

4
= æ

èç
ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

cos sin
p p

and z i2 8
3

8

3

8
= æ

èç
ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

cos sin
p p

Find z1z2 and z1/z2.

Solution: First note that

11

4
2

3

4

p
p

p
= +

Now, | | | | ,z z1 22 8= =and  therefore

Arg and Argz z1 2

3

4

3

8
= =

p p

Therefore, | | | || | .z z z z1 2 1 2 2 8 4= = =  Now

arg( ) ,

,

,

z z z z n n

n n

n n

1 2 1 2 2

3

4

3

8
2

9

8
2

= + + Î

= + + Î

= + Î

=

Arg Arg p

p p
p

p
p

�

�

�

--
+ + Î

=
-

+ Î

7

8
2 1

7

8
2

p
p

p
p

( ) ,

,

n n

m m

�

�

and hence

Arg( )z z1 2

7

8
=

- p

Therefore

z z i

i

1 2 4
7

8

7

8

4
7

8

=
-æ

èç
ö
ø÷

+
-æ

èç
ö
ø÷

é
ëê

ù
ûú

= æ
èç

ö
ø÷

-

cos sin

cos si

p p

p
nn

7

8

pæ
èç

ö
ø÷

é
ëê

ù
ûú

Also,

z

z

z

z

z

z
z z n n

1

2

1

2

1

2

1 2

2

8

1

2

2

3

4

3

8
2

= = =

æ

è
ç

ö

ø
÷ = - + Î

= - +

arg ,Arg Arg p

p p

�

nn n

n n

p

p
p

,

,

Î

= + Î

�

�
3

8
2

Therefore,

Arg
z
z

1

2

3

8

æ

è
ç

ö

ø
÷ =

p

and hence

z
z i1

2

1

2

3

8

3

8
= æ

èç
ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

cos sin
p p
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3.5 | De Moivre’s Theorem

In the previous section, we have derived formulas for the product and quotient of two complex numbers in 
 trigonometric form. The formula for the product of two complex numbers can be extended to the case of n factors by 
mathematical induction. As a special case, we have the following.

THEOREM 3.13
(DE MOIVRE’S 

THEOREM)

PROOF

For any real number q and any positive integer n,

(cos sin ) cos( ) sin( )q q q q+ = +i n i nn

We prove this by induction on n. If n = 1, this is trivial. Now, let n > 1 and assume that

(cos sin ) cos[( ) ] sin[( ) ]q q q q+ = - + --i n i nn 1 1 1

Now, consider

 

(cos sin ) (cos sin ) (cos sin )

[cos{( ) } si

q q q q q q

q

+ = + +

= - +

-i i i

n i

n n 1

1 nn{( ) }](cos sin )

[cos{( ) }cos sin{( ) }sin ]

n i

n n

- +

= - - -

+

1

1 1

q q q

q q q q

ii n n

n i n

[cos{( ) }sin cos sin{( ) }]

cos[( ) ] sin[(

- + -

= - + + -

1 1

1

q q q q

q q 11) ]

cos( ) sin( )

q q

q q

+

= +n i n  ■

COROLLARY 3.2

PROOF

For all real numbers q and for all integers n,

(cos sin ) cos( ) sin( )q q q q+ = +i n i nn

For n = 0, this is obvious. Let n < 0. First observe that

1

cos sin

cos sin

(cos sin )(cos sin )

cos( ) si

q q
q q

q q q q

q

+
=

-
+ -

=
- +

i
i

i i

i nn( )

cos sin

cos( ) sin( )

-
+

= - + -

q
q q

q q

2 2

i

Now,

(cos sin ) [(cos sin ) ]

(cos sin )

cos( )

q q q q

q q

q

+ = +

=
+

=
-

- -

-

i i

i

n

n n

n

1

1

1

++ -

= +

i n

n i n

sin( )

cos( ) sin( )

q

q q

since -n > 0 and by Theorem 3.13. ■

In the following we demonstrate the use of De Moivre’s Theorem in expressing certain powers of complex  numbers 
with natural exponents in algebraic form.
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Example     3.24  

Express the number z i= -( )3 13 in algebraic form.

Solution: First we write the given number in trigonomet-

ric form and then pass to the algebraic form. Let w i= - 3. 

Then | |w = + =1 3 2 and Argw = 5 6p / . Therefore

w i= æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

2
5

6

5

6
cos sin

p p

and hence

z w i= = ×æ
èç

ö
ø÷

+ ×æ
èç

ö
ø÷

é
ëê

ù
ûú

13 132 13
5

6
13

5

6
cos sin

p p

= æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

= æ
èç

ö
ø÷

+

2
65

6

65

6

2
5

6

13

13

cos sin

cos si

p p

p

i

i nn
5

6

pæ
èç

ö
ø÷

é
ëê

ù
ûú

Thus

( )i i i- = - +
æ

èç
ö

ø÷
= - +3 2

3

2

1

2
2 3 213 13 12 12

Next, let us find the root of a given degree of a complex number.

Roots of Degree n

DEFINITION 3.12  If z and w are complex numbers and n a positive integer such that z wn = ,  then z is called a 
root of degree n or nth root of the number w and is denoted by wn . Roots of degree 2 or 3 
are called square roots or cube roots, respectively.

For example, i and -i are both square roots of -1. In general, to extract a root of degree n of a complex number w, it 
is sufficient to solve the equation z wn = . If w = 0, then the equation z wn =  has exactly one solution, namely z = 0. The 
case w ¹ 0 is dealt with in the following.

THEOREM 3.14

PROOF

Let w be a non-zero complex number and n a positive integer. Then the equation zn = w has n 
solutions.

First we represent z and w in the trigonometric form. Let

z r i w s i= + = +(cos sin ) (cos sin )q q a aand

The equation z wn =  takes the form

r n i n s in (cos( ) sin( )) (cos sin )q q a a+ = +

Two complex numbers are equal if and only if their moduli are equal and argument differ by an 
integral multiple of 2p. Therefore,

r s n m mn = = + Îand q a p2 , �

or r s n n m mn= = + Îand q
a p2

, �

Thus, all the solutions of the equation z wn =  can be written as follows:

z s n n m i n n m mm
n= +æ

èç
ö
ø÷

+ +æ
èç

ö
ø÷

é
ëê

ù
ûú

Îcos sin ,
a p a p2 2

�

It can be easily seen that z m nm for = -0 1 1, , ,…  are different. For m ³ n, we cannot obtain any 

other complex numbers different from z z zn0 1 1, , ,… - . For example, for m = n, we get
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z s n i n

s n i

n
n

n

= +æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

é
ëê

ù
ûú

= æ
èç

ö
ø÷

+

cos sin

cos s

a
p

a
p

a

2 2

iin
a
n zæ

èç
ö
ø÷

é
ëê

ù
ûú

= 0

It can be seen that z z kn k k+ = ³for all 0. Thus, these are exactly n roots of degree n of the number 
w and they are all obtained from the formula

 z s
n n

m i
n n

m mm
n= +æ

èç
ö
ø÷

+ +æ
èç

ö
ø÷

é
ëê

ù
ûú

=cos sin , , , ,
a p a p2 2

0 1 2for …,, n - 1 ■

It can be seen from the above formula that all the roots of degree n of the number w have one and the same 
moduli but distinct arguments differing from each other by ( / )2p n m, where m is some integer.

Theorem 3.13 paves a way to formulate and prove the most general version of the De Moivre’s Theorem in the 
 following. If z0 is a solution of the equation zn = w, then let us agree to write z0 as w1/n. Therefore w1/n has n values. In 
 particular, if w is any complex number and r = m/n, where m and n are integers and n > 0, then w1/n has n values.

THEOREM 3.15 
(DE MOIVRE’S 
THEOREM FOR 

RAT IONAL 
INDEX)

PROOF

For any real number q and any rational number r,

(cos sin ) cos( ) sin( )q q q q+ = +i r i rr

Let q be a real number and r = n/m, where n and m are integers and m > 0. Then

[cos( ) sin( )] cos sinr i r
n
m i

n
m

m

m

q q q q+ = æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

= +cos( ) sin( )n i nq q  (by Theorem 3.13)

= +(cos sin )q qi n  (by Corollary 3.2)

Therefore cos( ) sin( )r i rq q+  is the mth root of (cos sin )q q+ i n or is a value of [(cosq + i sinq )n]1/m.
Thus cos( ) sin( )r i rq q+  is a value of (cos sin )q q+ i r. ■

Example     3.25  

Find all the squares of the roots of the equation

x x x11 7 4 1 0- + - =

Solution: We have x x x x x x11 7 4 7 4 41 1 1- + - = - + - =( )
( )( )x x7 41 1+ - . If z is a root of x x x11 7 4 1 0- + - = , 
then z must be either a seventh root of –1 or a fourth 

root of unity; that is, z z= - =( ) ( )/ /1 11 7 1 4or . Therefore, 
z z2 2 7 2 2 4 1 21 1 1 1 1= - = = = -( ) ( ) ( )/ / /or or . That is

z2 1 71 1 1= -or or ( ) /

This implies that z2 is either a square root of 1 or a 
seventh root of 1.

QUICK LOOK 8

1.  All the roots of degree n of the complex number w 
correspond to the points of the complex plane lying 
at the vertices of a regular n-gon inscribed in a circle 
of radius | |wn  with centre at the point z = 0.

2.  Usually the expression wn  is to be understood as 
the set of all roots of degree n of w. For  example, 

-1  is understood to be the set consisting of 

two complex numbers i and -i. Sometimes, wn  is 
understood as a root of degree n of w. In such 
cases, it must be indicated what value of the root 
is meant.
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Example     3.26  

Find all the values of - 646 .

Solution: First, we should express w = - 64 in trigono-
metric form:

w i= - = +64 64(cos sin )p p

Now, if zm are the values of - 646 , then

z m i mm = +æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

é
ëê

ù
ûú

64
6

2

6 6

2

6
6 cos sin

p p p p

for m = 0, 1, 2, 3, 4 and 5. Therefore,

z i i

z i

0

1

2
6 6

3

2
2 2

= +æ
èç

ö
ø÷

= +

= æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù

cos sin

cos sin

p p

p p
ûûú

=

= æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

= - +

= æ

2

2
5

6

5

6
3

2
7

6

2

3

i

z i i

z

cos sin

cos

p p

p
èèç

ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

= - -i isin
7

6
3

p

z i i

z

4

5

2
3

2

3

2
2

2
11

6

= æ
èç

ö
ø÷ + æ

èç
ö
ø÷

é
ëê

ù
ûú

= -

= æ
èç

ö
ø÷ +

cos sin

cos

p p

p
ii isin

11

6
3

pæ
èç

ö
ø÷

é
ëê

ù
ûú

= -

These lie on the circle of radius 2 with center at z = 0 and 
form vertices of a regular hexagon.

y

z1

z2

z3

z4

z5

x
O

z0 =  √3+ i

FIGURE 3.13 Example 3.27.

In the following, we express the square roots of a given complex number and nth roots of unity in algebraic form. 
These are straight forward verifications.

Square Root of a Complex Number

The square roots of z = a + ib are given as

 ±
+

+
-é

ë
ê
ê

ù

û
ú
ú

>
| | | |z a

i
z a

b
2 2

0if  (3.6a)

and  ±
+

-
-é

ë
ê
ê

ù

û
ú
ú

<
| | | |z a

i
z a

b
2 2

0if  (3.6b)

Cube Roots of Unity
The cube roots of unity (solutions of z3 = 1) are 

1
1 3

2

1 3

2
,

- + - -i i
and

Usually ( )/- +1 3 2i  is denoted by w. Note that 1, w, w2 are the cube roots of unity.

QUICK LOOK 9

1. The square roots of i iare ± +( / )1 2

2. The square roots of - ± -i iare ( / )1 2

3. The square roots of -7 -24i are

±
-

-
+é

ë
ê

ù

û
ú = ± -

25 7

2

25 7

2
3 4i i( )
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Properties of Cube Roots of Unity
Let w ¹ 1 be a cube root of unity; that is

w i= - ±1

2
1 3( )

Then the following properties are satisfied by w.

In the following we list certain important relations concerning the cube roots 1, w and w2  of unity.

Relations Concerning the Cube Roots of Unity

Let w ¹ 1 be a cube root of unity. The following relations hold good. Here x is any real or complex variable.

1. 1 2 2+ + = - -x x x w x w( )( )

2. 1 2 2- + = + +x x x w x w( )( )

3. x xy y x yw x yw2 2 2+ + = - -( )( )

4. x xy y x yw x yw2 2 2- + = + +( )( )

5. x y x y x yw x yw3 3 2+ = + + +( )( )( )

6. x y x y x yw x yw3 3 2- = - - -( )( )( )

7. x y z xy yz zx x yw zw x yw zw2 2 2 2 2+ + - - - = + + + +( )( )

8. x y z xyz x y z x yw zw x yw zw3 3 3 2 23+ + - = + + + + +( )( )( )+

If a b g, and  are roots of x x x3 23 3 7 0- + + = , then find 
the value of 

a
b

b
g

g
a

-
-

+
-
-

+
-
-

1

1

1

1

1

1

in terms of a cube root of unity.

Solution: The given equation x x x3 23 3 7 0- + + =  can 
be expressed as

( )x - + =1 8 03

That is, 

( ) ( )x

x

- = -

-
-

=

1 2

1

2
1

3 3

3
æ
èç

ö
ø÷

x
w w

-
-

=
1

2
1 2, ,

which are the cube roots of unity. Therefore -1, 1 - 2w, 
1 - 2w2 are the roots of the given equation. Let a = -1, 
b = 1 - 2w and g  = 1 - 2w2. Then a - 1 = -2, b - 1 = -2w 
and g  - 1 = -2w2.  Hence

a
b

b
g

g
a

-
-

+
-
-

+
-
-

=
-

-
+

-
-

+
-

-

= + +

= + +

1

1

1

1

1

1

2

2

2

2

2

2

1 1

2

2

2

2 2

w
w
w

w

w w
w

w w w22 23= w

Example     3.27  

QUICK LOOK 10

1. 1 02+ + =w w

2. w w w w wn n n3 3 1 3 2 21= = =+ +, and  for any integer n

3. w w= 2

4. ( )w w2 =

5.  The values 1, w, w2  represent the vertices of an equi-
lateral triangle inscribed in a circle of radius 1 with 
center at z = 0, one vertex being on positive real axis.

6. For any real numbers a, b and c,

a bw cw a b c+ + = Û = =2 0
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Properties of nth Roots of Unity

Let n be a positive integer and

a
p p

= +cos sin
2 2

n
i

n

Then all the properties in “Quick Look 11” hold.

Example     3.28  

If 1 2 1, , , ,w w wn… -  are all the nth roots of unity, find the 
value of the product

( )( ) ( )5 5 52 1- - - -w w wn	

Solution: The polynomial xn - 1 has n roots, namely 
1 2 1, , , ,w w wn… -  and hence

x x x w x w x wn n- = - - - - -1 1 2 1( )( )( ) ( )	

Therefore

x
x

x w x w x w
n

n-
-

= - - - -1

1

2 1( )( ) ( )	

This is true for all numbers x ¹ 1. Substituting x = 5, we 
get that

( )( ) ( )5 5 5
5 1

4

2 1- - - =
--w w wn

n

	

3.6 | Algebraic Equations

Most gratifying fact about complex numbers is that any polynomial (algebraic) equation with complex numbers as 
coefficients has a solution. We will discuss the same in this section.

DEFINITION 3.13  Let f z a a z a z a z a a a an
n

n n( ) = + + + + ¹0 1 2

2

0 10	 …, , , ,and  complex numbers. Then

f(z) = 0

is called an algebraic equation of degree n. Any algebraic equation of degree 2 is called a 
quadratic equation. A complex number z0 is called a solution or root of the equation f(z) = 0 if 
f(z0) = 0; that is,

a a z a z a zn
n

0 1 0 2 0

2

0 0+ + + + =	

QUICK LOOK 11

1. 1 2 1, , , ,a a a… n-  are all the nth roots of unity and

a
p pr

n
r i

n
r r n= + £ <cos sin

2 2
0

æ
èç

ö
ø÷

æ
èç

ö
ø÷

for

2. 1
1

1

1 2 2

1

2 1+ + + + =
-
-

=
- +

-

-a a a
a
a

p p
a

	 n
n

i[cos( ) sin( )]

  and therefore

1 02 1+ + + + =-a a a	 n

3.  The summation

a r

r

n

=
=

-

0
0

1

å

  and hence

cos sin
2 2

0
0

1 p p
n r i n r

r

n æ
èç

ö
ø÷

é
ëê

æ
èç

ö
ø÷

ù
ûú

å + =
=

-

  and therefore

cos sin
2

0
2

00

1 p p
n r n r

r

n

r

n æ
èç

ö
ø÷

æ
èç

ö
ø÷åå = =

==

-

 4.  The terms 1 2 1, , , ,a a a… n-  represent the vertices of a 
regular n-gon inscribed in the unit circle with center 
at the origin, one vertex being on the positive real 
axis.
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The general form of an algebraic equation of the first degree is

a a z a0 1 10 0+ = ¹,

Such an equation possesses exactly one solution z0 = -a0/a1. An equation of the second degree is generally written as

a a z a z a0 1 2

2

20 0+ + = ¹,

To solve this, we transform the equation as follows:

a z
a
a z

a
a

a z
a
a

a
a

a
a

2

2 1

2

0

2

2
1

2

2

0

2

1

2

2

2

0

2 4

+ + =

+ + -

æ
èç

ö
ø÷

æ
èç

ö
ø÷

é

ë
ê
ê

ù

û
úú
ú

æ
èç

ö
ø÷

é

ë
ê
ê

ù

û
ú
ú

=

+ -
-

=

0

2

4

4
02

1

2

2

1

2

0 2

2

2
a z

a
a

a a a

a

and find the roots of

z
a
a

a a a

a
+ =

-1

2

2

1

2

0 2

22

4

4

æ
èç

ö
ø÷

as

z
a
a

a a a

a
=

-
+

-
1

2

1

2

0 2

22

4

2

that is,

z
a D

a
=

- +1

22

where D a a a= -1

2

0 24 . D is called the discriminant of the equation a0 + a1z + a2z
2 = 0. D  is to be understood as all the 

values of the square root of D. The formula

z
a D

a
=

- +1

22

for the roots of a quadratic equation has the same form as in the case when the coefficients of the equation are real 
numbers and the solutions are thought in the set of real numbers. But in as much as in the set of complex numbers the 
operation of extracting a square root is meaningful for any complex number, the restriction D > 0 becomes superflu-
ous. Moreover, the restriction loses sense since the discriminant D may prove to be not a real number, and the concepts 
of “greater than” and “less than” are not defined for such numbers. Thus, in the set of complex numbers, any quadratic 
equation is always solvable. If the discriminant D is zero, then the equation has one root. If D ¹ 0, the equation has two 
roots that are given by the formula

QUICK LOOK 12

1.  2 0+ + =i z  is an algebraic equation of degree 1 and 
z0 = -2 -i is the only root of this.

2.  z2 - 1 = 0 is an algebraic equation of degree 2 and z0 = 1 

and z1 = -1 are the roots of the equation z2 - 1 = 0.

3.  i iz z z+ + + =2 3 5 0 is an algebraic equation of degree 
5 and z0 = i is a root of this equation.

4.  32 1 07( )- + =i z iz  is an algebraic equation of degree 
7 and z0 = 0 is a root of this equation. In addition to 
z0 = 0, any root of the equation z i6 32 1= +( ) must be 
a root of the given equation and hence there must be 
six more roots for the given equation.
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z
a D

a0
1

22
=

- +

This is known as the standard formula for the roots of a quadratic equation.

Example     3.29  

Solve the equations:

(1) z z2 3 3 0+ + =
(2) z z iz i2 8 3 13 13 0- - + + =

Solution:

(1)  By the formula for the roots of a quadratic equation, 
the roots of z z2 3 3 0+ + =  are given by

z =
- + -

=
- + -3 9 12

2

3 3

2

Since - = ±3 3i , it follows that

z
i

z
i

1 2

3 3

2

3 3

2
=

- +
=

- -
and

 are the solutions of the equation z z2 3 3 0+ + = .

(2) The given equation can be written as

( ) ( )13 13 8 3 02+ + - - + =i i z z

 By the standard formula for the roots of a quadratic 
equation, we get that

z
i i i i i

=
+ + + - +

=
+ + -8 3 8 3 4 13 13

2

8 3 3 4

2

2( ) ( )

  are the solutions of the given equation. To find all 
the values of 3 4- i , we can use the formula given 
in Eqs. (3.6a) and (3.6b). But another technique is 
much simpler. Let us put

3 4- = +i x iy

  Then 3 4 22 2- = - +i x y i xy( ) and therefore

x y xy2 2 3 2- = = -and

  x and y being real numbers. This system of simultane-
ous equations has two real solutions, x = 2, y = -1 and 
x = -2, y = 1. Therefore

3 4 2 2- = - - +i i ior

  Thus,

z
i i

i1

8 3 2

2
5=

+ + -
= +

  and z
i i

i2

8 3 2

2
3 2=

+ - +
= +

  are the solutions of the given quadratic equation.

Solving algebraic equations of degree n > 2 is much more difficult. However, the great German mathematician 
Carl Gauss proved the following celebrated theorem in 1799. In view of its importance and in honor of Gauss, the 
theorem is named after Gauss and is popularly known as the Fundamental Theorem of Algebra. Its proof is beyond 
the scope of this book and hence not given here.

Fundamental Theorem of Algebra

Every algebraic equation has atleast one root in the set of complex numbers.

The following theorem is an important consequence of the fundamental theorem of algebra.

THEOREM 3.16

PROOF

Every algebraic equation of degree n has exactly n roots, including the repeatitions (multiplicities) 
of the roots, in the set of complex numbers.

Let

f z a a z a z a z an
n

n( ) = + + + + ¹0 1 2

2 0	 ,

where a a a an0 1 2, , , ,…  are all complex numbers. Then f(z) = 0 is an algebraic equation of degree n. 
It can be proved that, for any complex number w,

f z z w g z( ) ( ) ( )= -
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for some polynomial g(z) with complex coefficients if and only if w is a root of the equation 
f(z) = 0; that is, f(w) = 0. This, together with the fundamental theorem of algebra, gives us that

f z a z z z z z zn
r r

k
rk( ) ( ) ( ) ( )= - - -1 2

1 2 	

where z1, z2, ¼, zk are distinct complex numbers and r1, r2, ¼, rk are positive integers such that

r r r nk1 2+ + + =	

Therefore, if follows that z1, z2, ¼, zk are all the distinct roots of the equation f(z) = 0. Here we
say that zi is a root of multiplicity ri. If we agree to count the root of the equation as many 
times as is its multiplicity, then we get that the equation f(z) = 0 has r r r nk1 2+ + + =	 ( )  roots in
the set of complex numbers. ■

Theorem 3.16 and the fundamental theorem of algebra are both typical theorems of existence. They both present 
a comprehensive solution of the problem on the existence of roots of an arbitrary algebraic equation; but, unfortu-
nately they do not say how to find these roots. The root of the first-degree equation

a a z0 1 0+ =

is determined by the formula

z
a

a
= - 0

1

and the roots of the second-degree equation

a a z a z0 1 2

2 0+ + =

are determined by the formula

z
a D

a
=

- +1

22

where D is the determinant defined by

D a a a= -1

2

0 24

The analogous formulae for the roots of third- and fourth-degree equations are so cumbersome that they are avoided. 
There is no general method for finding the roots of algebraic equations of degree greater than 4. The absence of a 
general method does not prevent us, of course, from finding all the roots in certain special cases, depending on the 
specific nature of the equation. For example, in Theorem 3.14, we discussed a method to find all the roots of the 
equation

a a zn
n

0 0+ =

The following theorem often helps us in solving algebraic equations with integral coefficients.

THEOREM 3.17

PROOF

Let f z a a z a z a z an
n

n( ) = + + + + ¹0 1 2

2 0	 , , where a0, a1, a2, ¼, an are all integers. If k is an integer 
and is a root of f(z) = 0, then k is a divisor of a0.

Let k be an integer and f(k) = 0. That is, a a k a k a kn
n

0 1 2

2 0+ + + + =	 , and hence a0 = k(-a1 - 
a2k - 	 - ank

n-1). Since k and a1, a2, ¼, an are integers, so is - - - - -a a k a kn
n

1 2

1	 . Therefore k is a 
divisor of a0. ■

Example     3.30  

Solve the equation

z z3 6 0- - =

Solution: Note that all the coefficients are integers. By 
considering the divisors of the constant term -6 and by
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using Theorem 3.17, we get that 2 is the only integral root 
of z3 - z - 6 = 0. By the usual division of z3 - z - 6 by 
z - 2, we get that

( )( )z z z z z- + + = - -2 2 3 62 3

Therefore, the roots of z3 - z - 6 = 0 are precisely the 
roots of z z2 2 3 0 2+ + = and . The roots of z z2 2 3 0+ + =  

are

- ± -2 4 12

2

Thus, z z i z i1 2 32 1 2 1 2= = - + = - -, and  are all the 
roots of the equation z3 - z - 6 = 0.

Example     3.31  

Solve the equation 

72 36 26 13 2 02 3 4 5- - + + - =z z z z z

Solution: Let f (z) = 72 - 36z - 26z2 + 13z3 + 2z4 - z5. Note 
that all the coefficients are integers. Consider the  constant 
term 72. Testing the divisors of the constant term 72, we find 
that z1 = 2 and z2 = -2 are roots of the given  equation. By 
dividing f z z z z( ) ( )( )with - + = -2 2 42 , we get that

f z z z z z( ) ( )( )= - - + + -2 2 34 18 9 2

Again –3 and 3 are roots of - + + -18 9 2 2 3z z z  and 
- + + - = - -18 9 2 9 22 3 2z z z z z( )( ). Therefore,

f z z z z z z

z z z z

( ) ( )( )( )( )( )

( ) ( )( )( )

= - + - + -

= - + - +

2 2 3 3 2

2 2 3 32

Thus the roots of f z( ) = - -0 3 3 2 2are and, ,  and the 
root 2 is of multiplicity 2.

1. If

3

2

+
=

+
-

i a i
a i

and a is a real number, then a is

(A) 1/2 + 3  (B) 1/2 - 4 3

(C) 2 - 3  (D) 1/2 - 3

Solution: The equation

3

2

+
=

+i a i
a i-

implies that

( )( )3 2 2+ - = +i a i a i

that is, a i i( ) ( )3 2 3 2 1- + = + - . Therefore

a
i

i

i i

i i

=
+ -
- +

=
+ - - -
- + - -

=
-

( )

[( ) ][( ) ]

[( ) ][( ) ]

(

3 2 1

3 2

3 2 1 3 2

3 2 3 2

3 4))

( )

i i- + + + +
- +

3 2 3 2

3 2 12

=
-

=
-

4

8 4 3

1

2 3

 Answer: (D)

2. If z1, z2 are complex numbers such that Re( )z z1 1 2= -| |,

Re( ) | | arg ( ) / Im( )z z z z z z2 2 1 2 1 22 3= - - = - =and thenp ,

(A) 2 3/  (B) 4 3/  (C) 2 3  (D) 3

Solution: Let z x iy z x iy1 1 1 2 2 2= + = +and . Then

x x y x x y1

2

1

2

1

2

2

2

2

2

2

22 2= - + = - +( ) ( )and

Therefore

4 4 4 41 1

2

2 2

2x y x y= + = +and

On subtraction we get

4 1 2 1

2

2

2

1 2 1 2( ) ( )( )x x y y y y y y- = - = + -

Hence

 y y
x x
y y1 2

1 2

1 2

4
+ =

-
-

( )
 (3.7)

Also arg ( )z z1 2 3- = p / . Therefore

tan
p
3

1 2

1 2

=
-
-

y y
x x

 3 1 2

1 2

=
-
-

y y
x x

 (3.8)

   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions



Worked-Out Problems 141

From (3.7) and (3.8), we have

Im( )z z y y1 2 1 2

4

3
+ = + =

 Answer: (B)

3. The smallest positive integer n for which [(1 + i)/
(1 - i)]n = 1 is

(A) 2 (B) 4 (C) 6 (D) 7

Solution: We have

1

1

1

2
1 4 8 12

2+
-

=
+

= = =
i
i

i
i i nn( )

and for , , ,…

Therefore, the smallest positive integer n for which

1

1
1 4

+
-

=
i
i

n
æ
èç

ö
ø÷

is

 Answer: (B)

4. Let C be the set of all complex numbers and

R z z C C
z z
z z

= Î ´
-
+

( )1 2
1 2

1 2

, : is real
ì
í
î

ü
ý
þ

Then, on C, R is a

(A) reflexive relation (B) symmetric relation

(C) transitive relation (D) equivalence relation

Solution: Since (0, 0) ÏR R,  is not reflexive, we have

( )

( )

z z R
z z
z z

z z
z z

z z R

1 2
1 2

1 2

2 1

1 2

2 1

,

,

Î Þ
-
+

Þ
-
+

Þ Î

is real

is real

Therefore R is symmetric.
Since (0, z) Î R  and (z, 0) Î R, but (0, 0) Ï R, there-

fore R is not transitive. Hence R is not an equivalence 
relation.

 Answer: (B)

5. If z x iy= +  is such that z z- < -4 2 , then

(A) x > 0, y > 0

(B) x < 0, y > 0

(C) x > 2, y > 3

(D) x > 3 and y is any real number

Solution: We have

z z z z

x y x y

- < - Û - < -

Û - + < - +

4 2 4 2

4 2

2 2

2 2 2 2( ) ( )

Û <

Û <

12 4

3

x

x

 Answer: (D)

6. If

x iy
i

+ =
+ +

3

2 cos sinq q

then x2 + y2 =
(A) 4x - 3 (B) 3x - 4 (C) 4x + 3 (D) 3x + 4

Solution:

x iy
i

i

+ =
+ -

+ +

=
+ + -

+

3 2

2

3 2 3

5 4

2 2

( cos sin )

( cos ) sin

( cos ) ( sin )

q q
q q

q q
ccosq

Comparing the real and imaginary parts we get

x y=
+

+
=

-
+

3 2

5 4

3

5 4

( cos )

cos

sin

cos

q
q

q
q

,

Squaring and adding values of x and y, we get

x y2 2
2 2

2

2

9 2 9

5 4

9 5 4

5 4

9

5

+ =
+ +

+

=
+

+
=

+

( cos ) sin

( cos )

( cos )

( cos )

q q
q

q
q 44cosq

Also

4 3
12 2

5 4
3

9

5 4
x - =

+
+

- =
+

( cos )

cos cos

q
q q

Therefore

x y x2 2 4 3+ = -

 Answer: (A)

7. If

x iy
i
i

+ =
+

+
3

1 3

then ( )x y2 2 2+  equals

(A) 0 (B) 2 (C) 3 (D) 1

Solution:

x y ixy
i
i

i i2 2 2
3

1 3

3 1 3

1 9
- + =

+
+

=
+ -

+
( )( )

Comparing the real and imaginary parts we get

x y xy2 2 6

10
2

8

10
- = =

-
and
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Now

( ) ( )x y x y x y2 2 2 2 2 2 2 2

2 2

4

6

10

8

10

9

25

16

25
1

+ = - +

= +
-

= + =æ
èç

ö
ø÷

æ
èç

ö
ø÷

 Answer: (D)

 8.  If a is a positive real number, z a i= + 2  and z| z | -
az + =1 0, then

(A) z is pure imaginary

(B) a2 = 2

(C) a2 = 4

(D) no such complex number exists

Solution:

z z az

a i a a a i

a ai

| |

( ) ( )

- + =

+ + = + -

= - +

1 0

2 4 2 1

1 2

2

2

This implies

a a a a a2 2 24 1 4 2+ = - + =and 2

which gives a a2 2 1= - , which is absurd.

 Answer: (D)

 9.  If | z1 + z2 | = | z1| + | z2 |, then one of the values of 
arg(z2/z1) is

(A) 0 (B) p  (C) p/2 (D) 3p

Solution: If z z z z1 2 1 2+ = + , then z1, z2 and origin 
are collinear and z1, z2 lie on same side to origin and 
hence arg(z2/z1) = 2np. Then 0 is one of the values of 
arg(z2/z1).

 Answer: (A)
Alternate Method:
Let z1 = r1(cosq1 + i sinq1) and z2 = r2(cosq2 + i sinq2). Then

z z z z1 2 1 2+ = +  implies

( cos cos ) ( sin sin ) ( )r r r r r r1 1 2 2

2

1 1 2 2

2

1 2

2q q q q+ + + = +

That is

cos( )q q1 2 1- =

Therefore

q q p1 2 2- = n

10. If w is a cube root of unity and w ¹ 1, then

cos ( )( )k w k w
k

- - 2

1

10

450

p
=

åæ
èç

ö
ø÷

is equal to

(A) 1 (B) –1 (C) 0 (D) 1/2

Solution: We have

( )( )k w k w k k- - = + +2 2 1

Therefore

cos ( )( ) cos ( )k w k w k k
k k

- - = + +
=

2

1

10
2

1

10

450
1

450

p p
=

å åæ
èç

ö
ø÷

æ
èç

ö
ø÷

== ×

= = -

cos

cos

450
450

1

p

p

æ
èç

ö
ø÷

 Answer: (B)

11.  If a = - +1 3i  and n is a positive integer which is 
not a multiple of 3, then

a a2 22 2n n n n+ + =

(A) 1 (B) −1 (C) 0 (D) a2

Solution: We have

a a
a a2 2 2

2

2 2

2 2 2
2 2

1

2

n n n n n
n n

n n nw w

+ + = + +

= +

æ
èç

ö
ø÷

æ
èç

ö
ø÷

é

ë
ê
ê

ù

û
ú
ú

+( 11
2

1

2

3

2 2
1

2 0 0

3

2

)

( ) (

∵
a a

= +

=

- æ
èç

ö
ø÷

=
é

ë
ê
ê

ù

û
ú
ú

=

i

n

and

since 3 does nnot divide )n

 Answer: (C)

12. If arg( ) 0 then arg( ) argz z z< - - =, ( )

(A) p  (B) -p  (C) p/2 (D) -p/2

Solution: Let arg (z) = q < 0. Then -p < q < 0 and there-
fore 0 < q + p < p. Hence

arg( )

arg( ) arg( )

- = +

- - =

z

z z

p q

p
 Answer: (A)

13. Let w ¹ 1 be a cube root of unity and

E w w w w

w w

n nw

= + + + + +

+ + + +

+ + +

2 1 1 3 2 1 2 1

4 3 1 3 1

1 1

2 2

2

( )( ) ( )( )

( )( )

( )( )

	

(( )nw2 1+

Then E is equal to

(A) 
n n2 21

4

( )+
 (B) 

n n
n

2 21

4

( )+
+

(C) 
n n

n
2 21

4

( )+
-  (D) 

n n
n

2 21

4
1

( )
( )

+
- +
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Solution: We have

( )( )( ) ( )( )k kw kw k k k k+ + + = + - + = +1 1 1 1 1 12 2 3

Therefore,

E k k n
n n

n
k

n

k

n

= + = + =
+

+
= =

( )
( )3

1

3

1

2 2

1
1

4
å å

 Answer: (B)

14.  If z i- + £3 2 4, then the absolute difference between 
the maximum and minimum values of | z | is

(A) 2 11  (B) 3 11  (C) 2 13  (D) 3 13

Solution: Let C i= -3 2  be the center of the circle 
z i- + =3 2 4. Join the origin to C and let it meet the 
circle in A and B (see figure). 

Least value of | |z OB

CB OC

=

= -

= - +

= -

4 3 2

4 13

2 2

Maximum value of | |z OA= = +4 13

The absolute difference between the maximum and 
minimum values of | z | is 2 13.

B

C

A

3
O 2

 Answer: (C)

15.  If z1, z2 and z3 represent the vertices of a triangle 
whose circumcenter is at the origin, then the complex 
number representing the orthocenter of the triangle is

(A) 
1 1 1

1 2 3z z z+ +  (B) z z z1 2 3+ +

(C) 
1 1 1

1 2 2 3 3 1z z z z z z+ +  (D) z z z z z z1 2 2 3 3 1+ +

Solution: It is known that every complex number can 
be represented by means of a vector in the Argand’s 
plane. If A and B represent the complex numbers z1 
and z2, respectively, then the vector AB

� ����
 represents the 

 complex number z z2 1- . (These matters will be discussed 
in detail later in Volume II) Correspondingly, if 

� � �
a b c, ,  

are the position vectors of the points A z B z C z( ) ( ) ( )1 2 3, , , 

then the orthocenter of the triangle ABC is represented 

by a b c
� � �

+ +  and hence by z z z1 2 3+ + . Note that the origin 
is the circumcenter.

 Answer: (B)

16.  If z1, z2 and z3 are the vertices of an equilateral triangle 

and z0 be its orthocenter, then z z z kz1

2

2

2

3

2

0

2+ + = , where 
k is equal to

(A) 3 (B) 2 (C) 6 (D) 9

Solution: In an equilateral triangle, the circumcenter, 
the centroid and the orthocenter are one and the same 
point. Therefore

z
z z z

z z z z z z z z z z z

z z z

0
1 2 3

0

2

1

2

2

2

3

2

1 2 2 3 3 1

1

2

2

2

3

9

3

= + +

= + + + + +

= + +

( )

( 33

2)

[since z z z z z1

2

2

2

3

2

1 2+ + = å  (by Problem 7 of Multiple 
 Correct Choice Type Questions in Worked-Out Problems 
section)]. Therefore

z z z z k1

2

2

2

3

2

0

23 3+ + = =and

 Answer: (A)

17.  Let z1 = 10 + 6i and z2 = 4 + 6i. If z is any complex 
number such that the argument of (z - z1)/(z - z2) is 
p/4, then | |z i- -7 9  is equal to

(A) 2 3  (B) 3 2  (C) 3 (D) 2

Solution: Let z x iy x y= + Î, , .�  Then z z x- = - +1 10( )    

i y z z x i y( ) ( ) ( )- - = - + -6 4 62and . Therefore

z z
z z

x i y
x i y

x i y x i

-
-

= - + -
- + -

= - + - - -

1

2

10 6

4 6

10 6 4

( ) ( )

( ) ( )

[( ) ( )][( ) (( )]

( ) ( )

y
x y

-
- + -

6

4 62 2

Therefore

Real part of
z z
z z

x x y
x y

-
-

=
- - + -

- + -
1

2

2

2 2

10 4 6

4 6

( )( ) ( )

( ) ( )

Imaginary part of
z z
z z

x y x y
x y

-
-

= - - - - -
- + -

1

2

2

4 6 10 6

4 6

( )( ) ( )( )

( ) ( )22

2 2

6 6

4 6
= -

- + -
( )

( ) ( )

y
x y

Now,

p
4

6 6

10 4 6
1

2

1

2
=

-
-

=
-

- - + -
-arg

z z
z z

y
x x y

æ
èç

ö
ø÷

é

ë
ê

ù

û
útan

( )

( )( ) ( )
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Therefore

( )( ) ( ) ( )x x y y

x y x y

- - + - = -

+ - - + =

10 4 6 6 6

14 18 112 0

2

2 2

Now,

| | ( ) ( )z i x y

x x y y

- 7 9 7 9

14 18 130

112 130 18

2 2 2

2 2

- = - + -

= - + - +
= - + =

Therefore

| |z i- - = =7 9 18 3 2

 Answer: (B)

18.  If x = cos a + i sin a and y = cos b + i sin b, then(x − y)/
(x + y) is equal to

(A) i tan
a b-æ

èç
ö
ø÷2

 (B) -
-æ

èç
ö
ø÷

i tan
a b

2

(C) i tan
a b+æ

èç
ö
ø÷2

 (D) -
+æ

èç
ö
ø÷

i tan
a b

2

Solution: We know that

x y
x y

i
i

-
+

=
- + -
+ + +

=

-

(cos cos ) (sin sin )

(cos cos ) (sin sin )

a b a b
a b a b

2 ssin[( )/ ]sin[( )/ ]

cos[( )/ ]sin[( )/ ]

cos[(

a b a b
a b a b

+ -
+ + -

2 2

2 2 2

2

i
aa b a b

a b a b

a b

+ -
+ + -

=
-

)/ ]cos[( )/ ]

sin[( )/ ]cos[( )/ ]

sin[( )

2 2

2 2 2i

i // ]{cos[( )/ ] sin[( )/ ]}

cos[( )/ ]{cos[( )/ ]

2 2 2

2 2

a b a b
a b a b

+ + +
- + +

i
ii

i

sin[( )/ ]}

tan

a b

a b

+

=
-æ

èç
ö
ø÷

2

2

 Answer: (A)

19.  If | z1 - 1 | < 1, | z2 - 2 | < 2 and | z3 - 3 | < 3, then | z1 + 
z2 + z3 |

(A) is less than 6 (B) is greater than 6

(C) is less than 12 (D) lies between 6 and 12

Solution: We have

 

| | | |z z z z z z

z z z

z

1 2 3 1 2 3

1 2 3

1

6 6 6 6

1 2 3 6

+ + - + £ + + - +
= - + - + - +
£

|( ) ( ) ( )|

| -- + - + - +
< + + + =

1 2 3 6

1 2 3 6 12

2 3| | | | |z z

 Answer: (C)

20. If x2 + x + 1 = 0 then the value of

x
x

x
x

x
x

x
x

+æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

+ + +æ
èç

ö
ø÷

1 1 1 1
2

2

2

2

3

3

2

27

27

2

	  is

(A) 27 (B) 18 (C) 54 (D) -27

Solution: x2 + x + 1 = 0 Þ x is a non-real cube root of 
unity. Let x = w ¹ 1 be a cube root of unity. Then w3 = 1 
and 1 + w + w2 = 0. The given equation, thus, becomes

w
w

w
w

w
w

w
w

w

+æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

=

1 1 1 1
2

2

2

2

3

3

2

27

27

2

	

22 2 4 2

2

2

2

1 1
1 1

1

1 1

9

+æ
èç

ö
ø÷

+
+æ

èç
ö
ø÷

+ + + +æ
èç

ö
ø÷

+

+ +( )

=
-

w
w

w
w

w

w
w

( ) 	

ææ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

+ +
é

ë
ê
ê

ù

û
ú
ú

= + + =

2 2

2

2

21 1

9 1 1 4 54

w
w

( )

( )

 Answer: (C)

21.  If z is a complex number and i = -1, then the 
 minimum possible value of | | | | | |z z z i2 2 23 6+ - + -  is

(A) 15 (B) 30 (C) 20 (D) 45

Solution: Let z = x + iy. Then

| | | | | | ( ) ( )

( )

z z z i x y y y x y

x y x

2 2 2 2 2 2 2 2 2

2 2

3 6 3 6

3 6

+ - + - = + + - + + + -

= + - - 112 45

3 1 2 30 302 2

y

x y

+

= - + - + ³[( ) ( ) ]

(equality holds when z = 1 + 2i). Therefore, the minimum 
value is 30.
 Answer: (B)

22.  The curve in the complex plane given by the equa-
tion Re(1/z) = 1/4 is a

(A) vertical line intersecting with the x-axis at (4, 0)

(B) a circle with radius 2 and centre at (2, 0)

(C) circle with unit radius

(D) straight line not passing through the origin

Solution: Let z = x + iy, where x and y are reals. Then

Re Re

(

1 1

4

1

4

1

4

4

2

2 2

2 2

2 2

z
x iy

x y

x
x y

x y x

x

æ
èç

ö
ø÷

= Þ
-
+

æ
èç

ö
ø÷

=

Þ
+

=

Þ + =

Þ - ))2 2 24 2+ = =y

This is the equation of the circle with radius 2 and center 
at (2, 0).

 Answer: (B)

23.  The origin and the points represented by the roots of 
the equation z mz n2 0+ + =  form the vertices of an 
equilateral triangle if and only if
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(A) m n2 3=  (B) n m2 3=
(C) 3 2m n=  (D) 3 2n m=

Solution: The points z1, z2 and z3 are the vertices of an 
equilateral triangle if and only if

z z z z z z z z z1

2

2

2

3

2

1 2 2 3 3 1+ + = + +

(see Problem 7 of Multiple Correct Choice Type Questions 
in Worked-Out Problems section). Let z1 and z2 be the 
roots of z mz n2 0+ + = . Therefore z z m z z n1 2 1 2+ = - =, . 
Now z1, z2 and the origin form an equilateral triangle if 
and only if 

z z z z

z z z z

m n

1

2

2

2

1 2

1 2

2

1 2

2

3

3

+ =

Û + =

Û - =

( )

( )

 Answer: (A)

24.  Let z = x + iy, where x and y are real. The points
(x, y) in the plane, for which (z + i)/(z - i) is purely 
 imaginary, lie on

(A) a straight line

(B) a circle

(C) a curve whose equation is of the form

x
a

y
b

a b
2

2

2

2
1 1 1+ = ¹ ¹, ,

(D) a curve whose equation is of the form

x
a

y
b

2

2

2

2
1- =

Solution: We have

z i
z i

x i y
x i y

x i y x i y
x y

+
-

=
+ +
+ -

=
+ + - -

+ -

( )

( )

[ ( )][ ( )]

( )

1

1

1 1

12 2

This is pure imaginary if and only if

Re

( )

( )

z i
z i

x y
x y

x y

+
-

æ
èç

ö
ø÷

=

Û
+ -
+ -

=

Û + =

0

1

1
0

1

2 2

2 2

2 2

Therefore (x, y) lie on the circle | z | = 1.

 Answer: (B)

25. Let z1 and z2 be given by

z
i

i
z

i

i
1

10

2

10

2 5

2 5

2 5

2 5
=

+
-

æ

èç
ö

ø÷
=

-
+

æ

èç
ö

ø÷
and

Then | z1 + z2 | is equal to

(A) 2 20
2

3

1cos cos-æ
èç

ö
ø÷

 (B) 2 10
2

3

1sin cos-æ
èç

ö
ø÷

(C) 2 10
2

3

1cos cos-æ
èç

ö
ø÷

 (D) 2 20
2

3

1sin cos-æ
èç

ö
ø÷

Solution: Adding the two we get

z z
i i

1 2

20 20

10

2 5 2 5

9
+ =

+ + -( ) ( )

Suppose 2 5+ = +i r i(cos sin ),q q  so that r = + =2 5 32 ,
r rcos sinq q= =2 5and . Therefore

cos sinq q= =
2

3

5

3
and

In this case

z z r i

i

r

1 2 10

20

20

1

9
20 20

20 20

+ = +

+ -

=

[ {cos( ) sin( )

cos( ) sin( )}]

q q

q q

99
2 20

3

9
2 20

2

3

2 20
2

10

20

10

1

1

cos( ) cos cos

cos cos

q = æ
èç

ö
ø÷

é
ëê

ù
ûú

=

-

-

33

æ
èç

ö
ø÷

é
ëê

ù
ûú

 Answer: (A)

26.  If (1 + z)n = a0 + a1z + a2z
2 + 	 + anz

n, where a0, a1, 
a2, …, an, are real, then

( ) ( )a a a a a a a a0 2 4 6

2

1 3 5 7

2- + - + + - + - + =	 	

(A) 2n (B) a a a an0

2

1

2

2

2 2+ + + +	
(C) 2

2n  (D) 2 2n

Solution: Substitute z = i on both sides. Then

( ) ( ) ( )1 0 2 4 6 1 3 5 7+ = - + - + + - + - +i a a a a i a a a an 	 	

Therefore

| | ( ) ( )

(

1

2

2

0 2 4 6

2

4 3 5 7

2

0 2 4 6

+ = - + - + + - + - +

= - + - +

i a a a a a a a a

a a a a

n

n

	 	

	)) ( )2

1 3 5 7

2+ - + - +a a a a 	

 Answer: (A)

27.  Let z1 and z2 be roots of the equation z2 + pz + q = 0, 
where p, q may be complex numbers. Let A and B
represent z1 and z2 in the complex plane. If ÐAOB = a ¹ 0 
and OA = OB, where O is the origin, then

(A) p q2 24
2

= æ
èç

ö
ø÷

cos
a

 (B) p q2 24
2

= æ
èç

ö
ø÷

sin
a

(C) p q2 24
2

= - æ
èç

ö
ø÷

cos
a

 (D) q p2 24
2

= æ
èç

ö
ø÷

sin
a

Solution: z1 and z2 are roots of z2 + pz + q = 0. This 
implies z1 + z2 = -p and z1z2 = q. Now
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z
z

OB
OA

i2

1

0

0

-
-

= +(cos sin )a a

y

B(z2)

A(z1)

x
O

a

Therefore

z
z

i

z z
z

i

2

1

2 1

1

1

= +

-
= - + +

cos sin

cos sin

a a

a a

This gives

( ) sin sin cos

sin

z z z i

z i

2 1

2

1

2 2

2

1

2

2

2
2

2
2 2

2
2

- = - +é
ëê

ù
ûú

= æ
èç

ö
ø÷

a a a

a
ccos sin

sin (cos sin )

sin

a a

a
a a

2 2

4
2

4

2

1

2 2

1

2 2

1

2

+é
ëê

ù
ûú

= - +

= -

i

z i

z
z
z

aa a
2

4
2

2= - qsin

Hence,

p z z z z z z

q q

q

2

1 2

2

1 2

2

1 2

2

2

4

4
2

4

4 1
2

4

= + = - +

= - +

= -æ
èç

ö
ø÷

=

( ) ( )

sin

sin

a

a
qqcos2

2

aæ
èç

ö
ø÷

 Answer: (A)

28.  The continued product of all the four values of the 
complex number ( ) /1 3 4+ i is

(A) 23(1 + i) (B) 2(1 - i)

(C) 2(1 + i) (D) 23(1 - i)

Solution: Let

z i i= + = +æ
èç

ö
ø÷

1 2
4 4

cos sin
p p

Therefore

z k i k3 4 3 82 2
4

3

4
2

4

3

4

/ / cos sin= +æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

é
ëê

ù
ûú

p
p

p
p

for k = 0, 1, 2, 3. The product of the values of this is equal 
to

2
4

9

4

17

4

25

4

3

4
2

52

4

3

4

3 2 3 2/ /cis cis
p p p p p

+ + +æ
èç

ö
ø÷

é
ëê

ù
ûú

= ×æ
èç

ö
ø÷

==

= +æ
èç

ö
ø÷

= -æ
èç

ö
ø÷

=

2
39

4

2 9
3

4

2 10
4

2

3 2

3 2

3 2

3 2

/

/

/

/

cis

cis

cis

p

p
p

p
p

ccos sin

cos sin/

10
4

10
4

2
4 4

3 2

p
p

p
p

p p

-æ
èç

ö
ø÷

+ -æ
èç

ö
ø÷

é
ëê

ù
ûú

= -é
ë

i

iêê
ù
ûú

= -æ
èç

ö
ø÷

= -

2
1

2 2

2 1

3 2/

( )

i

i

 Answer: (B)

29.  If z1, z2 and z3 are the vertices of a right-angled isos-
celes triangle, right-angled at the vertex z2 (see 
figure), then z z z kz z z1

2

2

2

3

2

2 1 32+ + = +( ), where the value
of k is

(A) 0 (B) 1 (C) -2 (D) 2

90°

B(z2)

A(z1)

C(z3)

Solution: Let A, B and C represent z1, z2 and z3, respec-
tively, described in counterclock sense. Therefore

z z
z z

BA
BC

i

z z z z

1 2

3 2

1 2

2

3 2

2

2

-
-

= æ
èç

ö
ø÷ =

- = - -

cis
p

( ) ( )
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z z z z z z z z

z z z z z z
1

2

2

2

1 2 3

2

2

2

2 3

1

2

2

2

3

2

2 1 3

2 2

2 2

+ - = - - +

+ + = +( )

This gives k = 2.

 Answer: (D)

30.  Let z1, z2 and z3 be vertices of a triangle and | z1 | = a, 
| | | |z b z c2 3= =and  such that

a b c

b c a

c a b

= 0

Then

arg arg
z

z
k

z z

z z
3

2

3 1

2 1

æ
èç

ö
ø÷

=
-
-

æ
èç

ö
ø÷

where k is

(A) 0 (B) 1 (C) 2 (D) 3

Solution: We have

a b c

b c a

c a b

abc a b c

a b c abc

a b c a b

=

Þ - - - =

Þ + + - =

Þ + + + +

0

3 0

3 0

3 3 3

3 3 3

2 2( )( cc ab bc ca

a b c a b b c c a

2

2 2 2

0

1

2
0

- - - =

Þ + + - + - + - =

)

( ) (( ) ( ) ( ) )

Therefore (a - b)2 = 0 = (b - c)2 = (c - a)2 and hence  a = b = c 
(since a, b, c are positive). This implies that z1, z2 and z3 rep-
resent points on a circle with center at the origin. Suppose 
A, B and C represent z1, z2 and z3, respectively, described 
in counterclock sense (see figure). If Ð =BAC q ,  then 
Ð =BOC 2q. In such case

B(z2)

A(z1)

C(z3)

1

O

q

arg arg
z

z

z z

z z
3

2

3 1

2 1

2 2
æ
èç

ö
ø÷

= =
-
-

æ
èç

ö
ø÷

q

Therefore k = 2.

 Answer: (C)

31.  Let z i= -( / ) ( / ).3 2 2  Then the smallest positive 

integer n such that ( )z i zn95 67 94+ =  is

(A) 12 (B) 10 (C) 9 (D) 8

Solution: From the hypothesis we have

z
i

i
i

iw= - = - -
æ

èç
ö

ø÷
=

3

2 2

1

2

3

2

where w i= - -( / ) ( / )1 2 3 2  which is a cube root of unity. 

Now, z95 = (iw)95 = -iw2 (since w3 = 1) and i67 = i3 = -i. 
Therefore, 

z i i w i w iw

z i iw i w w

95 67 2

95 67 94 94 2

1+ = - + = - - =

+ = = = -

( ) ( )( )

( ) ( )

Now

- = =

Þ × = -

Þ = - =

-

w z iw

i w

n n

n n

n n

( )

, , , , , , ,

1 1

2 6 10 14 1 3 6 9… …and

Therefore n = 10 is the required least positive integer.

 Answer: (B)

32.  The number of complex numbers z satisfying the 
conditions |( / ) ( / )| , | |z z z z z+ = =1 1 and arg z Î(0, 2p) is

(A) 1 (B) 2 (C) 4 (D) 8

Solution: It is given that | z | = 1 which implies that z =
cosq + i sinq, 0 £ q < 2p :

z
z

z
z

+ =

Þ =

Þ = =
-

1

2 2 1

2
1

2
2

1

2

|cos |

cos cos

q

q qor

Now

cos , , ,2
1

2 6

5

6 6

11

6
q q

p p p p
= Þ =

7

and cos , , ,2
1

2 3 3

4

3

5

3
q q

p p p p
= - Þ =

2

 Answer: (D)
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Multiple Correct Answer Type Questions

1. The complex number z that satisfies simultaneously 
the equations is

z i
z i

z i
z i

-
-

=
- +

+
=

4

2
1

8 3

3

3

5
and

(A) 3 8+ i  (B) 8 3+ i  (C) 3 17+ i  (D) 17 3+ i

Solution:

z i
z i

z i z i
-
-

= Þ - = -
4

2
1 4 2| | | |

Therefore, the point representing z in the Argand’s plane 
is equidistant from the points (0, 2) and (0, 4). Hence, z 
lies on the line y = 3 and so

z x yi x i= + = + 3

Substituting z = x + 3i in the second equation, we get that 

x i i
x i i

x i
x i

+ - +
+ +

=

- +
+

=

3 8 3

3 3

3

5

8 6

6

3

5

Therefore

25 8 36 9 36

16 400 2176 0

25 136 0

8

2 2

2

2

[( ) ] ( )

( )(

x x

x x

x x

x x

- + = +

- + =

- + =

- - 117 0

8 17

)

,

=

=x

Hence

z i i= + +8 3 17 3,

 Answers: (B), (D)

2. If z1 and z2 are complex numbers such that | z1 + z2 |
2 =  

| | | | ,z z1

2

2

2+  then

(A) z z1 2  is pure imaginary (B) z z z z1 2 1 2 0+ =

(C) Arg
z
z

1

2 2

æ
èç

ö
ø÷

= ±
p

 (D) Arg
z
z

1

2 2

æ
èç

ö
ø÷

= ±
p

Solution:

| | | | | |

( )( )

z z z z

z z z z z z z z
1 2

2

1

2

2

2

1 2 1 2 1 1 2 2

+ = +
+ + = +

 z z z z1 2 2 1 0+ =

 
z
z

z
z

1

2

1

2
= -

æ
èç

ö
ø÷

z z z z1 2 1 2and /  are pure imaginary.

 Answers: (A), (B), (C), (D)

3. If z1 and z2 are two complex numbers, then

(A) 2 1

2

2

2

1 2

2

1 2

2(| | | | ) | | | |z z z z z z+ = + + -

(B) | | | | | | | |z z z z z z z z z z1 1

2

2

2

1 1

2

2

2

1 2 1 2+ - + - - = + + -

(C) 
z z

z z
z z

z z z z1 2
1 2

1 2
1 2 1 2

2 2

+ + + + - = +| | | |

(D) | | | | ( )z z z z z z z z1 2

2

1 2

2

1 2 1 22+ - - = +

Solution: | | ( )( )z z z z z z1 2

2

1 2 1 2+ = + +

= + + +| | | |z z z z z z1

2

2

2

1 2 1 2

and | | ( )( )z z z z z z1 2

2

1 2 1 2- = - -

Therefore

 | | | | (| | | | )z z z z z z1 2

2

1 2

2

1

2

2

22+ + - = +  (A is true)

 | | | | ( )z z z z z z z z1 2

2

1 2

2

1 2 1 22+ - - = +  (D is true)

Now

(| | | |)

| | | |

z z z z z z

z z z z z z

1 1

2

2

2

1 1

2

2

2 2

1 1

2

2

2 2

1 1

2

2

2 2 2

+ - + - -

= + - + - - + || ( )|z z z1

2

1

2

2

2- -

 = + - +2 21

2

1

2

2

2

2

2(| | | |) | |z z z z

 = + + -2 21

2

2

2

1

2

2

2(| | | | ) | |z z z z

 = + + - + + -| | | | | || |z z z z z z z z1 2

2

1 2

2

1 2 1 22

 = + + -(| | | |)z z z z1 2 1 2

2

Therefore

| | | | | | | |z z z z z z z z z z1 1

2

2

2

1 1

2

2

2

1 2 1 2+ - + - - = + + -

Hence (B) is true. Also

z z
z z

z z
z z

z z z z

z

1 2
1 2

1 2
1 2

1 2

2

1 2

2

1

2

2 2

1

2

1

2

1

2
2 2

+
+ +

+
-

+ + -

= +

= | | | |

[ | | | zz

z z

2

2

1 2

| ]

| | | |= +

Therefore (C) is true.

 Answers: (A), (B), (C), (D)
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4. If x and y are real numbers and 

( ) ( )1 2

3

2 3

3

+ -
+

+
- +

-
=

i x i
i

i y i
i

i

then

(A) x = 3 (B) y = 1 (C) y = -1 (D) x = -3

Solution: From the given equation, we get that

( )[( ) ] ( )[( ) ]3 1 2 3 2 3 10- + - + + - + =i i x i i i y i i

Therefore

4 2 2 6 9 1 3 7 10

4 9 3 2 7 13 0

4 9 3

x i x y i y i

x y x y i

x y

- + - + - + - =
+ - + - - =
+ =

( ) ( )

( )

annd 2 7 13x y- =

The two equations give x = 3  and y = -1.

 Answers: (A), (C)

5. The complex number(s) satisfying the equations

z
z i

z
z

-
-

=
-
-

=
12

8

5

3

4

8
1and is (are)

(A) 6 - 8i (B) 6 + 17i (C) 6 + 8i (D) 6 - 17i

Solution: Let z = x + iy

z
z

x y x y

x

-
-

=

- + = - +
=

4

8
1

4 8

6

2 2 2 2( ) ( )

Therefore

z = 6 + iy

Now

z
z i

y y

y y

y

-
-

=

+ = + -
- - =

=

12

8

5

3

9 36 25 36 8

8 17 0

8 17

2 2( ) [ ( ) ]

( )( )

,

Therefore

z = 6 + 8i, 6 + 17i

 Answers: (B), (C)

6. If x is a real number such that 0 2£ £x p  and

[ ( / ) ( / )]

( / )

sin cos tan

sin

x x i x
i x

2 2

1 2 2

+ +
+

is real, then the possible value(s) of x is (are)

(A) 0 (B) 2p (C) p /4 (D) 5p /4 

Solution: Let

[ ( / ) ( / )]

( / )

sin cos tan

sin

x x i x
i x

2 2

1 2 2

+ +
+

Then

z
x x i x i x

x
=

+ + -
+

[ ( / ) ( / ) ][ ( / )]

sin ( / )

sin cos tan sin2 2 1 2 2

1 4 22

Suppose that z is real. Then Im(z) = 0. Therefore

tan sin sin cos

sin sin cos s

x
x x x

x
x

x

- æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

é
ëê

ù
ûú

=

-

2
2 2 2

0

2
2

iin cos

sin sin cos sin cos

sin (

x x

x x x
x

x

x

2 2
0

2
2

0

1

2

+æ
èç

ö
ø÷

=

- - æ
èç

ö
ø÷

=

-- - - =

- - =

cos ) ( cos )cos

( cos )(sin cos )

x x x

x x x

1 0

1 0

cos tanx x= =1 1or

Therefore

 x n x n= = +2
4

p p
p

, ,  n is an integer

Since 0 2 0 4 2 5 4£ £ =x xp p p p, , / , , / .

 Answers: (A), (B), (C), (D)

7. If z1, z2 and z3 represent the vertices A, B and C, respec-
tively, of a triangle (see figure), then the triangle ABC 
is equilateral if and only if

(A) z z z z z z z z z1

2

2

2

3

2

1 2 2 3 3 1+ + = + +

(B) 
1 1 1

0
1 2 2 3 3 1z z z z z z-

+
-

+
-

=

(C) | |z z z1 2 3 3+ + =

(D) | |z z z z z z1 2 2 3 3 1 3+ + =

60°

A(z1)

60°
B(z2) C(z3)

Solution: Suppose that triangle ABC is equilateral. 
Then

z z

z z
i

z z
z z

i3 1

2 1

1 2

3 23 3 3 3

-
-

= +
-
-

= +cos sin cos sin
p p p p

and



Chapter 3  Complex Numbers150

Therefore

( )( ) ( )( )z z z z z z z z

z z z z z z z z z z z
3 1 3 2 2 1 1 2

3

2

3 2 1 3 1 2 2 1 2

2

- - = - -

- - + = - - 11

2

1 2

1

2

2

2

3

2

1 2 2 3 3 1

+

+ + = + +

z z

z z z z z z z z z

Conversely, suppose that

z z z z z z z z z1

2

2

2

3

2

1 2 2 3 3 1+ + = + +

Then,

z z z z z z z z z1 1 2 2 2 3 3 3 1 0( ) ( ) ( )- + - + - =

Therefore

z z z z z z z z z z z

z z z z z z
1 1 2 2 2 1 1 3 3 3 1

1 2

2

2 3 3

0( ) ( ) ( )

( ) ( )(

- + - + - + - =

- - - - 11 0) =

That is

( ) ( )( )

( ) ( )( )( )

z z z z z z

z z z z z z z z
1 2

2

2 3 3 1

1 2

3

1 2 2 3 3 1

- = - -

- = - - -

Similarly,

( ) ( )( )( )z z z z z z z z2 3

3

1 2 2 3 3 1- = - - -

and ( ) ( )( )( )z z z z z z z z3 1

3

1 2 2 3 3 1- = - - -

Therefore

( ) ( ) ( )

| | | | | |

z z z z z z

z z z z z z
1 2

3

2 3

3

3 1

3

1 2 2 3 3 1

- = - = -
- = - = -

Therefore AB BC CA= = . That is DABC  is equilateral.

 Answer: (A)

We will prove that (B) is also correct. Suppose that 
DABC  is equilateral. Then

 | | | | | |z z z z z z k1 2 2 3 3 1- = - = - =  (say)

Let a b g= - = - = -z z z z z z1 2 2 3 3 1, . and  Then a + b  + g  =   0 

and hence a b g+ + = 0. That is

k k k
k

2 2 2
2 20

a b g
aa a+ + = = =( | | )since

Therefore

1 1 1
0

1 1 1
0

1 2 2 3 3 1

a b g
+ + =

-
+

-
+

-
=

z z z z z z

Conversely, suppose that

1 1 1
0

a b g
+ + =

Then

a b
ab g
+ = - 1

Therefore

- = - + = -

=

g ab a b g

g abg

2

3

( )since

Similarly

b abg a3 3= =

This gives a3 = b 3 = g 3 and therefore | a | = | b | = | g  |. That is,

| | | | | |z z z z z z1 2 2 3 3 1- = - = -

Therefore DABC  is equilateral.

 Answers: (A) and (B)

8. If c ³ 0,  then the equation | | ( )z iz c i2 2 2 1 0- + + =
(z is complex) has

(A) infinitely many solutions if c < -2 1

(B) has unique solution if c = -2 1

(C) finite number of solutions if c > -2 1

(D) no solutions if c > -2 1

Solution: Let z x iy= + .  Then

( ) ( ) ( )x y i x iy c i2 2 2 2 1 0+ - + + + =

Therefore

 

x y y i c x c

x y y c

2 2

2 2

2 2 2 2 0

2 2 0

+ + + - + =

+ + + =

( )

 (3.9)

and 2 2 0c x x c- = =or  (3.10)

Substituting x = c in Eq. (3.9), we get that

 c y y c2 2 2 2 0+ + + =  (3.11)

Equation (3.11) has solutions if 4 4 2 02- + ³( )c c , that is 

1 2 02- - ³c c . Therefore

( )c c

c

+ £ - £ + £

- - £ £ -

1 2 2 1 2

2 1 2 1

2 or

It is given that c ³ 0. Therefore 0 2 1£ £ -c .

(i) If c z c c c i< - = + - ± - -2 1 1 1 2 2, ( ) .then

(ii) If c z i= - = - -2 1 2 1, ( ) .then

(iii) If c > -2 1, the equation has no solutions.

 Answers: (B), (D)

9. If z1, z2, z3 are complex numbers such that

| | | | | |z z z
z

z z
z

z z

z

z z1 2 3
1

2

2 3

2

2

3 1

3

2

1 2

1 1= = = + + = -and
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then the value of | z1 + z2 + z3 | can be

(A) 0 (B) 1 (C) 2 (D) 3/2

Solution: Let z = z1 + z2 + z3. Then

z z z z
z z z

z z z z z z

z z z
= + + = + + =

+ +
1 2 3

1 2 3

1 2 2 3 3 1

1 2 3

1 1 1

Therefore zb=  z1z2 + z2z3 + z3z1, where b = z1z2z3. Hence

z
z z

z
z z

z

z z
z z z z z z

z z z

1

2

2 3

2

2

3 1

3

2

1 2

1

3

2

3

3

3

1 2 3

1

3

2

3

3

3

1+ + = - Þ + + = -

Þ + + -- = -3 41 2 3z z z b

Now

( ) [( ) ( )]z z z z z z z z z z z z b1 2 3 1 2 3

2

1 2 2 3 3 13 4+ + + + - + + = -

That is

z z zb b( )2 3 4- = -

Therefore

z z b b

z z b

z z b z z z

3 2

3 2

3 2

1 2 3

3 4 0

3 4

3 4

- + =

= -

= - =

| |

( | | )

| | | | | | ( |since | | || )= 1

Case 1: Suppose that 3 42| | .z ³  Then

| | | |

| | | |

(| | )(| | | | )

(| | )(| |

z z

z z

z z z

z z

3 2

3 2

2

3 4

3 4 0

2 2 0

2

= -

- + =

- - - =
- -- + =

=
2 1 0

2

)(| | )

| |

z

z

Case 2: Suppose that 3 42| | .z <  Then

| | | | | | | |

| | | |

(| | )(| | | | )

z z z

z z

z z z

3 2 2

3 2

2

3 4 4 3

3 4 0

1 4 4 0

= - = -

+ - =

- + + =

((| | )(| | )

| |

z z

z

- + =
=

1 2 0

1

2

 Answers: (B) and (C)

Note that, in case 2, z, z1, z2, and z3 lie on the circle with 
radius 1 and center at the origin. Therefore, origin is the 
circumcenter of the triangle with z1, z2 and z3 as verti-
ces. Hence, z1 + z2 + z3 (= z) represents the orthocenter. 
Thus z1, z2 and z3 form a right-angled triangle because 
the distance between the orthocenter and circumcenter 
is equal to the radius of the circumcircle. Hence two of 
z1, z2, and z3 are the reflections of each other, through the 
center of the circle. Since z1, z2, z3 satisfy the condition 

z z z1

2

2 3 1å = -/ , it implies that two are real and the third is 
the reflection of them in the origin.

10. If

arg( arg( )z z zz3 8 2 1 21 2/ /) ( / )= +

then which of the following is (are) true?

(A) | z | = 1  (B) z is real

(C) z is pure imaginary (D) z1/2 = 1

Solution: The given relation is

2

0

3 8 2 1 2

3 4

2 1 2

3 4

2

arg arg

arg

( ) ( )/ /

/

/

/

z z zz

z
z zz

z
z zz

= +

Þ
+

æ
èç

ö
ø÷

=

Þ
+ 11 2

2 1 2

3 4

5 4 1 4

/

/

/

/ /

is purely real

is purely real

i

Þ
+

Þ + -

z zz
z

z zz ss purely real

Þ + = +

Þ + =

- -

-

z zz z zz

z z z z

5 4 1 4 5 4 1 4

5 4 1 4

/ / / /

/ /(( ) ( ) ) 55 4 1 4

5 4 5 4 1 4 1 4
5 4 5 4

1 4

/ /

/ / / /
/ /

/
( ) ( )

( )

( )

+

Þ - = - =
-

-

- -

zz

z z zz z z
z z

zz

ÞÞ - -
é

ë
ê

ù

û
ú =

Þ = =

Þ = =

[( ) ]
( )

| |

| |

/ /

/
z z

zz

z z
z

z z z

5 4 5 4

1 4

2

1
1

0

1
1

1

or

or

 Answers: (A) and (B)

11.  The vertices A and C of a square ABCD (see figure)
are 2 + 3i and 3 - 2i, respectively. If z1 and z2 repre-
sent the other two vertices B and D respectively, 
then

(A) z1 0=   (B) z i2 5= -
(C) z i1 1= +  (D) z i2 5= +

90°

M

DC (3-2i )

B (z1) A (2+3i )
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Solution: Let M be the center of the square. Then 

M
i

= +
5

2 2

Let z1 denote the point B. Then Ð = °CMD 90 . Therefore

z i
i i

i

z
i

i i
i

i
i

1

1

5 2

2 3 5 2

5

2
2 3

5

2

5

2

1

- +
+ - +

=

=
+

+ + -
+æ

èç
ö
ø÷

=
+

+
- +

( )/

( )/

55

2

5 5

2
0

i

i i

æ
èç

ö
ø÷

=
+ - -

=

Therefore,

D i i

z i

= - + + -
= +

3 2 2 3 0

52

 Answers: (A) and (D)

12. For any complex number z = x + iy, define

(z) = | x | + | y |

If z1 and z2 are any complex numbers, then

(A) ( ) ( ) ( )z z z z1 2 1 2+ £ +
(B) ( ) ( ) ( )z z z z1 2 1 2+ = +
(C) ( ) ( ) ( )z z z z1 2 1 2+ ³ +
(D) |( )| |( )| |( )|z z z z1 2 1 2+ £ +

Solution: Let z x iy z x iy1 1 1 2 2 2= + = +and . Then z1 + z2 =
( ) ( )x x i y y1 2 1 2+ + + . Now

( ) | | |

| |

( ) ( )

z z x x y y

x x y y

z z

1 2 1 2 1 2

1 2 1 2

1 2

+ = + + +
£ + + +
= +

|

| | | | | |

|( )| || | | ||

| | | |

| | | | | |

z z x x y y

x x y y

x x y

1 2 1 2 1 2

1 2 1 2

1 2 1

+ = + + +
= + + +
£ + + ++
= +

| |

|( )| |( )|

y

z z
2

1 2

 Answers: (A) and (D)

13.  Let z1, z2 and z3 be complex numbers representing 
three points A, B and C, respectively, on the unit 
circle | z | = 1 (see figure). Let the altitude through A 
meet the circle in D(z). Then

(A) z
z z

z
=

- 2 3

1

 (B) z
z

z z
=

- 1

2 3

(C)  D is the reflection of the orthocenter in the 
side BC

(D)  If H is the orthocenter, then HD is perpendicular 
to the side BD

B(z2)

A(z1)

C(z3)

D(z)

90°

Solution: AD is perpendicular to BC and therefore

arg
z z
z z

-
-

æ
èç

ö
ø÷

= ±1

3 2 2

p

This implies that (z - z1)/(z3 - z2) is pure imaginary. 
Therefore

z z
z z

z z
z z

z z
z z

z z
z

-
-

= -
-
-

æ
èç

ö
ø÷

-
-

= -
-

1

3 2

1

3 2

1

3 2

11 1

1 1

( / ) ( / )

( / ) ( / ) 33 2

1

2 3

2 3

1

1

3 2

2

-
æ
èç

ö
ø÷

-
-

æ
èç

ö
ø÷

æ
èç

ö
ø÷

= -
-
-

æ
èç

ö
ø÷

z

z z
z z

z z

zz
z z
z z

z zz

zz
z

z z

z
3

1

2 3

1

1= - =
-

or

This implies (A) is correct.
Also, since the orthocenter H is z1 + z2 + z3, we have 

BH z z z z z z= + + - = +| | | |1 2 3 2 1 3

and BD z
z z

z
z
z

z z z z= + = + = +2
2 3

1

2

1

1 3 1 3

| |

| |
| | | |

 ( | | | |)since z z1 21= =

Therefore, B is equidistant from H and D. Similarly, C 
is equidistant from H and D. This gives that BC is the 
 perpendicular bisector of HD and so H, D are reflections 
of each other through the side BC.

 Answers: (A) and (C)
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14. Let a, b be real numbers such that | | .b a£ 2 2  Let

X z z a a b

Y z z a a b

S z z a az b

= - = +

= + = -

= - = +

{ : | | }

{ : | |

{ : | | | |}

2

2

2

2

2

2 2

}

Then which of the following is (are) true?

(A) X is a subset of S (B) Y is a subset of S

(C) S = X È Y (D) S = X Ç Y

Solution: Let z Î S. Therefore | | | |z a az b2 2 2- = + . This 
relation is equivalent to

| | | |

( )( ) ( )( )

| | (

z a az b

z a z a az b az b

z a z z

2 2 2 2

2 2 2 2

4 2 2

2

2 2

- = +

- - = + +

- + 22 4 2 2 2

4 2 2 2 4 2 2

4 2

2 4

) | | ( )

| | [( ) | | ] | |

+ = + + +

- + - + =

a a z ab z z b

z a z z z a a z ++ + +

- + = + + + +

2

2 2

2

4 2 2 4 2 2 2

ab z z b

z a z a a z z ab z z b

( )

| | | | ( ) ( )

Hence, (| | ) [ ( ) ] .z a a z z b2 2 2 2- = + +  Therefore

| | [ ( ) ]z a a z z b2 2- = ± + +

Therefore

| | ( )z a a z z b2 2 0- - + - =

or | | ( )z a a z z b2 2 0- + + + =

This is equivalent to

( )( )z a z a a b- - = +2 2

or ( )( )z a z a a b+ + = -2 2  (3.12)

Hence,

| | | |z a a b z a a b- = + + = -2 22 2or

Since | | ,b a£ 2 2  both 2 22 2a b a b+ -and  are non-negative.
From Eq. (3.12), if we retrace the steps backwards, then 
we get z satisfying the relation

| | | |z a az b2 2 2- = +

Therefore

S X Y= È
 Answers: (A), (B), (C)

15.  Let z1, z2, z3 be the complex numbers  representing 
the vertices A, B, C of a triangle described in coun-
terclocksense. Consider the following statements.

 I. D ABC  is equilateral

 II. z z z z i3 1 2 1
3 3

- = - +æ
èç

ö
ø÷

( ) cos sin
p p

 III. z z z z i2 1 3 1
3 3

- = - +æ
èç

ö
ø÷

( ) cos sin
5 5p p

 IV. z z i

z i

1 2

3

3 3

3 3
0

+ +æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

=

cos sin

cos sin

2 2

4 4

p p

p p

Then which one is correct:

(A) I Þ II (B) II Þ III

(C) III Þ IV (D) IV Þ I

Solution:

I.  Suppose D ABC is equilateral (see figure). Rotating AB
� ����

 

about A through the angle p/3 in anticlocksense, we get

z z

z z
i3 1

2 1 3 3

-
-

= +cos sin
p p

Therefore, I Þ II. This implies (A) is true.

C(z3)

A(z1) B(z2)

3
p

3
p

3
p

II. Assume that

z z z z i3 1 2 1
3 3

- = - +æ
èç

ö
ø÷

( ) cos sin
p p

Therefore

z z

z z
i

z z z z BAC

3 1

2 1

3 1 2 1

3 3

3

-
-

= +

- = - Ð =

cos sin

| | | |

p p

p
and

This implies DABC  is equilateral. Therefore, II Þ I.

Now rotate AC
� ����

 about A through angle 5p /3 in anti-
clock sense so that

z z z z i2 1 3 1
3 3

- = - +æ
èç

ö
ø÷

( ) cos sin
5 5p p

This means II Û III.
Similarly we can see that III Û IV and IV Û I.

 Answers: (A), (B), (C), (D)
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1. Match the items in Column I with those in Column II

Column I Column II

(A)  If z x iy z a ib= + = -, /1 3 and
x
a

y
b

a b- = -l l( ) then is2 2 ,

(p) 10

(q) 14

(r) 1

(s) 4

(B)   If | | ,z i- < 1  then the value of 
| |z i+ -12 6  is less than

(C)  If | | | | ,z z1 21 2= =and then  
| | | |z z z z1 2

2

1 2

2+ + -  is equal to

(D)  If z i= +1 , then 
4 4 7 6 34 3 2( )z z z z- + - +  is equal to

(t) 5

Solution:

(A) x iy z a ib a a bi a ib i b

a ab i b a b

+ = = - = - + -

= - + -

( ) ( )

( ) ( )

3 3 2 2 3 3

3 2 3 2

3 3

3 3

Comparing the real parts we get

x a ab a a b

x
a

a b

= - = -

= -

3 2 2 2

2 2

3 3

3

( )

Comparing the imaginary parts we get

y b a b b b a

y
b

b a

= - = -

= -

3 2 2 2

2 2

3 3

3

( )

Therefore

x
a

y
b

a b- = -

=

4

4

2 2( )

l
Answer: (A) Æ (s)

(B) | | |( ) ( )|z i z i i- - = - + -12 6 12 5

£ - + - < + =| | | |z i i12 5 1 13 14

Answer: (B) Æ (q)

(C) | | | | (| | | | ) ( )z z z z z z1 2

2

1 2

2

1

2

2

22 2 1 4 10+ + - = + = + =
Answer: (C) Æ (p)

(D) If z i= +1 , then

( )z i- =1 4 4

Therefore

z z z z

z z z z z z

4 3 2

4 3 2 2

4 6 4 1 1

4 7 6 3 2 2 1

- + - + =

- + - + - + - =( )

z z z z z z

z i

z z z z

4 3 2 2

2 2

4 3 2

4 7 6 3 2 3

1 2 2 1

4 4 7 6 3

- + - + = - +

= - + = + =

- + - + =

( )

( ) 44

 Answer: (D) Æ (s)

2. Match the items in Column I with those in Column II. 
In the following, w ¹ 1 is a cube root of unity.

Column I Column II

(A)  The value of the determinant

1 1 1

1 1

1

2 2

2 4

- -w w

w w

 is

(p) 3 1w w-( )

(q) 3 1w w( )-

(r) -i 3

(s) i 3

(B)   The value of 4 5 32002 2009+ +w w
 is

(C)  The value of the determinant

1 1

1 1 1

1 1

2 2

2

2

+ +
- - -
- - + + -

i w w

i w

i i w

 is

(D)  w wn n2 1+ +  (n is a positive integer 
and not a multiple of 3) is

(t) 0

Solution:

(A) 1 1 1

1 1

1

3 1 1

1

1

3 0 0

1

1

3

2 2

2 4

2 2

2

2

2

2

2 4

- - =
+ + + +

=

= -

w w

w w

w w w w

w w

w w

w w

w w

w w( )) ( )= -3 1w w

Answer: (A) Æ (q)

(B) 4 5 3 4 5 3 12002 2009 2 3+ + = + + =w w w w w( )∵

= + + + +
= +

1 2 3 1

1 2

2w w w

w

( )

Since

w
i

=
-

±
1

2

3

2

we get

4 5 3 1 2
1

2

3

2

1

2

3

2

2002 2009+ + = +
-

+
æ

èç
ö

ø÷
-

-
æ

èç
ö

ø÷
w w

i i
or 1 2+

Matrix-Match Type Questions
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1. Passage: A complex number z is pure real if and only 
if z z=  and is pure imaginary if and only if z z= - . 
Answer the following questions:

 (i)  If x and y are real numbers and the complex 
number

( ) ( )2

4

1 2

4

+ -
+

+
- +i x i

i
i y i

i

is pure real, the relation between x and y is

(A) 8 17 16x y- =  (B) 8 17 16x y+ =
(C) 17 8 16x y- =  (D) 17 8 16x y- = -

 (ii) If

z
i
i

=
+3 2

1 2
0

2

sin

sin

q
q

q
p

-
< £æ

èç
ö
ø÷

is pure imaginary, then q is equal to

(A) p/4 (B) p/6 (C) p/3 (D) p/12

Comprehension-Type Questions

= - + - -

= ±

1 1 3 1 1 3

3

i i

i

or

Answers: (B) Æ (r), (s)

(C) 1 1

1 1 1

1 1

1

1 1 1

1 1

1

2 2

2

2

2

+ +
- - -
- - + - -

=
- +

- - -
- - + - -

=
-

i w w

i w

i i w

w i w

i w

i i w

ww i

i i w

+ -

- - + - -
=

1

0 0 0

1 1

0

Answer: (C) Æ (t)

(D)  Let n > 0 and n ¹ 3m for all integers m. Then 
n = 3m + 1 or 3m + 2

n m w w w w

w w

n n m n= + Þ + + = + +

= + + =

+ +3 1 1 1

1 0

2 6 2 3 1

2

n m w w w w

w w

n n m m= + Þ + + = + +

= + + =

+ +3 2 1 1

1 0

2 6 4 3 2

2

Answer: (D) Æ (t)

3. Match the items in Column I with those in Column II. 
w ¹ 1 is a cube root of unity.

Column I Column II

(A)  The value of 

1

3
1 1 1 12 4 8( )( )( )( )- - - -w w w w  is

(p) -128

(q) 6

(B)  w w w( )1 2 7+ -  is equal to (r) 0

(C)  The least positive integer n such that 

( ) ( )1 12 4+ = +w wn n is (s) 128

(D) 
1

1 2

1

2

1

1+
+

+
-

+w w w
 is equal to (t) 3

Solution: We have w3 1=  and 1 02+ + =w w .

(A) We have

1

3
1 1 1 1

1

3
1 1

1

3
1 1

2 4 8 2 2 2

2 2

( )( )( )( ) ( ) ( )

[( )( )]

- - - - = - -

= - -

w w w w w w

w w

== - - +

= + + =

1

3
1

1

3
1 1 1 3

2 3 2

2

( )

( )

w w w

Answer: (A) Æ (t)
(B) We have

w w w w w w

w w

w

( ) ( )

[ ( )]

1

2

2 128

2 7 2 2 7

2 7

7 15

+ - = - -

= -

- = -
Answer: (B) Æ (p)

(C) We have

( ) ( )

( ) ( )

( ) ( )

1 1

1 1

2 4

2

2

2

+ = +

+ = +

- = -

=

w w

w w

w w

w w

n n

n n

n n

n n

The least such positive n is 3.

Answer: (C) Æ (t)

(D) We have

1

1 2

1

2

1

1

1

1 2

1 2

2 1

1

1 2

1

2 3

1

1

2

+
+

+
-

+
=

+
+

+ - -
+ +

=
+

-
+ +

=
+

w w w w
w w
w w

w w w

( )( )

22

1

1 2
0

w w
-

+
=

Answer: (D) Æ (r)
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 (iii) If z1 and z2 are complex numbers such that

z z
z z

1 2

1 2

1
-
+

=

then

(A) z1/z2 is pure real

(B) z1/z2 is pure imaginary

(C)  z1 is pure real

(D) z1 and z2 are pure imaginary

Solution:
(i) Let

z
i x i

i
i y i

i

x x i
i

y y i
i

x x

=
+ -

+
+

- +

=
+ -

+
+

+ -

=
+ -

( ) ( )

( ) ( )

( (

2

4

1 2

4

2 1

4

2

4

2 1)) )( ) ( )

( ) ( )

i i iy y

x x i x x y iy

x

4

17

2

4

8 1 4 4 2

17

2

4

9 1

-
+

- + -

=
+ - + - -

+
- -

=
- + ii x y iy( )2 4

17

2

4

-
+

- -

Now

z z z

z

x y

x y

x y

 is real

Im

Û =

Û =

Û
-

- =

Û - =

Û - =

0

2 4

17 4
0

8 16 17

8 17 16

Answer: (A)

(ii) z
i
i

=
+
-

3 2

1 2

sin

sin

q
q

=
+ +

+
( sin )( sin )

sin

3 2 1 2

1 4 2

i iq q
q

=
- +

+
( sin ) ( sin )

sin

3 4 8

1 4

2

2

q q
q

i

Now,

z z z

z

is pure imaginary

Re

Û = -
Û =

Û
-
+

=

Û =

( )

sin

sin

sin

0

3 4

1 4
0

2

2

2

q
q

q
33

4

Û = ±

Û = < £

sinq

q
p

q
p

3

2

3
0

2
since

æ
èç

ö
ø÷

Answer: (C)

(iii) | | | |

( )( ) ( )( )

z z z z

z z z z z z z z

z z z z

z

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

- = +

Þ - - = + +

Þ = -

Þ 11

2

1

2

1

2

1

2

z
z
z

z
z

z
z

= - = -

Þ

æ
èç

ö
ø÷

 is pure imaginary

Answer: (B)

2. Passage: Consider z = a + ib and z a ib= - , where a and 
b are real numbers, are conjugates of each other. Answer 
the following three questions: 

 (i)  If the complex numbers -3 + i(x2y) and x2 + y + 4i, 
where x and y are real, are conjugate to each 
other, then the number of ordered pairs (x, y) is

(A) 1 (B) 2 (C) 3 (D) 4

 (ii)  Let z x x yi= - -2 7 9  such that z y i i= + -2 20 12, 
then the number of ordered pairs (x, y) is

(A) 1 (B) 2 (C) 3 (D) 4

 (iii)  The number of real values of x such that sin x + 
i cos 2x and cos x - i sin 2x are conjugate to each 
other is

(A) 1 (B) 2 (C) >2 (D) 0

Solution:

(i) - + = + -3 42 2ix y x y i  implies

 x y x y2 23 4+ = - = -and  (3.13)

Therefore

x
x

x x

x x

2

2

4 2

2 2

4
3

3 4 0

4 1 0

- = -

+ - =

+ - =( )( )

This gives x2 = 1 (since x2 ¹ -4). Therefore x = ±1 and 
y = -4. Hence the ordered pairs are (1, -4) and (-1, -4).

Answer: (B)

(ii) We have

z x x yi

z x x yi

x x yi y i i

= - -

Þ = - +

Þ - + = + -

2

2

2 2

7 9

7 9

7 9 20 12
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3.1  Complex number: Any ordered pair (a, b) where a 
and b are real numbers is called a complex number 
and the set of all complex numbers is denoted by �  
which is � �´ .

3.2  Real number as a complex number: If a is a real 
number, we write a for the ordered pair (a, 0) so that 
every real numbered is considered to be a complex 
number.

3.3 Algebraic operations:

(1) Addition: If z1 = (a, b) and z2 = (c, d), then

z1 + z2 = (a + c, b + d)

(2) If z = (a, b), then -z = (- a, - b).

(3)  z1 = (a, b), z2 = (c, d), then z1 - z2 = z1 + (-z2) =
(a - c, b - d).

(4) If z = (a, b), and l is real, then l z = (l a, l b).

(5)  Product: If z1 = (a, b), and z2 = (c, d), then z1 z2 =  
(ac - bd, ad + bc).

3.4  Zero complex number and unit complex number: 
(0, 0) is called zero complex number and is denoted 
by 0. (1, 0) is called unit complex number and is 
denoted by 1.

   SUMMARY

Complex Number

This implies that

 x x2 7 12- = -  (3.14)

and 9 202y y= +  (3.15)

Solving Eq. (3.14) we get

x = 3, 4

Solving Eq. (3.15) we get

y y y2 9 20 0 4 5- + = Þ = ,

Therefore, the required ordered pairs are (3, 4), (3, 5), 
(4, 4) and (4, 5).

Answer: (D)

(iii)    sin cos cos sinx i x x i x+ = +2 2

 Þ = =sin cos cos sinx x x xand 2 2

Þ - = = = =2 1 2 2 2 22 2cos cos sin sin cos cosx x x x x x

Þ - =1 0,  which is absurd

Therefore, there are no such real numbers x.

Answer: (D)

Assertion–Reasoning Type Questions

In the following set of questions, a Statement I is given 
and a corresponding Statement II is given just below it. 
Mark the correct answer as:

(A) Both I and II are true and II is a correct reason for I

(B) Both I and II are true and II is not a correct reason for I

(C) I is true, but II is false

(D) I is false, but II is true

1. Statement I: If z i z i1 29 5 3 5= + = +,  and arg [(z−z1)/

(z − z2)] = p / 4, then the values of | | .z i- -6 8 3 2is

Statement II: In a circle, the angle made by a chord at 
the center is double the angle subtended by the same 
chord on the circumference.

Solution: Let z be a point such that

arg
z z
z z

1

2 4

-
-

=
æ
èç

ö
ø÷

p

Let z = x + iy. Then

arg ( )( ) ( )
z z
z z

x x y y

x y x y

1

2

2

2 2

4
9 3 5 6 30

12 16

-
-

= Þ - - + - = -

Þ + - -

æ
èç

ö
ø÷

p

++ =82 0

Now

| | ( ) ( )

(

z i x y

x y x y

x y x y

- - = - + -

= + - - +

= + - - +

6 8 6 8

12 16 100

12 16 8

2 2 2

2 2

2 2 22 18

0 18

) +

= +

Therefore

z i- - =6 8 3 2

Answer: (B)
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3.5  Complex number i: The complex number (0, 1) is 
such that (0, 1) (0, 1) = (-1, 0) = -1. (0, 1) is denoted 

by i with the convention that i2 = -1 or i = -1. If n is 

any positive integer, then in + i n+1 + i n+2 + i n+3 = 0.

3.6  Quotient of complex numbers: Let z1 = (a, b) and 
z2 = (c, d) ≠ (0, 0). Then the unique complex number 
z such that z · z2 = z1 is called quotient of z1 and z2 
and is denotes by z1/z2. In particular, if z = (a, b) ≠ 
(0, 0), then there exists z¢ = (c, d) such that zz¢ = 
(1, 0) = 1 and

c
a

a b
d

b
a b

=
+

=
-
+2 2 2 2

,

3.7 Representation of (a, b) as a + ib:

z = (a, b) = (a, 0) + (0, 1) (b, 0) = a + ib

3.8  Real and imaginary parts: If z = a + ib (a, b are real), 
then a is called real part of z denoted by Re(z) and
b is called imaginary part denoted by Im(z).

3.9 Usual operations:

(1)  z1 = a + ib, z2 = c + id, then z1 + z2 = (a + c) + i(b + d) 
and z1 - z2 = (a - c) + i(b - d)

(2) z1 z2 = (ac - bd) + i(ad + bc)

(3) If z2 ≠ 0, then

z
z

ac bd
c d

i
bc ad

c d
1

2

2 2 2 2
=

+
+

+
-
+

( )

(4) If z = x + iy ¹ 0, then

1
2 2 2 2z

x
x y

i
y

x y
=

+
+

-
+

æ
èç

ö
ø÷

3.10 Cube roots of unity:

(1)  Roots of the equation z3 = 1 are called cube 
roots  of unity and they are

1
1 3

2

1 3

2
,

- + - -i i
and

(2)  If w ≠ 1 is a cube root of unity, then w2 is also cube 
root of unity and hence 1, w and w2 are cube roots 
of unity having the relation 1 + w + w2 = 0.

(3)  If w is a non-real cube root of unity and n is any 
 positive integer, then

1
3

0
2+ + =w wn n nif  is a multiple of 3

otherwise

ì
í
î

3.11  Pure real and pure imaginary: A complex number z 
is called pure real if Im(z) = 0 and pure imaginary if 
Re(z) = 0.

3.12  Conjugate: For z = a + ib, the complex number 
z a ib= -  is called conjugate of z.

3.13 Properties of  z:

(1) ( )z z=

(2) 
z z

z
z z

i
z

+
=

-
=

2 2
Re( ) Im( )and

(3) If z = a + ib, there zz a b= +2 2

(4) z is pure real Û =z z

(5) z is pure imaginary Û = -z z

(6) ( )z z z z1 2 1 2± = ±

(7) z z z z1 2 1 2=

(8) If z2 ≠ 0, then 
z
z

z
z

1

2

1

2

æ
èç

ö
ø÷

=

(9) z z z z z z z z1 2 1 2 1 2 1 22 2+ = =Re( ) Re( )

(10) z z z z i z z i z z1 2 1 2 1 2 1 22 2- = = -Im( ) Im( )

3.14  Modulus and its properties: If z = a + ib, then 

| | | |z a b z= +2 2  and  = | z | = | -z|. Let z1 and z2 be  
complex numbers. Then

(1) | | | || |z z z z1 2 1 2=

(2) 
z
z

z
z

1

2

1

2

=
| |

| |
 when z2 ¹ 0

(3) | |z zz2 = (very useful)

(4)  | | | | | |z z z z1 2 1 2+ £ +  (equality holds if and only if 
z1 and z2 are collinear with origin and lie on the 
same side of the origin)

(5)  | | | | | |z z z z1 2 1 2- ³ -  (equality holds if and only 
if z1, z2 are collinear with origin and lie on the 
same side of origin)

(6) | | | |z zn n=  for all positive integers.

(7) | | | | | |z z z z z z z z1 2

2

1

2 2 2

1 2 1 2+ = + + +( )
(8) | | | | | |z z z z z z z z1 2

2

1

2 2 2

1 2 1 2- = + - +( )
(9)  | | | | | | | |z z z z z z1 2

2

1 2

2

1

2

2

22+ + - = +( )  (parallelogram 

law)

(10)  | | | |z z1 2+  is the greatest possible value of | |z z1 2±  

and || | | ||z z1 2-  is the least possible value of | |z z1 2±

3.15  Unimodular complex number: If | |z = 1, then z is 
called unimodular complex number. If z ≠ 0, then 
z/| z | is always unimodular.
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3.16  Geometric interpretation (Argand’s plane): 
Consider a plane and introduce coordinate system 
in the plane. Now, we can view any complex 
number z = a + ib as the point (a, b) in the plane 
and any point (a, b) in the plane as the complex 
number a + ib. Also if z = a + ib and P is the point 
representing z, then one can view the vector OP

� ���
 

and conversely if P is a point with coordinates
(a, b), we can consider the complex number z = a + ib 
and the vector OP

� ���
 representing it. Hence there is 

a one-to-one correspondence between the set of 
complex numbers, the points in the Argand’s plane 
and the vectors in the Argand’s plane.

3.17  Identification of complex number: We identify 

complex number z = a + ib with the point P(a, b) 

and with the vector OP
� ���

 in the Argand’s plane 
where O is the origin.

3.18  More about Argand’s plane: Let z, z1, z2 be complex 
numbers and A, P and Q represent them in the 
Argand’s plane. Then

(1)  z  is presented by the reflection of the point A 
in the real axis (i.e., x-axis).

(2)  -z is represented by the reflection of A through 
the origin that is (-a, -b) represents -z.

(3)  z1 + z2 is the fourth vertex of the parallelogram 

 constructed on OP
� ���

 and OQ
� ����

 as adjacent sides.

(4)  z1 - z2 is the fourth vertex of the parallelogram 

constructed with OP
� ���

 and -OQ
� ����

 (i.e., QO
� ����

) as adja-
cent sides.

3.19  Modulus and argument form (Trigonometric or 
Polar form): Every complex number z can be 
expressed as r(cos q + i sin q) where r = | z | and 
q is the angle made by the vector OP

� ���
 with real 

axis and P represents z in the Argand plane. This 
q is called argument of z and is denotes by arg z. 
If q is an argument z, then q + 2np  is also an argu-
ment of z.

3.20  Principal value of arg z (denoted by Arg z): If z is 
a complex number, then there exists, unique q such 
that -p < q ≤ p and z z= | |  (cos q + i sin q). This q is 
called the principal value of arg z and is denoted 
by Arg z.

3.21  Geometrical meaning of Arg z and computing Arg z : 
Arg z is the shortest turn taken by the position x-axis 
about the origin to fall on the vector OP

� ���
 where P 

represents z. If the shortest turn is anticlockwise 

sense, then Arg z is positive, otherwise Arg z < 0. 
Further, let z1 and z2 be complex numbers.

y

x

P(z)

P(z)

Arg z

Arg z < 0
O

(1) z z z z1 2 1 2= Û =| | | | and Arg z1 = Arg z2.

(2) arg (z1z2) = Arg z1 + Arg z2 + 2np, n Î� .

(3) arg (z1/z2) = Arg z1 - Arg z2 + 2np, n Î�.

(4)  arg  ( )1/ Argz n= - + Î2 p , n � for any complex 
number z ¹ 0.

3.22  Geometrical meaning of arg (z1/z2): Let P and Q 
represent z1 and z2 in the Argands plane and ‘O’ 
is the origin. Thus arg (z1/z2) is the angle of rota-
tion of OQ about origin to fall on the vector OP

� ���
.

arg (z1/z2) is positive, if the rotation is anticlock 
sense otherwise it is negative.

3.23  Directly similar triangles: DABC and DA¢B¢C¢ are 
directly similar, if A = ¢A , B = ¢B , C = ¢C  and the 
sides about equal angles are proportional. That is, 
indirectly similar triangles, the angles at the vertices 
in the prescribed order are equal.

Let z1, z2, z3 and ¢ ¢ ¢z z z1 2 3, and  represent the ver-
tices of two triangles. Then they are directly similar 
if and only if

z z

z z

z z

1 1

2 2

3 3

1

1

1

0

¢
¢
¢

=

Directly similar triangles are similar also.

QUICK LOOK 

3.24  Most useful formula: Let A, B and C be three 
points representing the complex numbers z1, z2 
and z3 respectively and the points are described in 
counter clock sense and BAC = a.
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A (z1)

C (z3)

B (z2)

a

Then,

z z

z z
CA
BA

i3 1

2 1

-
-

= +æ
èç

ö
ø÷

( )cos sina a

In particular the segments AB and AC are at right 
angles Û - - = ±arg( 2z z z z3 1 2 1/ /) p  and in such a 
case z z z z3 1 2 1- -/  is pure imaginary.

3.25  Equilateral triangles: Let A, B and C be the  vertices 
of a triangle represented by z1, z2 and z3  respectively. 
The following hold:

(1)  D ABC is equilateral Û z1

2  + z2

2  + z3

2  = z1z2 + 
z2z3 +z3z1.

(2) D ABC is equilateral

Û
-

+
-

+
-

=
1 1 1

0
1 2 2 3 3 1z z z z z z

3.26  Orthocentre with reference to circumcentre: Let 
A, B, C be the vertices of a triangle whose circum-
centre is at the origin. If z1, z2, z3 represent A, B, 
C respectively, then the orthocentre of DABC is 
represented by z1 + z2 + z3.

3.27  Angle between two segments: A(z1), B(z2), C(z3) 
and D(z4). There AB  is inclined at an angle of 
arg( ) .z z z z CD4 3 2 1- -/ to  The lines are at right angles 
if and only if

arg
z z

z z
4 3

2 1 2

-
-

= ±
æ
èç

ö
ø÷

p

The points A, B, C are collinear

Û
-
-

=arg or
z z
z z

2 1

3 1

0
æ
èç

ö
ø÷

p

A(z1)

D(z4)

C(z3)

B(z2)

3.28  Line joining two points in the complex plane: The 
equation of the line joining the points A(z1) and 
B(z2) is

z z

z z

z z

1

1

1

01 1

2 2

=

The complex number z z z z1 2 1 2- -/  is called com-
plex slope of the line AB.

3.29  General equation of a straight line: If l ¹ 0 is a 
complex number and m is a real number then the 
equation lz l m+ + =z 0 represents a straight line in 
the  complex plane. The real slope of this line is

 
l l

l l
i

+
-

æ
èç

ö
ø÷

3.30  Condition for parallel and perpendicular lines: 
Let l z l z m l z l z m1 1 1 2 2 20 0+ + = + + =,  where m1, m2 
are real be two straight lines. Then

(1) The two lines are parallel Û =l l l l1 2 1 2 .

(2)  The two lines are perpendicular to each other if 
and only if l l l l1 2 1 2 0+ = .

3.31  Equation of the perpendicular bisector of the segment 
joining the points A(z1) and B(z2) is | | | |z z z z- = -1 2 . 
Equivalently

( ) ( )z z z z z z z z z z1 2 1 2 2 2 1 1 0- + - + - =

3.32  The points representing z1 and z2 in the Argand’s plane 
are images of each other in the line lz l z m+ + = 0 
(m is real) if and only if lz lz m1 2 0+ + = .

3.33  Distance of a line from a point: The  perpendicular 
distance drawn from a point A(z0) onto a straight 
line lz lz m+ + = 0 (m is real) is

lz lz m

l
0 0

2

+ +

| |

3.34  Let A(z1), B(z2) and C(z3) be the vertices of a  triangle 
whose circum centre is the origin. If the altitude drawn 
from A onto the side BC, meets the circumcircle of 
DABC in D, then D is represented by the complex 
number -z z z2 3 1/ . Also note that D is the reflection of 
the orthocenter of DABC in the side BC.

Circle

3.35  Circle: Equation of the circle with centre at the 
point z0 and radius r (> 0) is | | .z z r- =0
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   EXERCISES

Single Correct Choice Type Questions
1.  If w ¹ 1 is a cube root of unity, then the value of the  

expression (1 - w + w2) (1 - w2 + w4) (1 - w4 + w8) 	 
upto 2n factors is

(A) 2n (B) 22n (C) 0 (D) 1

2. The value of [sin( ) cos( )]2 11 2 11
1

10
k i k

k
p p/ /-

=å  is

(A) 1 (B) –1 (C) i (D) –i

3.  If z is a complex number and n is a positive integer 
 satisfying the equation ( ) ( )1 1+ = -z zn n,  then z lies on

(A) the line x = 0 (B) the line x = 1/2

(C) the line y = 0 (D) the line x = -1/2

4.  Let a and b be complex numbers representing the 
points A and B, respectively, in the complex plane. If 
(a/b) + (b/a) = 1 and O is the origin, then DOAB is

(A) right angled (B) right-angled isosceles

(B) obtuse angled (D) equilateral

5.  The complex numbers z z z z1 2 3 4, , and  represent the 
vertices of a parallelogram in this order, if

(A) z z z z1 2 3 4+ = +  (B) z z z z1 3 2 4+ = +

(C) z z z z1 4 2 3+ = +  (D) 
z z

z z
z z
z z

1 3

2 3

1 4

1 4

+
=

+

6.  The area of the region in the complex plane satisfying 
the inequality

log
cos /p 6

2 5

4 2 4
2( )

- +
- -

é

ë
ê

ù

û
ú <

z

z
is

(A) 4p (B) 8p (C) 12p (D) 15p

7.  If z is a non-zero complex number, then the equation 
z z z z2 2 0+ + =| | | |  has

(A) only two roots (B) only four roots

(C) no roots (D) infinite number of roots

 8.  In D ABC, origin is the circumcenter, H is the ortho-
center and D is the midpoint of the side BC. If P is 
any point on the circumcircle other than the vertices 
and T is the midpoint of PH, then the angle between 
AP and DT is

(A) p/4 (B) p/3 (C) p/6 (D) p/2

 9.  The number of solutions of the equation z z i( )- =2  

2 2( )+ i  is

(A) 4 (B) 3 (C) 2 (D) 0

10.  If 0 1 11 2< < = + = +a b z a i z ib, , and  and if the origin, 
z1 and z2 represent the vertices of an equilateral 
triangle, then

(A) a b= - =3 1
3

2
,  (B) a b= - =2 3

(C) a b= =
1

2

3

4
,  (D) a b= =

3

4

1

2
,

11.  If | | | |z z+ = -1 1  and arg( )/( ) / ,z z- + =1 1 4p  then z 
is equal to

(A) ( )2 1+ + i  (B) 1 2+ i

(C) ( )1 2± i  (D) ( )2 1- i

12.  If z t i t t= - + + +( )1 22 , where t is a real parameter, 
then z lies on the curve

(A) x y2

2
3

2

7

4
+ +æ

èç
ö
ø÷

=  (B) x y2

2
3

2

7

4
- +æ

èç
ö
ø÷

=

(C) y x2

2
3

2

7

4
- -æ

èç
ö
ø÷

=  (D) y x2

2
3

2

7

4
+ -æ

èç
ö
ø÷

=

1. | | | |z z r z z r- = Û - =0 0

2 2

 Û - - =( )( )z z z z r0 0

2

 Û - - + - =zz z z z z z z r0 0 0 0

2 0

2.  If z0 = 0, then the equation of the circle with centre 
at origin and radius r is | | .z r=

QUICK LOOK 3.36  General equation of a circle in the complex 
plane: If a is complex number and b is real, then 
the equation zz az az b+ + + = 0 represents circle 

with centre at the point -a and radius aa b- . The 

circle is real circle or point circle or imaginary circle 
according as aa b-  is positive or zero or negative.



Chapter 3  Complex Numbers162

13.  z is a complex number and z i¹ .  If arg( )/( )z i z i+ - =  

p / ,2 then z lies on the curve

(A) x y2 2 1+ =  (B) x y2 2 1- =
(C) xy = 1  (D) y x= + 1

14.  If z1 and z2 are complex nth roots of unity which sub-
tend right angle at the origin, then n must be of the form

(A) 4K + 1  (B) 4K + 2

(C) 4K + 3  (D) 4K

15. ( ) sin cos3 2
2

11

2

111

32

1

10

m
n

i
n

m n

+ æ
èç

ö
ø÷

- æ
èç

ö
ø÷

æ
èç

ö
ø÷

æ
èç

ö

= =
å å p p

øø÷
=

m

(A) 4(1 - i)  (B) 12(1 + i)

(C) 12(1 - i)  (D) 48(1 - i)

16.  The complex slope (see “Quick Look 6”) of the line
joining the two points 1 - i and 2 - 5i is

(A) 
1 4

1 4

-
+

i
i   (B) 

1 4

1 4

+
-

i
i

(C) 
1 2

1 2

+
-

i
i   (D) 

1 2

1 2

-
+

i
i

17.  If | |z i- £ 2  and z i0 5 3= + ,  then the maximum value 
of | |z iz0 +  is

(A) 7 (B) 7  (C) 5 (D) 9

18.  If w ¹ 1 is a cube root of unity, x a b y aw bw= + = +, 2  
and z aw bw= +2 , then x y z3 3 3+ +  is equal to

(A) 3ab (B) 0 (C) 3a3b3 (D) 3(a3 + b3)

19.  If a, b and c are integers not all simultaneously equal 
and w ¹ 1 is a cube root of unity, then the minimum 
value of | |a bw cw+ + 2  is

(A) 0 (B) 1 (C) 3 2/  (D) 1/2

20.  The center and the radius of the zz + (2 - 3i)z + (2 + 3i)
z + 4 = 0 are

(A) - -2 3 3i,   (B) 2 3 3- i,

(C) 2 3 3+ i ,   (D) - +2 3 3i,

21.  The distance of the point z0 from the line az az b+ +  
= 0 (b is real) is

(A) az az b
a

0 0

2

+ +  (B) a z az b
a

0 0

2

+ +

(C) az az b
a

0 0+ +  (D) a z az b
a

0 0+ +

22.  Let a, b be non-zero complex numbers and z1, z2 be 
the roots of the equation z2 + az + b = 0. If there exists 
l ³ 4 such that a2 = l b, then the points z1, z2 and the 
origin

(A) form an equilateral triangle

(B)  form a right-angled triangle, right angled at the 
origin

(C) are collinear

(D) form an obtuse-angled triangle

23.  If ( )/( )w wz z- -1  is purely real, where w i= +a b  
and z ¹ 1, then the set of values of z is

(A) { : | | }z z = 1  (B) { : }z z z=
(C) { : }z z ¹ 1   (D) { : | | }z z z= ¹1 1and

24.  If z1, z2 and z3 are distinct complex numbers such 
that | | |z z z1 2 3 1| | |= = =  and

z
z z

z
z z

z

z z
1

2

2 3

2

2

3 1

3

2

1 2

1+ + = -

then the value of | |z z z1 2 3+ +  can be

(A) 1/2 (B) 3 (C) 3/2 (D) 2

25.  If z1, z2 and z3 are the vertices of a right-angled isos-
celes triangle described in counter clock sense and 
right angled at z3, then (z1 - z2)

2 is equal to

(A) ( )( )z z z z1 3 3 2- -  (B) 2 1 3 3 2( )( )z z z z- -
(C) 3 1 3 3 2( )( )z z z z- -  (D) 3 3 1 3 2( )( )z z z z- -

In this section, each question has 4 choices (A), (B), (C), and 
(D) for its answer, out of which one or more is/are correct.

1. Let z i= + +1 10 9 10 9cos( / ) sin( / ).p p  Then

(A) | | cosz = æ
èç

ö
ø÷

2
2

9

p
 (B) arg z =

8

9

p

(C) | | cosz = æ
èç

ö
ø÷

2
4

9

p
 (D) argz = 5

9

p

2. If z i= - +( ),1  then

(A) arg z =
p
4

  (B) arg z =
5

4

p

(C) Arg z =
-3

4

p
 (D) | |z = 2

3.  If z1, z2 and z3 are the vertices of an equilateral triangle 

described in counterclock sense and w ¹ 1 is a cube root 
of unity, then

Multiple Correct Choice Type Questions
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In each of the following questions, statements are given 
in two columns, which have to be matched. The state-
ments in Column I are labeled as (A), (B), (C) and (D), 
while those in Column II are labeled as (p), (q), (r), (s) 
and (t). Any given statement in Column I can have cor-
rect  matching with one or more statements in Column II. 
The appropriate bubbles corresponding to the answers 
to these questions have to be darkened as illustrated in 
the following example.

Example: If the correct matches are (A) ® (p), (s); 
(B) ® (q), (s), (t); (C) ® (r); (D) ® (r), (t); that is if the 
matches are (A) ® (p) and (s); (B) ® (q), (s) and (t); 
(C) ® (r); and (D) ® (r), (t); then the correct darkening 
of  bubbles will look as follows:

A

B

C

D

p q r s t

1. In Column I equations are given and in Column II the 
number of ordered pairs (x, y) satisfying the equations 
are given. Match them assuming that x and y are real 
numbers.

Column I Column II

(A) ( ) ( )x y i x y i+ + - = -2 2 3 5 4 (p) 1

(q) 2

(r) 3

(s) 4

(t) 0

(B) ( ) ( )x iy i i+ + - = +7 5 9 4

(C) x y i x y i2 2 2 2- - + =( )

(D) ( ) ( )2 3 3 2 2 3 52+ - - = - +i x i y x y i

Matrix-Match Type Questions

(A) z z z z w1 3 3 2- = -( )

(B) z z w z w1 2 3

2 0+ + =

(C) 
1 1 1

0
1 2 2 3 3 1z z z z z z-

+
-

+
-

=

(D) z z z z z z z z z1

2

2

2

3

2

1 2 2 3 3 1+ + = + +

4.  Let z1 = 1 + i, z2 = -1 - i and z3 be complex numbers 

such that z1, z2 and z3 form an equilateral triangle. 

Then z3 is equal to

(A) 3 1( )+ i   (B) 3 1( )- i

(C) 3 1( )i -   (D) 3 1( )- - i

5. If cos cos cos sin sin sin ,a b g a b g+ + = = + +0  then

(A) cos( ) cos( ) cos( )2 2 2 0a b g+ + =
(B) sin( ) sin( ) sin( ) sin( )3 3 3 3a b g a b g+ + = + +
(C) cos( ) cos( ) cos( ) cos( )3 3 3 3a b g a b g+ + = + +
(D) sin( ) sin( ) sin( )2 2 2 0a b g+ + =

6.  Let a > 0 and | z + (1/z)| = a (z ¹ 0 is a complex number). 
Then the maximum and minimum values of | z | are

(A) 
a a+ +2 4

2
 (B) 

2 4

2

2a a+ +

(C) 
a a2 4

2

+ -
 (D) 

a a2 4 2

2

+ -

7.  ABCD is a rhombus. Its diagonals AC and BD inter-
sect at M and satisfy BD = 2AC. If the points D and 
M are represented by the complex numbers 1 + i and 
2 – i, respectively, then A is represented by

(A) 3 - i/2 (B) 3 + i/2 (C) 1 + 3i/2 (D) 1 - 3i/2

8.  If the vertices of a square described in counter clock 

sense are represented by the complex numbers z1, z2, 
z3 and z4, then

(A) z i z i z2 1 3

1

2
1

1

2
1= + + -( ) ( )

(B) z i z i z4 1 3

1

2
1

1

2
1= - + +( ) ( )

(C) z i z i z3 2 4

1

2
1

1

2
1= - + +( ) ( )

(D) z i z i z1 2 4

1

2
1

1

2
1= + + -( ) ( )

9.  Let p and q be positive integers having no positive 
common divisors except unity. Let z1, z2, …, zq be the
q values of zp/q, where z is a fixed complex number. Then 
the product z1z2 	 zq is equal to

(A) zp, if q is odd (B) -zp, if q is even

(C) zp, if q is even (D) -zp, if q is odd
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1.  Passage: If z1, z2 and z3 are three complex numbers 
representing the points A, B and C, respectively, in the 
Argands plane and Ð =BAC a,  then

z z

z z
AC
AB

i3 1

2 1

-
-

= æ
èç

ö
ø÷

+(cos sin )a a

Answer the following three questions.

 (i)  The four points 2 + i, 4 + i, 4 + 3i and 2 + 3i repre-
sent the vertices of

(A) Square

(B) Rhombus but not a square

(C) Rectangle but not a square

(D)  Trapezium which is not rhombus/square/
rectangle

 (ii)  The roots of the equation z3 1 0- =  represent the 
vertices of

(A) An obtuse-angled triangle

(B) Isosceles but not an equilateral triangle

(C) Equilateral triangle

(D) Right-angled isosceles triangle

 (iii) If the roots of the equation

z a z a z a3

1

2

2 33 3 0+ + + =

represent the vertices of an equilateral triangle, then

(A) a a1

2

3=   (B) a a1

2

2=
(C) a a a1

2

2 3=   (D) a a a1

3

2 3=

2.  Passage: Let X, Y and Z be the three sets of complex 
 numbers defined as follows:

X z z= ³{ : Im( ) }1

Y z z i= - - ={ : | | }2 3

Z z z i= - ={ : Re( ( )) }1 2

Answer the following questions.

 (i) The number of elements in the set X Ç Y Ç Z is

(A) 0 (B) 1 (C) 3 (D) Infinite

 (ii)  Let z be any point in X Ç Y Ç Z. Then | z + 1 - i |2 +
| z - 5 - i |2 lies between

(A) 25 and 29 (B) 30 and 34

(C) 35 and 39 (D) 40 and 44

 (iii)  Let z be any point in X Ç Y Ç Z and w be any 
point  satisfying | w - 2 - i | < 3. Then | z | - | w | + 3 
lies between

(A) -6 and 3 (B) -3 and 6

(C) -6 and 6 (D) -3 and 9

Comprehension-Type Questions

2. Match the items in Column I with those in Column II.

Column I Column II

(A)  The number of values of q p pÎ -( , ) 

for which 3 2

1 2

+
-

i
i
sin

sin

q
q

 is purely real is (p) 2

(q) 3

(r) 4

(s) 0

(t) 1

(B)  The number of values of q p pÎ -( , ) 

for which 3 2

1 2

+
-

i
i
sin

sin

q
q

 is purely 

imaginary is

(C)  The number of solutions of the 
equation

( ) ( )

( ) ( )

x xi x iy

yi i

4 22 3

1 2 3 5

+ - +

= + + -
where x and y are positive real is

(D)  The number of complex numbers z 
such that z iz= 2  is

3. In Column I equations which are satisfied by complex 
number z are given. In Column II curves represented 

by equations with real coefficients are given. Match 
the items in Column I with those in Column II.

Column I Column II

(A)  If Re ,
iz
iz

+
-

æ
èç

ö
ø÷

=
1

1
2  then z 

lies on the curve

(p) 4 4

6 2 0

2 2x y x

y

+ + -
+ =

(q) x y y2 2 4 3 0+ + + =

(r) 3 2 4

0

2 2( )x y x y+ - -

=

(s) x y x y2 2 2 1 0+ - + - =

(t) ( ) ( )x y- + + =5 1 52 2

(B)  z1 = 6 + i, z2 = 4 - 3i and z 
is a complex number such 

that arg ,
z z
z z

-
-

æ
èç

ö
ø÷

=1

2 2

p
 

then z lies on

(C)  If Im ,
2 1

1
2

z
iz

+
+

æ
èç

ö
ø÷

= then z 

lies on

(D)  If 
2

1
1

z i
z

-
+

= , then z lies on
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In each of the following, two statements, I and II, are 
given and one of the following four alternatives has to 
be chosen.

(A)  Both I and II are correct and II is a correct reason-
ing for I.

(B)  Both I and II are correct but II is not a correct  
reasoning for I.

(C) I is true, but II is not true.
(D) I is not true, but II is true.

1.  Statement I: If p1 and p2 are distinct prime 
 numbers and a complex number a ¹ 1 satisfies 
the equation z z zp p p p1 2 1 2 1 0+ - - + = , then either 
1 02 11+ + + + =-a a a	 p  or 1 02 12+ + + + =-a a a	 p  
but not both.

   Statement II: For any two distinct prime numbers 
p1 and p2, the two equations z zp p1 21 0 1 0- = - =and  
cannot have common roots other than unity.

2.  Statement I: If a is a complex number satisfying the 
equation (z + 1)8 = z8, then Re(z) = -1.

   Statement II: If z1 and z2 are fixed complex numbers 
and z is any complex number such that | | | |z z z z- = -1 2 , 
then z lies on the perpendicular bisector the segment 
joining z1 and z2.

3. Let

a
x x

b
x x x

c
x x x

= + + + + ¥

= + + + + ¥

= + + + + ¥

1
3 6

1 4 7

2 5 8

3 6

4 7

2 5 8

	

	

	 ,

   Statement I: a b c abc3 3 3 3 1+ + - = .

    Statement II: a3 + b3 + c3 -  3abc = (a + b + c)(a + bw + cw2 ), 
(a + bw2 + cw) where w ¹ 1 is a cube root of unity.

4.  Statement I: Let lz lz m+ + = 0 be a line in the 
 complex plane, where l ¹ 0 is a complex number and 
m is a real number. If two points z1 and z2 are reflec-
tions of each other in the line, then lz l z m1 2 0+ + = .

    Statement II: Equation of the perpendicular bisec-
tor of the segment joining two points z1 and z2 in the 
complex plane is z z z z z z z z z z( ) ( ) .1 2 1 2 1 1 2 2 0- + - - + =

5.  Statement I: If a, b, c and u, v, w are complex  numbers 
representing the vertices of two triangles such that 
c a b w u v= - + = - +( ) ( ) ,1 1g g g gand  then the two 
 triangles are similar.

     Statement II: Complex numbers z z z z z z1 2 3 1 2 3, , , ,and ¢ ¢ ¢  
represent the vertices of directly similar triangles if 
and only if the determinant

z z

z z

z z

1 1

2 2

3 3

1

1

1

0

¢
¢
¢

=

6.  Statement I: If a and b are fixed complex  numbers, 
then the equation |(z - a)/(z - b)| = K(¹ 1) represents 
a circle whose radius and center are K |a - b|/|1 - K2| 
and (a - K2 b)/(1 - K2).

    Statement II: If a is a non-zero complex number 
and b is real such that | a |2 > b, then the equation 
zz az az b+ + + = 0   represents a circle with center at 

-a and radius aa b- .

7.  Statement I: Let A, B and C be vertices of a  triangle 
described in counter clock sense and, respectively, be 
 represented by z1, z2 and z3. Then the area of DABC  is 

|Im( )/ |.z z z z z z1 2 2 3 3 1 2+ +

     Statement II: The area of DABC  is equal to the 
absolute value of the number

i
z z

z z

z z
4

1

1

1

1 1

2 2

3 3

Assertion–Reasoning Type Questions

The answer to each of the questions in this section is a 
 non-negative integer. The appropriate bubbles below the 
respective question numbers have to be darkened. For 

example, as shown in the figure, if the correct answer to 
the question number Y is 246, then the bubbles under Y 
labeled as 2, 4, 6 are to be darkened.

Integer Answer Type Questions
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Multiple Correct Choice Type Questions

 1. (C), (D)
 2. (B), (C), (D)
 3. (A), (B), (C), (D)
 4. (B), (C)
 5. (A), (B), (C), (D)

  6. (A), (C) 
  7. (A), (D) 
  8. (A), (B)
  9. (A), (B) 

   ANSWERS

Single Correct Choice Type Questions

 1. (B)
 2. (C)
 3. (A)
 4. (D)
 5. (B)
 6. (D)
 7. (D)
 8. (D)
 9. (C)
10. (B)
11. (C)
12. (C)
13. (A)

14. (D)
15. (D)
16. (A)
17. (A)
18. (D)
19. (B)
20. (A)
21. (A)
22. (C)
23. (D)
24. (D)
25. (B)

X Y Z

0 0 0 0

1 1 1 1

2 2 2

3 3 3 3

9 9 9 9

8 8 8 8

7 7 7 7

6 6 6

5 5 5 5

4 4 4

W

1.  The number of common roots of the equations 
x5 - x3 +  x2 -  1 = 0 and x4 - 1 = 0 is .

2.  The quadratic equation z2 + (a + ib)z + (c + id) = 0 (a, 
b, c, d) are real and (bd ¹ 0) has equal roots. Then the 
value of ab/d is .

3.  If the equation z2 + (a + ib)z + (c + id) = 0 (a, b, c, d) 
are real and (bd ¹ 0) has real root, where k is real, 
then d2 - abd + bc is equal to .

4.  If z1 and z2 are complex numbers such that | z2 | ¹ 1 and

|( )/( )| , | |z z z z z1 2 1 2 12 2 1- - = then  is equal to .

  5.  If z2/z1 is pure imaginary and a and b are non-zero real 

numbers, then |( )/( )|az bz az bz1 2 1 2+ -  is equal to .

  6.  If the points 1 + 2i and -1 + 4i are real reflections of 
each other in the line z i z i K( ) ( ) ,1 1 0+ + - + =  then 
the value of K is .

  7.  If the straight lines a z a z bi i i+ + = 0(i = 1, 2, 3), where 
bi are real, are concurrent, then å -b a a a a1 2 3 2 3( )  is 
equal to .

  8.  The number of points z in the  complex plane  satisfying 

both the equations | | | |z i z i- - = - - +4 8 10 3 5and

| |z i- - =5 11 4 5 is .

  9.  If z = x + iy satisfies the equation z z2 2 2+ =  then 
x2 - y2 = K, where K is .

10.  If the area of a triangle with vertices Z1, Z2 and Z3 is 
the absolute value of the number

l i

Z Z

Z Z

Z Z

1 1

2 2

3 3

1

1

1

then the value of 1/l is equal to .
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Assertion–Reasoning Type Questions

1. (A)
2. (D)
3. (A)
4. (A)

 5. (A)
 6. (A) 
 7. (A) 

Integer Answer Type Questions
1. 2
2. 2
3. 0
4. 2
5. 1

 6. 6
 7. 0
 8. 2
 9. 1
10. 4

Matrix-Match Type Questions
1. (A) ® (p), (B) ® (p), (C) ® (q), (D) ® (q)
2. (A) ® (t), (B) ® (r), (C) ® (t), (D) ® (r)

   3. (A) ® (q), (B) ® (t), (C) ® (p), (D) ® (r)

Comprehension-Type Questions

1. (i) (A); (ii) (C); (iii) (B)  2. (i) (B); (ii) (C);       (iii) (D)
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A polynomial equation of 
the second degree having 
the general form

ax2 + bx + c = 0

is called a quadratic equation. 
Here x represents a variable, 
and a, b, and c, constants, 
with a ¹ 0. The constants a, b, 
and c are called, respectively, 
the quadratic coefficient, the 
linear coefficient and the 
constant term or the free 
term.

The term “quadratic”  comes 
from quadratus, which is the 
Latin word for “square”. 
Quadratic equations can be 
solved by factoring, completing 
the square, graphing, Newton’s 
method, and using the 
quadratic  formula (explained 
in the chapter).
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In this chapter, we will discuss  quadratic expressions and equations along with their roots. Numerous examples and 
worked-out problems would help the readers understand the concepts. Exercises at the end of the chapters would help 
evaluate your understanding.

4.1 | Quadratic Expressions and Equations

In this section, we discuss quadratic expressions and equations and their roots. Also, we derive various properties 
of the roots of quadratic equations and their relationships with the coefficients.

DEFINITION 4.1  A polynomial of the form ax bx c2 + + ,  where a, b and c are real or complex numbers and 
a ¹ 0, is called a quadratic expression in the variable x. In other words, a polynomial f (x) 
of degree two over the set of complex numbers is called a quadratic expression. We often 
write f x ax bx c( ) º + +2  to denote a quadratic expression and this is known as the standard 
form. In this case, a and b are called the coefficients of x2 and x, respectively, and c is called 
the  constant term. The term ax2 is called the quadratic term and bx is called the linear term.

DEFINITION 4.2  If f x ax bx c( ) º + +2  is a quadratic expression and a is a complex number, then we write 
f (a) for a b ca a2 + + . If f (a) = 0, then a is called a zero of the quadratic expression f (x). 

(1)  Let f (x) º x2 - 5x - 6. Then f (x) is a quadratic expres-
sion and 6 and –1 are zeros of f (x). 

(2)  Let f (x) º x2 + 1. Then f (x) is a quadratic expression 
and i and –i are zeros of f (x). 

(3)  Let f x x ix( ) º - +2 12  be a quadratic expression. In 
this case i and −i/2 are zeros of f (x). 

(4)  The expression x2 + x is a quadratic expression and 
0 and –1 are zeros of x2 + x.

Examples

DEFINITION 4.3  If f (x) is a quadratic expression, then f (x) = 0 is called a quadratic equation. If a is a zero 
of f  (x), then a is called a root or a solution of the quadratic equation f (x) = 0. In other 
words, if f x ax bx c a( ) , ,º + + ¹2 0  then a complex number a  is said to be a root or a solution 
of f (x) = 0, if aa 2 + ba + c = 0. The zeros of the quadratic expression f (x) are same as the roots 
or solutions of the quadratic equation f (x) = 0. Note that a is a zero of f (x) if and only if x − a 
is a factor of f (x).

Examples

(1)  0 and –i are the roots of x ix2 + = 0.

(2)  2 is the only root of x x2 4 4 0- + = .

(3)  i and –i are the roots of x2 1 0+ = .

(4)  i is the only root of x ix2 2 1 0- - = .

THEOREM 4.1 Let f (x) º ax2 + bx + c be a quadratic expression. Then the roots of the quadratic equation 
f (x) = 0 are

- ± -b b ac

a

2 4

2

that is,

- + - - - -b b ac

a

b b ac

a

2 24

2

4

2
and

PROOF First note that for f x ax bx c( ) º + +2  to be a quadratic equation, it is necessary that a ¹ 0. Let a 
be any complex number. Then
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a a a

a a

a

 is a root of f x a b c

a a b c

a b b

( )

( )

( )

= Û + + =

Û + + =

Û + -

0 0

4 0

2

2

2

2 22

2 2

2

2

4 0

2 4

2 4

4

2

+ =

Û + = -

Û + = ± -

Û =
- ± -

ac

a b b ac

a b b ac

b b ac

a

( )a

a

a
 ■

Note that, in the above, b ac2 4-  denotes a square root of b ac2 4- ;  that is, it is a complex number b such that 

b2 2 4= -b ac.  From the above theorem, it follows that any quadratic equation has two roots, which are not neces-
sarily distinct. This is demonstrated in the examples described before. In the following some more examples are 
considered.

Examples

(1)  Consider the quadratic equation f(x) º x2 + x + 1 = 0. 
Comparing with the standard form ax bx c2 + + ,  we 
have a b c= = =1 . Therefore, the roots of the given 
equation are

- ± -
=

- ± - ´ ´
´

=
- ±b b ac

a
i2 24

2

1 1 4 1 1

2 1

1 3

2

Recall from the previous chapter that these are 
 precisely the cube roots of unity other than the unity.

(2)  The roots of the quadratic equation x2 + 4ix - 4 = 0 
are

- ± - - ´
´

=
- ± - +

= -
4 4 4 4 1

2 1

4 16 16

2
2

2i i i
i

( ) ( ( ) )

-2i is a repeated root or a double root of the given 
equation.

(3)  Consider the equation 3 2 1 02x x+ + = . The roots of 
this equation are

- ± - ´ ´
´

= - ±
2 2 4 3 1

2 3

1

3
1 2

2( )
( )i

(4)  Consider the equation 3 2 10 3 02( ) ( ) .x x+ + - =  
To find its roots, we have to first transform this into 
the standard form ax bx c2 0+ + = . We thus obtain

3 2 10 3 3 10 8 32 2( ) ( )x x x x+ + - = + -

Therefore, the roots of the given equation are

- ± - -
=

- ±
= -

10 10 4 3 8 3

2 3

10 14

2 3

2

3
4 3

2( ) ( )
,

DEFINITION 4.4  Let f x ax bx c a( ) , .º + + ¹2 0  Then the discriminant of the quadratic expression f x( )  or the 
quadratic equation f x( ) = 0 is defined as b ac2 4-  and is denoted by D[ ( )]f x  or simply D.

It is evident that the roots of a quadratic equation f x( ) = 0 are real or imaginary according as the discriminant of 
f x( )  is non-negative or negative, respectively. In the following we list the various natures of roots of a quadratic equa-
tion which mainly depend on the nature of the discriminant. The proof of the following theorem is a  straight-forward 
verification.

THEOREM 4.2 Let a band  be the roots of the quadratic equation f x ax bx c( ) ,º + + =2 0  where a, b and c are 
real or complex numbers and a ¹ 0. Let D be the discriminant of f x( ),  that is, D = -b ac2 4 . Then 
the following hold good:

1. a b= Û D = =0 42( ),i.e., b ac  and in this case

a b=
-

=
b
a2
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2. If a, b and c are real numbers, then

 (i) D > Û0 a band  are real numbers and a b.¹
 (ii) D < Û0 a band  are non-real complex numbers which are conjugate to each other.

PROOF The proof is left as an exercise for the readers. ■

Examples

(1)  The equation x x2 5 7 0+ + =  has no real roots, since 
the discriminant ( ) .5 4 7 1 3 02 - ´ ´ = - <

(2)  Suppose that we wish to find the value of k such that 
the equation x k x k2 2 2 9 0+ + + =( )  has equal roots. 
The discriminant is given by

D = - = + -b ac k k2 24 2 2 4 1 9[ ( )] ´ ´

= + + -4 16 16 362k k k

= - +4 20 162k k
Since the roots are equal, therefore the discriminant 
should be zero, that is

D = Û - + =

Û =
- - ± - - ´ ´

Û =
±

=

0 5 4 0

5 5 4 1 4

2

5 3

2
4 1

2

2

k k

k

k

( ) ( )

or

(3)  If a, b and c are rational numbers, then the roots of 
the equation

x ax a b bc c2 2 2 22 2 0- + - + - =

are also rational, for the discriminant is given by

D = - - ´ ´ - + -

= - + - +

= - +

( ) ( )2 4 1 2

4 4 4 8 4

4 8 4

2 2 2 2

2 2 2 2

2

a a b bc c

a a b bc c

b bc c22

24= -( )b c

Since b and c are rational numbers, (b - c)2 is a 
non-negative rational number and hence D ³ 0, so that 
the given equation has real roots. Also, the roots are

- - ± -
= ± -

( ) ( )
( )

2 4

2

2a b c
a b c

which are rational numbers, since a, b and c are so.

THEOREM 4.3 Let a band  be the roots of the quadratic equation ax bx c2 0+ + = . Then

a b ab+ =
-b
a

c
a

and =

PROOF The values of a band  are given by 

- ± -b b ac

a

2 4

2  

and hence

a b+ =
- + -

+
- - -

=
-b b ac

a

b b ac

a
b

a

2 24

2

4

2

and ab =
- + -

´
- - -

=
- -

=
b b ac

a

b b ac

a
b b ac

a
c
a

2 2 2 2

2

4

2

4

2

4

4

( )  
■

Also, we can write down a quadratic equation if the roots are known. In other words, if a band  are any given 
complex numbers, then a x x a x x( )( ) [ ( ) ]- - = + - - + =a b a b ab 0 is a quadratic equation whose roots are a and b, 
where a is an arbitrary non-zero real or complex number. This can also be verified by observing

ax bx c a x
b
a

x
c
a

a x x

a x x

2 2

2

+ + = + +æ
èç

ö
ø÷

= - + +

= - -

( ( ) )

( )( )

a b ab

a b
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QUICK LOOK 1

If the coefficient of x2 in a quadratic equation is unity 
(i.e., 1), then

1.  The sum of the roots is equal to the coefficient of x 
with its sign changed; that is, a b+ + =b 0, where b 
is the coefficient of x.

2.  The product of the roots is equal to the constant term.

3.  The equation can be written as ( )( ) ,x x- - =a b 0  
where a band  are the roots.

Example     4.1   

Find the quadratic equation whose roots are 2 and –i.

Solution: The required quadratic expression is

( )[ ( )] ( )( ) ( )x x i x x i x i x i- - - = - + = + - -2 2 2 22

Hence the equation is x i x i2 2 2 0+ - - =( ) .

Example     4.2   

Find the quadratic equation whose roots are 1 + i and 
1 – i and in which the coefficient of x2 is 3.

Solution: The required quadratic expression is

3 1 1 3 1 1

3 1 1

3 6

2

2

[ ( )]( ( )) [( ) )][( ) ]

[( ) ]

x i x i x i x i

x

x

- + - - = - - - +

= - +

= - xx + 6

Hence the equation is 3x2 - 6x + 6 = 0.

Example     4.3   

If a and b are roots of the quadratic equation ax bx2 + +   
c = 0 and z is any complex number, then find the quadratic 
equation whose roots are z za band .

Solution: We have 

a b ab+ =
-

=
b

a
c
a

and

The equation whose roots are z za band  is

0

2

2 2

2

= - -

= - + + ´

= + - + +

= +

( )( )

( )

[ ( )]

x z x z

x z z x z z

x z x z

x z
b
a

a b

a b a b

a b ab

ææ
èç

ö
ø÷

+x z
c
a

2

that is,

ax zbx z c2 2 0+ + =

Example     4.4   

If a and b are the roots of a quadratic equation 
ax bx c2 0+ + = , then find the quadratic equation whose 
roots are a b+ +z zand ,  where z is any given  complex 
number.

Solution: We have 

( ) ( ) ( )a b a b+ + + = + + =
-

+z z z
b

a
z2 2

and ( ) ( ) ( )a b ab a b+ × + = + + + = - +z z z z
c
a

b
a

z z2 2

Therefore, the required equation is

0

2

= - + ´ - +

= + - + - + + + +

=

a x z x z

ax a z z x a z z

ax

[ ( )] [ ( )]

[ ( ) ( )] ( )( )

a b

a b a b

22 2

2 2

2

2

+ -æ
èç

ö
ø÷

+ - +æ
èç

ö
ø÷

= + - + - +

a
b
a

z x a
c
a

b
a

z z

ax b az x c bz az( ) ( )

Therefore, the quadratic equation whose roots are a + z  
and b + z  is

ax b az x c bz az2 22 0+ - + - + =( ) ( )

Example     4.5   

Let a and b be the roots of a quadratic equation 
ax bx c2 0+ + =  and p and q be any complex numbers. 

Then find the quadratic equation whose roots are p qa +  
and p qb + .



Chapter 4  Quadratic Equations174

Solution: Consider,

( ) ( ) ( )p q p q p q
pb
a

qa b a b+ + + + + = - += 2 2

and ( ) ( ) ( )p q p q p pq qa b ab a b+ × + = + + +2 2

= - +
p c
a

pqb
a

q
2

2

Therefore, the required equation is

x
pb
a

q x
p c
a

pqb
a

q

ax pb aq x p c p

2
2

2

2 2

2 0

2

-
-

+æ
èç

ö
ø÷

+ - +
æ
èç

ö
ø÷

=

+ - + -( ) ( qqb q a+ =2 0)

Example     4.6   

If a band  are roots of the quadratic equation

ax bx c c2 0 0+ + = ¹and

find the quadratic equation whose roots are 1 1/ / .a band

Solution: First, let us observe that a b¹ ¹0 0 and ,  as a 
and b are roots of  ax bx c c2 2 0 0+ + = ¹and .  Now, consider

1 1

a b
a b

ab
+ =

+
=

-
= -

b a
c a

b
c

/

/

and 
1 1 1 1

a b ab
æ
èç

ö
ø÷

æ
èç

ö
ø÷

= = =
c a

a
c/

Therefore, the required equation is

x
b

c
x

a
c

2 0-
-æ

èç
ö
ø÷

+ =

That is,

cx bx a2 0+ + =

The results obtained in the examples given above are summarized in the following and the reader can easily  
supplement formal proofs of these.

QUICK LOOK 2

Let f x ax bx c( ) º + + =2 0  be a quadratic equation and  
a band  be its roots. Then the following hold good.

1.  f (x - z) = 0 is an equation whose roots are  a + z and 
b + z, for any given complex number z.

2.  f x z( / ) = 0 is an equation whose roots are z za band   
for any non-zero complex number z.

3. f x( )- = 0 is an equation whose roots are -a and -b.

4.  If ab ¹ ¹0 0and c ,  f(1/x) = 0 is an equation whose 
roots are 1 1/ / .a band

5.  For any complex numbers z1 and z2 with z1 0¹ ,  
f x z z[( )/ ]- =2 1 0 is an equation whose roots are 

z z z z1 2 1 2a b+ +and .

Note: If ax bx c2 0+ + =  is a quadratic equation, then for any non-zero complex number d, the equation

dax dbx dc2 0+ + =

has the same roots as  ax bx c2 0+ + = . Therefore, given a band ,  the quadratic equation whose roots are a band  is not 
unique. However any two such equations are equivalent in the sense that their coefficients are proportional.

THEOREM 4.4 Two quadratic equations

ax bx c a x b x c2 20 0+ + = ¢ + ¢ + ¢ =and

have same roots if and only if the triples ( , , )a b c  and ( , , )¢ ¢ ¢a b c  are proportional and, in this case,

ax bx c
a
a

a x b x c2 2+ + =
¢

¢ + ¢ + ¢( )

PROOF Suppose that a band  are the roots of ax bx c a x b x c2 20 0+ + = ¢ + ¢ + ¢ =and  simultaneously. Then 
by Theorem 4.3 we have

-
= + = - ¢

¢
= = ¢

¢
b

a
b
a

c
a

c
a

a b aband
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Now

( , , ) , , , , ( , , )a b c a
b
a

c
a

a
b
a

c
a

a
a

a b c= æ
èç

ö
ø÷

= ¢
¢

¢
¢

æ
èç

ö
ø÷

=
¢

¢ ¢ ¢1 1

Therefore, ( , , )a b c  and ( , , )¢ ¢ ¢a b c  are proportional and

ax bx c
a
a

a x b x c2 2+ + =
¢

¢ + ¢ + ¢( )

Conversely, suppose that (a, b, c) and ( , , )¢ ¢ ¢a b c  are proportional. Then, there is non-zero d such that

( , , ) ( , , )a b c d a b c= ¢ ¢ ¢

and hence ax bx c d a x b x c2 2+ + = ¢ + ¢ + ¢( ).  Therefore, for any complex number a,

 a b c a b ca a a a2 20 0+ + = Û ¢ + ¢ + ¢ =  ■

Example

The quadratic equations 2 3 1 02x x+ + =  and 6 9 3 02x x+ + =  have same roots since 3(2, 3, 1) = (6, 9, 3).

Example     4.7   

Let a band  be the roots of the quadratic equation

ax bx c c2 0 0+ + = ¹,

Find the quadratic equation whose roots are 

1 1- -a
a

b
b

and

Solution: We have 

a b ab+ =
-

=
b

a
c
a

and

Now,  consider

1 1 1 1

2

2

-
+

-
=

- + -

=
+ -

=
- -

a
a

b
b

b a a b
ab

a b ab
ab

( ) ( )

( )

( / ) ( / )

/

b a c a
c a

=
- -

= - +æ
èç

ö
ø÷

b c
c

b
c

2
2

Also

1 1 1

1

-æ
èç

ö
ø÷

-æ
èç

ö
ø÷

=
- + +

=
+ +

=
+ +

a
a

b
b

a b ab
ab

( )

( / ) ( / )

/

b a c a
c a

a b c
c

Therefore, the quadratic equation whose roots are (1 - a)/a 
and ( )/1 - b b  is

x
b
c

x
a b c

c

cx b c x a b c

2

2

2 0

2 0

- - +æ
èç

ö
ø÷

é
ëê

ù
ûú

+
+ +

=

+ + + + + =( ) ( )

Example     4.8   

If a and b are the roots of the quadratic equation 
ax bx c2 0+ + = , then evaluate the following:

(i) a b2 2+  (ii) a b3 3+  (iii) a b4 4+

Solution: We know that 

a b+ =
-b
a

 and ab =
c
a

 (i) a b a b ab2 2 2

2

2

2

2

2
1

2

+ = + -

= -æ
èç

ö
ø÷

- æ
èç

ö
ø÷

= -

( )

( )
b
a

c
a a

b ac

(ii) a b a b ab a b3 3 3

3

3

3

3
1

3

+ = + - +

= -æ
èç

ö
ø÷

- æ
èç

ö
ø÷

-æ
èç

ö
ø÷

=

( ) ( )

(
b
a

c
a

b
a a

abbc b- 3 )
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(iii) a b a b a b4 4 2 2 2 2 2

2

2

2 2

2

1
2 2

+ = + -

= -é
ëê

ù
ûú

- æ
èç

ö
ø÷

( )

( )
a

b ac
c
a

= - -

= + -

1
2 2

1
2 4

4

2 2 2 2

4

4 2 2 2

a
b ac c a

a
b c a ab c

[( ) ]

[ ]

Example     4.9   

Find the quadratic equation whose roots are a band , 
where a b a b+ = + =1 132 2and .

Solution: We have 

ab a b a b= + - + = - = -
1

2

1

2
1 13 62 2 2[( ) ( )] ( )

Therefore, the required equation is

0 62 2= - + + = - -x x x x( )a b ab

Certain polynomial equations of degree greater than two can be reduced to quadratic equations by suitable  substitutions. 
These are demonstrated in the following examples.

Example     4.10   

Find the solutions of the equation

x x4 24 5 0- - =

Solution: Put y = x2. Then the given equation is reduced to

y y

y y

2 4 5 0

5 1 0

- - =

- + =( )( )

This gives y = -5 1, . Therefore

x

x i

2 5 1

5

= -

= ± ±

,

,

Hence 5 5, ,-  i and -i are the solutions of the given 
equation.

Example     4.11   

Solve the equation x x x x4 3 23 2 3 1 0- + - + = .

Solution: Since zero is not a solution of this  equation, 
we can divide both sides of the equation by x2 and get 
an equation whose roots are same as that of the given 
 equation. That is

x x
x x

x
x

x
x

2

2

2

2

3 2
3 1

0

1
3

1
2 0

- + - + =

+ - +æ
èç

ö
ø÷

+ =

Putting y x x= + ( / ),1  we get

( )y y

y y

2

2

2 3 2 0

3 0

- - + =

- =

This gives y = 0, 3. When y = 0, we have

x
x

x x i+ = Þ + = Þ = ±
1

0 1 02

When y = 3, we have 

x
x

x x

x

+ = Þ - + =

Þ =
- - ± - -

=
±

1
3 3 1 0

3 3 4

2

3 5

2

2

2( ) ( )

Thus i i, , ( )/ )/- + -3 5 2 5 2and (3  are the solutions of 
the given equation.

Example     4.12   

Solve x x2 5 1 53 4 0/ / .+ - =

Solution: By substituting y = x1 5/ ,,  the given equation 
reduces to a quadratic equation given by

y y

y y

y

2 3 4 0

4 1 0

1 4

+ - =

+ - =

= -

( )( )

or
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Example     4.13   

Solve 4 3 4 4 0x x+ × - =- .

Solution: Substituting y = 4x,  we get

y
y

y y

y y

y

+ - =

- + =

- - =

=

3
4 0

4 3 0

3 1 0

3

2

( )( )

or 1

Now

y x

y x

x

x

= Þ = Þ =

= Þ = Þ =

1 4 1 0

3 4 3 34log

Therefore 0 and log4 3  are the solutions of the given 
equation.

Example     4.14   

Solve the following:

x
x

x
x1

1 13

6-
+

-
=

Solution: Substituting y for x x/( ),1 -  we get

y
y

y y

y y

y

+ =

- + =

- - =

=

1 13

6

6 13 6 0

2 3 3 2 0

3

2

2

3

2

( )( )

or

Now

y
x

x

x x

x

y
x

x

x x

x

= Þ
-

=

Þ = -

Þ =

= Þ
-

=

Þ = -

Þ =

3

2 1

3

2

4 9 1

9

13

2

3 1

2

3

9 4 1

4

13

( )

( )

Therefore 9/13 and 4/13 are the solutions of the given 
equation.

Example     4.15   

Find all pairs of consecutive positive odd integers such 
that the sum of their squares is 290. 

Solution: Let x be a positive odd integer. Then x + 2 
will be the next odd integer. We have to find all the value 
of x for which

x x

x x

2 2

2

2 290

2 4 286 0

+ + =

+ - =

( )

x x

x x

x x

2 2 143 0

13 11 0

13

+ - =

+ - =

= - =

( )( )

or 11

But x is given to be odd positive integer. Therefore 
x x= + =11 2 13and . Thus, ( , )11 13  is the unique pair of 
consecutive positive odd integers such that the sum of 
their squares is 290.

Now

y x x

y x x

= Þ = Þ =

= - Þ = - Þ = - = -

1 1 1

4 4 4 1024

1 5

1 5 5

/

/ ( )

Therefore −1024 and 1 are the solutions of the given 
equation.
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Example     4.16   

Derive a necessary condition that one root of the 
 quadratic equation ax2 + bx + c = 0, a ¹ 0 and c ¹ 0, 
is n times the other, where n is a positive integer.

Solution: Let a and na be roots of the equation ax2 + 

bx c+ = 0. Then

a a a a+ = - × =n
b
a

n
c
a

and

Therefore

a =
-

+
-

+
æ
èç

ö
ø÷

=
b

a n
b

a n
n

c
a( ) ( )1 1

2

and

Simplifying the second equation we get nab2 = (n + 1)2 
a2c. Now since a nb n ac¹ = +0 12 2, ( ) .

THEOREM 4.5 If a, b and c are real numbers and a ¹ 0, then ( )/4 42ac b a-  is the maximum or  minimum value of 
quadratic equation of f x ax bx c( ) º + +2  according as a a< >0 0or ,  respectively.

PROOF We have

f x ax bx c a x
b
a

x
c
a

a x
b
a

ac b
a

( ) º + + º + +æ
èç

ö
ø÷

º +æ
èç

ö
ø÷

+
-é

ë
ê
ê

2 2

2 2

22

4

4

ùù

û
ú
ú

º +æ
èç

ö
ø÷

+
-

a x
b
a

ac b
a2

4

4

2 2

If a < 0, then

f x
ac b

a
f

b
a

( ) £
-

=
-æ

èç
ö
ø÷

4

4 2

2

 for all x Î�

Hence ( )/4 42ac b a-  is the maximum value of f x( ).
If a > 0, then

f
b
a

ac b
a

f x
-æ

èç
ö
ø÷

=
-

£
2

4

4

2

( ) for all x Î�

Hence ( )/4 42ac b a-  is the minimum value of f x( ). ■

QUICK LOOK 3

1.  If a, b and c are real numbers and a < 0, then
f(-b/2a) is the maximum value of f(x) º ax2 + bx + c.

2.  If a, b and c are real numbers and a > 0, then f(-b/2a) 
is the minimum value of f(x) º ax2 + bx + c.

Examples

(1)  The maximum value of 2 32x x- +  is

2
2

2 1

2

2 1
3 2 1 3 4

2

-
-

æ
èç

ö
ø÷

-
-
-

æ
èç

ö
ø÷

+ = - + =
( ) ( )

(2)  The minimum value of x x2 3 2+ +  is

-æ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

+ = - + = -
3

2 1
3

3

2 1
2

9

4

9

2
2

1

4

2

( ) ( )

THEOREM 4.6 Let f x ax bx c( ) ,= + +2  where a b c, and  are real numbers and a ¹ 0.

1. If a band  are real roots of f x( ) ,= <0 and a b  then

 (i) f x( )  and a will have the same sign for all real x x< >a bor .

 (ii) f x( )  and a will have opposite sign for all real x such that a b< <x .

2. If f x( ) = 0 has imaginary roots, then f x( )  and a will have the same sign for all real x.
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PROOF 1. It is given that f x a x x( ) ( )( ).º - -a b  Therefore

f x
a

x x
( )

( )( )= - -a b

  (i)  If x < a,  then x < b  also and hence x x- -a band  are both negative, so that f x a( )/ .> 0  
Similarly, if x > b, then x > a  also and hence both x x- -a band  are positive, so that 
f x a( )/ .> 0  Therefore, in either case, f x a( )/  is positive, and hence f x( )  and a are either 
both positive or both negative.

 (ii)  If a b< <x ,  then x - >a 0 and x - <b 0  and hence f x a( )/ < 0 which implies that one of 
f x( )  and a are positive and the other is negative.

2. Suppose that f x( ) = 0 has imaginary roots.  Then b ac2 4 0- <  and

f x
a

x
b
a

ac b
a

( )
= +æ

èç
ö
ø÷

+
-

>
2

4

4
0

2 2

2

 

for all real x. Hence either both f x( )  and a are positive or both are negative. ■

QUICK LOOK 4

Let f x ax bx c( ) ,º + +2  where a, b and c are real numbers and a ¹ 0. Consider the graph of the curve y ax bx c= + +2 .  
Different cases considered in Theorem 4.6 are described next by means of the graph of y ax bx c= + +2 .

1.

 

y = ax 2+bx+c

y

a < 0

xa b

y = ax 2+bx+c

xba

y

a > 0

 f x( ) < 0 for all x Ï[ , ]a b  f x( ) > 0 for all x Ï[ , ]a b
 f x( ) > 0 for all x Î( , )a b  f x( ) < 0 for all x Î( , )a b
2.

y = ax 2+bx+c

y = ax 2+bx+c

y

a < 0

a > 0

x x

y

 f x( ) = 0 has no real roots f x( ) = 0 has no real roots

Examples

(1)  2x2 - 11x + 15 > 0 for all x < 5/2 or x > 3 [by Theorem 
4.6 (1(i))] and 2x2 - 11x + 15 < 0 for all 5/2 < x < 3 
[by Theorem 4.6 (1(ii))] since 5/2 and 3 are roots of 
this quadratic expression in which the coefficient of x2 
is 2 > 0. 

(2)  -2x2 + x + 15 < 0  for all  x < -5/2 or x > 3 and -2x2 + x + 
15 0 5 2> - < <for all 3/ x

 
since -( / )5 2 and 3 are roots 

of this quadratic expression in which the coefficient of 
x2 2 0= - < .
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1.  If the equations

x ax2 1 0+ + =  and x x a2 0- - =

have a real common root, then the value of a is

(A)  0 (B) 1 (C) −1 (D) 2

Solution: Let a be a real common root. Then

a a

a a

2

2

1 0

0

+ + =

- - =

a

a
Therefore

a

a

( ) ( )

( )( )

a a

a

+ + + =

+ + =

1 1 0

1 1 0

If a = -1,  then the equations are same and also cannot 
have a real root. Therefore a + ¹1 0 and hence a = -1,  
so that a = 2.

 Answer: (D)

2.  If the roots of the equation x px q2 0+ + =  are cubes 
of the roots of the equations x mx n2 0+ + = ,  then

(A)  p m mn= +3 3  (B) p m mn= -3 3

(C) p q m+ = 3  (D) 
p
q

m
n

= æ
èç

ö
ø÷

3

Solution: Let a and b be the roots of the equation 
x mx n2 0+ + = . Therefore 

a b ab+ = - =m n,  

Also since a and b are the roots of the equation 

x mx n2 0+ + = ,  so that a3  and b3  are the roots of the 
equation x px q2 0+ + = . Now,

a b a b3 3 3 3+ = - =p qand

We have

- = +

= + - +

= - - -

p

m n m

a b

a b ab a b

3 3

3

3

3

3

( ) ( )

( )

Therefore p m mn= -3 3 .

 Answer: (B)

3.  If ( ) ( )x x y y y2 25 4 1 2- + + + <  for all real numbers 
y then x belongs to the interval

(A)  (3, 4) (B) (3, 5) (C) (2, 3) (D) (–1, 2)

Solution: Let m x x= - +2 5 4. Then my m y2 2+ - +( )  
m < 0  for all real y. Therefore, m < 0  (by taking y = 0 ) 
and ( ) .m m- - <2 4 02 2  Hence we have

m m m

m m m

< + - >

Þ < - + >

0 4 4 0

0 2 2 0

2and 3

and 3( )( )

This gives m < -2  and so

x x x x x2 5 6 0 2 3 0 2 3- + < Þ - - < Þ Î( )( ) ( , )

 Answer: (C)

4.  If p is prime number and both the roots of the equation 
x px p2 444 0+ - =( )  are integers, then p is equal to

(A)  2 (B) 3 (C) 31 (D) 37

Solution: Suppose the roots of x px p2 444 0+ - =( )  are 
integers. Then the discriminant

p p p p2 + = + ´4 444 4 444( ) { ( )}

must be a perfect square. Therefore p divides p + 4 ´ 
(444). This implies

p divides 4 444 2 3 374´ = ´ ´( )

Therefore

p = 2 37or 3 or

If p = 2 or 3 then p p2 4 444+ ( )  is not a perfect square and 
when p = 37, it is a perfect square. Therefore, p = 37.

 Answer: (D)

5.  If a, b and c are distinct real numbers, then the number 
of real solutions of the equation

( )( )

( )( )

( )( )

( )( )

( )( )

( )(

x a x b
c a c b

x b x c
a b a c

x c x a
b c

- -
- -

+
- -
- -

+
- -
- bb a-

+ =
)

1 0

is

(A)  0 (B) 1 (C) 2 (D) infinite

Solution: Let p x( ) = 0  be the given equation. Then 

p a p b p c( ) ( ) ( )= = = 2

Since p x( ) is a polynomial of degree 2 and a, b and c 
are distinct real numbers, it follows that p(x) º 2, that is 
p x( ) = 2  for all x.

 Answer: (A)

6.  The number of real solutions of the equation

x x x x+ - - + + - - =14 8 2 23 10 2 3
 

is

(A)  2 (B) 4 (C) 8 (D) infinite

Solution: The given equation is

( ) ( )x x

x x

- - + - - =

- - + - - =

2 4 2 5 3

2 4 2 5 3

2 2

   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions



Put x y- - =2 5 . Then, the given equation becomes

| | | |y y+ + =1 3

Case 1:  Suppose y ³ 0. Then y + 1 + y = 3 or y = 1. Therefore

x x- - = Þ =2 5 1 38

Case 2:  Suppose y £ -1. Then y + 1 £ 0. This implies

-(y + 1) - y = 3 or y = -2

Hence

x x- - = - Þ =2 5 2 11

Note that -1 < y < 0 is impossible (for, otherwise, 3 = 
|y + 1| + |y| = y + 1 - y). Thus, x = 38 or 11.

 Answer: (A)

7.  If a and b are roots of the equation (x + c)(x + d) -
k = 0, then the roots of the equation( )( )x a x b- - +  
k = 0 are

(A)  c, d (B) −c, −d (C) −c, d (D) c, −d

Solution: If a and b are roots of the equation ( )x c+  
( ) ,x d k+ -  then 

( )( ) ( )( )x c x d k x a x b+ + - = - -
 

and hence

( )( ) ( )( )x a x b k x c x d- - + = + +

Therefore, - -c d,  are the roots of ( )( ) .x a x b k- - + = 0

 Answer: (B)

8.  The number of integer values of x satisfying 

( ) ( )x x x x+ > - + < -1 5 1 1 7 32 2and  

simultaneously is

(A)  1 (B) 2 (C) 4 (D) 0

Solution: The first inequality,

 

( )

( )( )

x x x x

x x

x x

+ > - Þ - + >

Þ - - >

Þ < >

1 5 1 3 2 0

1 2 0

1 2

2 2

or  (4.1)

The second inequality,

 

( )

( )( )

x x x x

x x

x

+ < - Þ - + <

Þ - - <

Þ < <

1 7 3 5 4 0

1 4 0

1 4

2 2

 (4.2)

From Eqs. (4.1) and (4.2), we get 2 4< <x  and that x is 
an integer. Therefore x = 3.

 Answer: (A)

9.  The minimum value of “a” for which the real values 
if x such that 

5 5
2

5 51 1 2 2+ - -+ +x x x xa
, ,

exist and are in arithmetic progression is 

(Note: p, q, r are said to be in arithmetic progression 
if q p r q- = - .)

(A)  -33/4 (B) 33/4 (C) −12 (D) 12

Solution: Put y x x= + -5 5 . Then 5 2 22y a y, / , -  are in 
AP. Therefore

5 2 2
2

2y y
a

a+ - = æ
èç

ö
ø÷

=

This implies that y y a2 5 2 0+ - - =  has real solutions. 
Hence

 

25 4 2 0

33

4

+ + ³

³ -

( )a

a  (4.3)

Also, since ( ) ,/ /5 5 02 2 2x x- ³-  we get that

 y x x= + ³-5 5 2

Therefore

 a y y= + - ³2 5 2 12  (4.4)

From Eqs. (4.3) and (4.4), we get a ³ 12. Therefore the 
minimum value of a is 12 and for this value of a, we have

y y

y y

y

2 5 14 0

7 2 0

7 2

+ - =

+ - =

= -

( )( )

or

But y x x= + >-5 5 0.  Therefore y = 2. This implies

5 5 2

5 2 5 1 0

5 1 0

5 1

0

2

2

x x

x x

x

x

x

+ =

- ´ + =

- =

=

=

-

( )

Therefore the following are in arithmetic progression:

5 5 10
2

6 5 5 21 1 2 2+ - -+ = = + =x x x xa
, and

 Answer: (D)

10.  Let a, b be positive real numbers. If the equations 
x ax b2 2 0+ + =  and x bx a2 2 0+ + =  have real roots, 
then minimum value of a b+  is

(A)  4 (B) 6 (C) 8 (D) 2

Solution: We have

 x ax b a b2 22 0 8+ + = Þ ³has real roots  (4.5)

 x bx a b a2 22 0+ + = Þ ³has real roots  (4.6)

Worked-Out Problems 181



Chapter 4  Quadratic Equations182

Therefore

 

a b
a a

a a

£ £
æ
èç

ö
ø÷

=

£ ³

2
2 2 4

3

8 64

64 4or

 

(4.7)

Now, 

 b a a b2 4 2³ ³ Þ ³and  (4.8)

From Eqs. (4.7) and (4.8), we have a + b ³ 6 and, for 
values a = 4 and b = 2, the equations x ax b x2 22 2+ + = +( )  
and x bx a x2 22 2+ + = +( )  have real roots.

 Answer: (B)

11.  Let a, b, c and d be non-zero real numbers. If c and d 
are roots of the equation x ax b2 0+ + =  and a and b 
are roots of the equation x cx d2 0+ + = ,  then the 
value of - + + +( )a b c d  is

(A) 1 (B) 2 (C) 3 (D) 4

Solution: Since c and d are roots of the equation 

x ax b2 0+ + = ,  we have

 c d a cd b+ = - =and  (4.9)

Since a and b are roots of the equation x cx d2 0+ + = , 
we have

 a b c ab d+ = - = and   (4.10)

From Eqs. (4.9) and (4.10) we have 

a b c a c d+ + = = + +0

and cd b ab d= =,

We thus have b d= ¹ 0. Therefore a = c = 1 and b = d = -2. 
Hence

a b c d d d

a b c d

+ + + = + = = -

- + + + =

0 2

2( )

 Answer: (B)

12.  If (a - 1)(x2 + x + 1)2 - (a + 1)(x4 + x2 + 1) = 0 has distinct 
real roots, then

(A) | |a < 2  (B) | |a > 2

(C) | |a = 2  (D) a is not a real number

Solution: Consider

x x x2

2

1
1

2

3

4
0+ + = +æ

èç
ö
ø÷

+ >  (for all real x)

Therefore, the given equation can be written as

( )( ) ( )( )a x x a x x- + + - + - + =1 1 1 1 02 2

[Note that ( )( )x x x x x x2 2 4 21 1 1- + + + = + + ]. Therefore, 

( )[ ( )] ( )

( )

x a a x a a

x ax

x ax

2

2

2

1 1 1 1 1 0

2 1 2 0

1 0

+ - - + + - + + =

Þ - + + =

Þ - + =

This has distinct real roots if and only if a2 - 4 > 0, that 
is, |  a  | > 2.

 Answer: (B)

13.  If a, b, c and d are distinct positive real numbers such 
that a and b are the roots of x cx d2 10 11 0- - =  and 
c and d are the roots of x ax b2 10 11 0- - = ,  then the 
value of a b c d+ + +  is

(A) 1110 (B) 1010 (C) 1101 (D) 1210

Solution: Since a and b are the roots of x2 - 10cx - 11d = 0 
we have 

 ( ) ( )i and iia b c ab d+ = = -10 11  (4.11)

Also since c and d are the roots of x2 - 10ax - 11b = 0, 
we have 

 ( ) ( )i  and iic d a cd b+ = = -10 11  (4.12)

Adding part (i) of Eqs. (4.11) and (4.12), we get

 a b c d a c b d a c+ + + = + Þ + = +10 9( ) ( )  (4.13)

Multiplying part (ii) of Eqs. (4.11) and (4.12), we get 

 abcd bd ac= Þ =121 121 (4.14)

Also, 

a ca d c ca b

a c ca b d

2 2

2 2

10 11 0 10 11

20 11 0

- - = = - -

Þ + - - + =( )

From Eqs. (4.13) and (4.14), we have

or 

a c a c

a c a c

a c

2 2

2

20 121 99 0

2 121 20 121 99 0

1

+ - - + =

+ - ´ - ´ - + =

+ -

( ) ( )

( ) ( )

( 221 22 0

121

22

)( )a c

a c

a c

+ + =

+ =

+ = -

Since a, c are positive, a + c ¹ -22. Therefore a + c = 121 
and

a + b + c + d = (a + c) + 9(a + c) = 1210

 Answer: (D)

14.  The sum of all the real roots of the equation 
| | | |x x- + - - =2 2 2 02  is

(A) 1 (B) 2 (C) 3 (D) 4

Try it out If we drop the condition that a, b, c and d are positive and assume that they are distinct non-zero 
real numbers, then also a + b + c + d value may be 1210 (Try!)



Solution:
Case 1: Suppose x ³ 2. Then the equation becomes

( ) ( )x x

x x

- + - - =

- =

2 2 2 0

3 0

2

2

Since x ³ 2, we get that x = 3.

Case 2: Suppose x < 2. Then the equation becomes

( ) ( )

( )( )

2 2 2 0

5 4 0

1 4 0

2

2

- + - - =

- + =

- - =

x x

x x

x x

But x < 2. Therefore x = 1. Thus the real roots of the 
equation are 1 and 3 and their sum is 4.

 Answer: (D)

15.  If the product of the roots of the equation x2 - 3kx +
2 1 02e klog - =  is 7, then the roots are real for k =
(A) 0 (B) 1 (C) 2 (D) 3

Solution: Observe that log k  is defined when k > 0. 
The given equation is x2 - 3kx + 2k2 - 12 = 0. It is given 
that the product of the roots is 7.  That is

2 1 7

4

2

2

2

k

k

k

- =

=

= ±

Since k > 0, we get that k = 2.  Further, for k = 2,  the given 
equation is x x2 6 7 0- + =  whose roots are 3 2± , which 
are real.

 Answer: (C)

16.  Let a, b and c be the sides of a triangle, where a, b, c 
are  distinct, and l be a real number. If the roots of the 
 equation x a b c x ab bc ca2 2 3 0+ + + + + + =( ) ( )l  are 
real, then

(A) l <
4

3
  (B) l >

5

3

(C) 
1

3

5

3
< <l   (D) 

4

3

5

3
< <l

Solution: The given equation has real roots. Therefore,

4 12 0

2 3 0

2

2 2 2

( ) ( )

( )( )

a b c ab bc ca

a b c ab bc ca

+ + - + + ³

+ + + - + + ³

l

l

 l £
+ +
+ +

+
a b c
ab bc ca

2 2 2

3

2

3( )
 (4.15)

Since a, b and c are sides of a triangle, ( )a b c- <2 2,  

( ) ( ) ,b c a c a b- < - <2 2 2 2and  so that 

 
a b c

ab bc ca

2 2 2

2
+ +
+ +

<  (4.16)

From Eqs. (4.15) and (4.16) we get

l < + =
2

3

2

3

4

3

 Answer: (A)

17.  Let a and b be roots of the equation x px r2 0- + =  
and a /2  and 2b  be the roots of the equation 
x qx r2 0- + = . Then the value of r is

(A) 
2

9
2( )( )p q q p- -  (B) 

2

9
2( )( )q p p q- -

(C) 
2

9
2 2( )( )q p q p- -  (D) 

2

9
2 2( )( )p q q p- -

Solution: Since a and b are roots of the equation 
x2 - px + r = 0, we have

a b ab+ = =p rand

Since a / 2 and 2b are the roots of the equation  x
2 - qx + 

r = 0, we have

a
b

a
b

2
2

2
2+ = ´ =q rand

Therefore, 

a b a b+ = + =p qand 4 2

Solving the two equations we get

b a b=
-

= - = -
-

= -
2

3

2

3

2

3
2

q p
p p

q p
p qand ( )

Therefore

r p q q p= = - -ab
2

9
2 2( ) )(

 Answer: (D)

18.  If sin cos sin2 2 2a a b= ,  then the roots of the equa-
tion x x2 2 1 0+ + =cot b  are always

(A) equal  (B) imaginary
(C) real and distinct (D) greater than 1

Solution: The discriminant of the given equation is

4 4 4 1

4 2

4
8

4
8

8
2

2 2

2

2 2 2

cot (cot )

( )

sin sin cos

b b

b

b a a

- = -

= -

= - = -

=

cosec

ssin

sin

sin

2

2

2

2
1

8
2 2

2
0

a

a
a

-

=
-

æ
èç

ö
ø÷

>

 Answer: (C)
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19.  If l is real and ( ) ( )l l l2 22 2 1+ - + + <x x  for all 
real x, then l belongs to the interval

(A) (-2, 1)  (B) (-2, 2/5)
(C) (2/5, 1)  (D) (1, 2)

Solution: Suppose that ( ) ( )l l l2 22 2 1 0+ - + + - <x x  
for all real x. Then from Theorem 4.6,

l l l l l

l l l l

l

2 2 2

2

2 0 4 2 0

2 1 0 8 4 0

2

+ - < + + + - <

+ - < + - <

- <

and 2)

and 5

( ( )

( )( )

<< -

- - <

1

2

5

and + 2)(5 2) < 0

2 < < 1 and 2 <

(l l

l l

These inequalities imply

l Î -æ
èç

ö
ø÷

2
2

5
,

 Answer: (B)

20.  At least one of the equations x ax b2 0+ + =  and 

x cx d2 0+ + =  has real roots if

(A) ac b d= +2( ) (B) ad b c= +2( )
(C) bc a d= +2( )  (D) ab c d= +2( )

Solution: Suppose both the  equations have  imaginary 
roots and ac b d= +2( ).  Then a b c d2 24 0 4 0- < - <and . 
Therefore

a c b d

a c ac

a c

2 2

2 2

2

4 0

2 0

0

+ - + <

+ - <

- <

( )

( )

which is impossible. Therefore ac = 2(b + d) implies that 
at least one of a2 - 4b and c2 - 4d is greater than or equal 
to 0.

 Answer: (A)

21.  For any real l, the quadratic equation (x - a)(x - c) +
l( )( )x b x d- - = 0 has always real roots if 

(A) a b c d< < <  (B) a c b d< < <
(C) a c d b< < <  (D) d c b a< < <

Solution: The given equation is 

( ) ( ) ( )1 02+ - + + + + + =l l l lx a c b d x ac bd

This equation has real roots if the discriminant 

D = + + + - + + ³( ) ( ) ( )( )l l l l la c b d ac bd2 4 1 0

for any l. That is

D = - + + + + - -( ) ( ) ( )l l lb d ab ad bc dc bd ac2 2 2 2 2  
+ - ³( )a c 2 0 for any real l

D = - > ¹( ) ( )0 02a c a cfor

It is enough if we show that D >( )l 0 for any l  and hence 
to prove that the discriminant of D( )l  is negative. The 
discriminant of D( )l  is given by 

4 2 2 4

4 2 2

2 2 2( ) ( ) ( )

[

ab ad bc cd bd ac a c b d

ab ad bc cd bd a

+ + + - - - - -

= + + + - - cc a c b d

ab ad bc cd bd ac a c b d

b a d

+ - -

´ + + + - - - - -

= - -

( )( )]

[ ( )( )]

( )(

2 2

16 -- - -c c b d a)( )( )

This is less than 0 if a b c d< < < . If a b c d< < < ,  then 
D >( )l 0 for all real l.

 Answer: (A)

22.  If a and b are the roots of x bx c2 0+ + =  and are 

positive, then a b+  is

(A) b c+ 2   (B) - +b c2

(C) b c+ 2   (D) 2b c-

Solution: Since a  and b  are the roots of x bx c2 0+ + = , 
we have

a b ab+ - == b cand

Therefore

( )a b a b ab

a b

+ = + + = - +

+ = - +

2 2 2

2

b c

b c

 Answer: (B)

23.  Let a  be a root of ax bx c2 0+ + =  and b  be a root 
of -ax2 - bx + c = 0, where a, b and c are real numbers 
and a ¹ 0. Then the equation

a
x bx c

2
02 + + =

has a root g  such that 

(A) g a b< min{ },

(B) g a b> max{ , }

(C) g a blies between and

(D) -g a blies between and

Solution: By hypothesis,

a b c a b ca a b b2 20 0+ + = - - =and

Let 

f x
a

x bx c( ) = + +
2

2

Then

f
a

b c( )a a a=
2

2 + +



= +

= - = -

1

2
2 2

1

2
2

2

2

2 2 2

( )

( )

a b c

a a
a

a a

a a a

+

and f
a

b c

a b c

a a a

( )

( )

( )

b b b

b b

b b b

= + +

= + +

= + =

2

1

2
2 2

1

2

2

2

2 2 2

Therefore,

f f
a

( ) ( )a b
a b

=
-

<
2 2 2

2
0

Hence f (x) = 0 has a root in between a and b.

 Answer: (C)

24.  The number of equations of the form ax bx2 1 0+ + = ,
where a b, { , , , },Î 1 2 3 4  having real roots is

(A) 15 (B) 9 (C) 7 (D) 8

Solution: The roots are real Û - ³ Û ³b a b a2 24 0 4 . In 
tabular form

a 4a b b2
No. of required 

equations

1  4 2,  3, 4 4, 9, 16 3

2  8 3, 4 9, 16 2

3 12 4 16 1

4 16 4 16 1

Total 7

 Answer: (C)

25.  If x a b x a b2 1 0+ - + - - =( ) , where a and b are real 
numbers, has distinct real roots for all values of b, 
then

(A) a < 1  (B) a > 1
(C) a < 0  (D) 0 < a < 1

Solution: We have

( ) ( )

( ) ( )

a b a b b

b a b a a

- - - - >

Þ + - + - - >

2

2 2

4 1 0

2 2 4 1 0

for all real

for all reeal b

a a a

a a

a

Þ - - - + <

Þ - + + - <

Þ >

4 2 4 4 4 0

16 16 16 16 0

1

2 2( ) ( )

 

 Answer: (B)

26.  The number of solutions of the equation 
| | | |x x2 2 8 0- - =  which belong to the domain of the 

function f x x( ) = -5 2  is

(A) 0 (B) 1 (C) 2 (D) 3

Solution: The domain of f x x= £{ | / }5 2  

| | | | (| | )(| | )

| | | | )

x x x x

x x

x

2 2 8 4 2 0

4 2 0

4 4

- - = - + =

Þ = + >

Þ = -

(since

or

Now - <4 5 2/  and –4 belongs to the domain of f. 

 Answer: (B)

27.  The least integral value of k for which the quadratic 
expression ( )k x x k- + + +2 8 42  is positive for all 
real x is

(A) 4 (B) −6 (C) 5 (D) 6

Solution: Let f(x) = (k - 2)x2 + 8x + k + 4. From Theorem 
4.6 we have 

f x( ) > 0 for all real x Þ discriminant < 0  and coefficient 
of x2 0>  

This implies

64 4 2 4 0 2

2 24 0 2

6 4 0 2

2

- - + < >

+ - > >

+ - > >

>

( )( )

( )( )

k k k

k k k

k k k

k

and

and

and

44 and is an integerk

Therefore the least integral value of k is 5.

 Answer: (C)

28.  If the roots of the quadratic equation ( )p x- -3 2

2 5 0px p+ =  are real and positive, then

(A) p > 0  (B) 3 15 4£ £p /
(C) 3 15 4< £p /  (D) p > 15 4/

Solution: Let f x p x px p( ) ( ) .= - - +3 2 52

 The roots of 

f x( ) = 0 are real. This implies

 

4 20 3 0

4 15 0

4 15 0

0
15

4

2

2

p p p

p p

p p

p

- - ³

- £

- £

£ £

( )

( )

 (4.17)

Now

1. p = 0 implies that the roots are 0, 0. 

2.  Roots are positive implies that f ( )0  and the coeffi-
cient of x2  must have the same sign. f p( )0 5=  and 
p - 3 have the same sign and p ¹ 3.

By Eq. (4.17), we have 3 15 4< £p / .

 Answer: (C)
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29.  If a and b are the roots of the equation ( )5 2 2+ -x
( ) ,4 5 8 2 5 0+ + + =x  then 

2

1 1( / ( /a b) )+

is equal to

(A) 2 (B) 4 (C) 1/2 (D) 1/4

Solution: Since a  and b  are the roots of the given 

equation we have

a b ab+ =
+
+

=
+
+

4 5

5 2

8 2 5

5 2
and

 

Therefore

a b
ab

a b
ab

a b

+
=

4 + 5

2(4 + 5)
=

1

2

2

(1/ ) + (1/ )
=

2

+
= 2 2 = 4´

 Answer: (B)

30.  If a b<  are the roots of the equation x bx c2 0+ + = , 
where c b< <0 ,  then

(A) 0 < <a b   (B) a b a< < <0 | |

(C) a b< < 0   (D) a a b< < <0 | |

Solution: Since a < b are the roots of the equation 
x2 + bx + c = 0,

a b+ = - <b 0 (since 0 < b )

and ab = <c 0

Since a b ab< <and 0, we get that 

 a b< <0  (4.18)

Also, b a a= - - < -b .  Therefore b a a b< - <and  and 
hence 

 | |a b>  (4.19)

From Eqs. (4.18) and (4.19), we get

a b a< < <0 | |

 Answer: (B)

31.  If a b< ,  then the equation ( )( )x a x b- - - =1 0  has 

(A) both the roots in [ , ]a b
(B) both the roots in ( , )-¥ a
(C) both the roots in ( , )b +¥
(D) one root in ( , )-¥ a  and another in ( , )b +¥

Solution: Let f x x a x b( ) ( )( ) .= - - - 1  Then

f a f b( ) ( )= - =1

and coefficient of x2 1 0= > . Therefore a and b must lie 
between the roots and a b< . Hence one root is less than 
a and another is greater than b.

 Answer: (D)

32.  The number of real solutions of the equation 
(x2 - 5x + 7)2 - (x - 2)(x - 3) = 0 is

(A) 1 (B) 2 (C) 3 (D) 0

Solution: The given equation is

( ) ( )x x x x2 2 25 7 5 6 0- + - - + =

Put x x t2 5 7- + = .  Then 

t x x= -æ
èç

ö
ø÷

+ > Î
5

2

3

4
0

2

for all �
 

The given equation is equivalent to 

t t

t t

t
i

2

2

1 0

1 0

1 3

2

- - =

- + =

=
±

( )

Therefore there is no real root of the given equation.

 Answer: (D)

33.  The number of real values of x satisfying the equation

x
x

x
x

x
x

3

3

2

2

1 1
6

1
7 0+ + + - +æ

èç
ö
ø÷

- =
 

is

(A) 1 (B) 2 (C) 3 (D) 4

Solution: Put x x t+ =( / ) .1  Then we have

x
x

t2

2

21
2+ = -  and x

x
t t3

3

31
3+ = -

Therefore the given equation transforms into

( ) ( )

( )( )

t t t t

t t t

t t

3 2

3 2

2

3 2 6 7 0

9 9 0

1 9 0

- + - - - =

+ - - =

+ - =

Equating t = -1 and substituting the value to t back, we 
get

x
x

x x x+ = - Þ + + = Þ
1

1 1 02 is not real

Now for t2 9=  we get

t x x= ± Þ + =3 3 1 02 ∓  

This gives

x x=
±

=
- ±3 5

2

3 5

2
and



Therefore four real values of x satisfy the given equation.

 Answer: (D)

34.  The number of quadratic equations, with coefficient of 
x2 as 1, which are unaltered by squaring their roots is

(A) 2  (B) 4
(C) 6  (D) infinite

Solution: Let a and b be the roots of x bx c2 0+ + =  
for which a  2 and b 2 are also roots. But the equation whose 
roots are a  2 and b2  is x b c x c2 2 22 0- - + =( ) .  Therefore 

b c b2 2- = -  and c c2 =  (i.e., c = 0  or 1).

 (i) If c = 0, then b b2 = -  and hence b = 0  or −1.

 (ii) If c = 1, then b b2 2 0+ - =  and hence b = 1 or −2.

Therefore the required equations are 

x x x x x x x2 2 2 20 0 1 0 2 1 0= - = + + = - + =, , ,

 Answer: (B)

35.  The quadratic equations x x a2 6 0- + =  and x2 - cx + 
6 = 0 have one root in common. The other roots of 
the first equation and the second equation are inte-
gers in the ratio 4 : 3. Then the common root is

(A) 4 (B) 3 (C) 2 (D) 1

Solution: Let a be the common root and let the other 
roots of the equations be 4b and 3b, respectively. Then

a b ab+ = =4 6 4, a

and a b ab+ = =3 3 6c,

This implies

a = = × =4 4
6

3
8ab

The first equation is x x2 6 8 0- + =  whose roots are 2 
and 4.

If a = 4, then 

b
a

= =
6

3

1

2
 and 3

3

2
b =  

which is not an integer, a contradiction to the hypothesis. 
Therefore, a = 2 is the common root, in which case the 
equations are x x2 6 8 0- + =  and x x2 5 6 0- + = ,  whose 
roots are 2, 4 and 2, 3, respectively.

 Answer: (C)

36.  The set of all real values of x for which x2 - |  x + 2  | + 
x > 0 is

(A) ( , ) ( , )-¥ È ¥2 2  (B) ( , ) ( , )-¥ - È ¥2 2

(C) ( , ) ( , )-¥ - È ¥1 1  (D) ( , )2 ¥

Solution: 

Case 1:  Suppose that x < -2. Then the given inequality is

x x x

x

2

2

2 0

1 1 0

+ + + >

+ + >( )

which is always true. Therefore any x Î -¥ -( , )2  satisfies 
the given inequality.

Case 2:  Suppose that x ³ -2. Then

x x x x

x x

2 22 0 2 0

2 2

- + + > Û - >

Û < - >

( )

or

Therefore, the required set is ( , ) ( , ).-¥ - È ¥2 2

 Answer: (B)

37.  The smallest value of k for which both roots of 
the equation x kx k k2 28 16 1 0- + - + =( )  are real, 
 distinct and have values at least k is

(A) 0 (B) 1 (C) 3/2 (D) 2

Solution: Roots are real and distinct. Therefore discrim-
inant > 0. That is

 

64 64 1 0

1

2 2k k k

k

- - + >

>

( )

 (4.20)

For k = 1,  the given equation has roots 4, 4. Values of the 
roots at least 4 implies that the product of the roots ³ 16.  
Therefore

 

16 1 16

1 0

0 1

2( )

( )

or

k k

k k

k k

- +

-

£

³

³

³  (4.21)

 

Roots

or

³ ³

³

³

³

4 4 0

16 32 16 1 0

1 2 0

1 2

2

Þ

Þ - + - +

Þ - -

Þ £

f

k k k

k k

k k

( )

( )

( )( )

 (4.22)

From Eqs. (4.20), (4.21) and (4.22), we get k ³ 2.

 Answer: (D)

38.  If 

- <
+ +
+ +

<3
1

1
3

2

2

x mx
x x

for all real x,  then

(A) m < -1  (B) - < <1 6m
(C) - < <1 5m  (D) m > 6

Solution: We have

x x x2

2

1
1

2

3

4
0+ + = +æ

èç
ö
ø÷

+ >

Therefore

- + + < + + < + +3 1 1 3 12 2 2( ) ( )x x x mx x x
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Multiple Correct Choice Type Questions
1.  Suppose a and b are integers and b ¹ -1. If the quadratic 

equation x2 + ax + b + 1 = 0 has a positive integer root, 
then

(A) the other root is also a positive integer
(B) the other root is an integer
(C) a b2 2+  is a prime number
(D) a b2 2+  has a factor other than 1 and itself

Solution: Let a and b be the roots and a be a positive 
integer. Then

a b -+ = a  and ab = b + 1

b a= --a  implies b is an integer and

a b2 2 2 2

2 2 2 2

2 2

1

1

1 1

+ = + + -

= + + +

= + +

( ) ( )

( )( )

a b ab

a b a b

a b

Since a2 + >1 1 and b2 1 1+ > ,  it follows that a2 + 1 is a 

factor of a b2 2+  other than 1 and itself.

 Answers: (B), (D)

Note: If b = -1, then a2 + b2 may be prime number; for 
example, the equation x2 - 2x = 0 has a positive root 2 and 
the other root is 0. Here a2 + b2( = 5) is a prime number. 
In fact, a2 + b2 is prime implies a 2 + 1 = 1 or b 2 + 1 = 1. 
This gives

a = 0 or b = 0

or b = -1

2.  If a, b and c are integers, then the discriminant of 
ax bx c2 + +  is of the form (where k is an integer)

(A) 4k  (B) 4 1k +
(C) 4 2k +   (D) 4 3k +

Solution: 
Case 1:  Suppose b is even, that is,  b m= 2 . Then b ac2 4- =

 
4 42( ) .m ac k- =

Case 2:  Suppose b is odd, that is, b m= -2 1.  Then 

b ac m ac

m m ac

2 2

2

4 2 1 4

4 4 1 4

- = - -

= + + -

( )

= + - +

= +

4 1

4 1

2( )m m ac

k

 Answers: (A), (B)

3.  If a and b are roots of the equation x ax b2 0+ + = ,
then

(A) a = 0, b = 1 (B) a b= =0

(C) a b= = -1 1,  (D) a b= = -1 2,

Solution: If a + b = -a and ab = b, then a = 0 = b or a = 1, 
b = -2.

 Answers: (B), (D)

4.  Let a, b and c be real numbers and a ¹ 0. Let a band  
be the roots of ax bx c2 0+ + = . If ¢ ¢a band  are roots 
of the equation a x abc x c3 2 3 0+ + =( ) ,  then

(A) ¢ =a a b3 2   (B) ¢ =b b a3 2

(C) ¢ =a a b2   (D) ¢ =b ab 2

Solution: Since a and b are the roots of ax2 + bx + c = 0, 
we have

a b ab+ = - =
b
a

c
a

and

Also since a ¢ and b ¢ are roots of the equation a3x2 + (abc)
x + c3 = 0,

4 3 4 02x m x+ + + >( )  and 2 3 2 02x m x+ - + <( )
for all real x

( )m + - <3 64 02  and ( )3 16 02- - <m

( )( ) ( )( )m m m m+ + + - < - + - - <3 8 3 8 0 3 4 3 4 0and

( )( ) ( )( )m m m m

m m

+ - < - + <

- < < - < <

11 5 0 7 1 0

11 5 1 7

and

and

This gives - < <1 5m .

 Answer: (C)

39.  The number of natural numbers n for which the 
equation ( ) ( )x x n n- = -8 10  has no real solutions is

(A) 2 (B) 3 (C) 4 (D) 5

Solution: x x n n2 8 10 0- - - =( )  has no real solutions. 
This implies

64 4 10 0

10 16 0

8 2 0

2 8

2

+ - <

- + <

- - <

< <

n n

n n

n n

n

( )

( )( )

Therefore, n = 3, 4, 5, 6, 7. Also, when n = 3, 4, 5, 6 or 7,  
it can be seen that ( ) ( )x x n n- = -8 10  has no real solu-
tions. Therefore the number of such n is 5.

 Answer: (D)



¢ + ¢ =
-

=
-æ

èç
ö
ø÷

æ
èç

ö
ø÷ = +a b a b ab

abc
a

b
a

c
a3

( )

¢ ¢ = =a b ab
c
a

3

3

3( )

Now

( ) ( )

(

( ) [( ) ]

¢ - ¢ = ¢ + ¢ - ¢ ¢

= + ) -

= + -2

a b a b a b

a b a b a b

ab a b ab

2 2

2 2 2 3 3

2

4

4

4

== -( ) ( )ab a b2 2

Also

| | | ( )|¢ - ¢ = -a b ab a b

Therefore

¢ - ¢ = - Þ ¢ = ¢ =a b ab a b a a b b ab( ) 2 2and

¢ - ¢ = - - Þ ¢ = ¢ =a b ab a b a ab b a b( ) 2 2and

 Answers: (C), (D)

5.  If a band  are roots of the equation x ax b2 22 0- + =  
and g  and d are the roots of the equation x bx2 2- +
a2 0= , then

(A) a b gd+ = 2  (B) a b g d+ = +2( )

(C) ( )g d ab+ =2 4  (D) ( )( )a b g d gd+ + = 4

Solution: Since a and b are roots of the equation 
x2 - 2ax + b2 = 0, we have

a b ab+ = =2 2a band

Since g dand  are roots of the equation x bx a2 22 0- + = ,  
we have

g d gd+ = =2 2b aand

Solving the two sets of equations we get

a b gd

g d ab

+ =

+ = =

2

4 42 2( ) b

 Answers: (A), (C)

6.  If a band  are the roots of x p x q2 1 0- + - =( ) ,  then 

(A) ( )( )a b+ + = -1 1 1 q

(B) ( )( )a b+ + = +1 1 1 q

(C) 
( )

( )

( )

( )

a
a

b
b

+
+ + -

+
+

+ + -
=

1

1 1

1

1 1

2

2

2

2q q
q

(D) 
a a
a a

b b
b b

2

2

2

2

2 1

2

2 1

2
1

+ +
+ +

+
+ +
+ +

=
q q

Solution: Since a band  are the roots of x p x2 1- + -( )

q = 0,  we have

a b ab+ = = - +p p qand ( )

Now

( )( )

( )

( )

( )

( )

(

a b ab a b

a
a

b

+ + = + + +

= - + + + = -

+
+ + -

+
+

1 1 1

1 1

1

1 1

12

2

2

p q p q

q bb
a

a a b

b
b a b

+ + -
=

+
+ - + +

+
+

+ - + +2

1 1

1

1 1 1

1

1 1 1

2

2

2

2

)

( )

( ) ( )( )

( )

( ) ( )( )

q

==
+
-

+
+
-

=
+ - +

-
=

a
a b

b
b a

a b
a b

1 1

1 1
1

( ) ( )

 Answers: (A), (D)

7.  Let a, b and c be real numbers and f x ax bx c( ) .= + +2  
Suppose that whenever x is an integer, f x( )  is also an 
integer. Then

(A) 2a is an integer (B) a b+  is an integer
(C) c is an integer (D) a + b + c is an integer

Solution: By hypothesis,  f(-1),  f(0) and f(1) are  integers. 

Therefore a b c a b( ) ( ) , ( ) ( )- + - + + +1 1 0 02 2  c and a(1)2 + 

b(1) + c are all integer. Hence 

a b c c a b c- + + +, and  are integers

Also

a b a b a- + Þand are integers is an integer2  
 Answers: (A), (B), (C), (D)

8.  If one root of the equation 3 3 02x px+ + =  is the 
square of the other, then p is equal to

(A) 1/3 (B) 1 (C) 3 (D) −6

Solution: Let a  and a2  be the roots of 3 3 02x px+ + = .
Then 

a a+ =
-2

3

p
 and a3 1=

Therefore

a a= = =
- +

1
1 3

2
, w

i
 or a =

- -1 3

2

i

 (i)  If a = 1, then p = -6 so that the equation is 3x2 - 6x + 
3 = 0 whose roots are 1, 1.

 (ii)  If a = w or w2, then p = -3(a + a2) = -3(w + w2) = 
-3(-1) and hence p = 3 so that the equation is 
3 3 3 02x x+ + = ,  whose roots are w and w2.

 Answers: (C), (D)
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Matrix-Match Type Questions

1.  Match the items in Column I with those in Column II.

Column I Column II

(A)  If the difference of the roots of the 
equation 2 1 1 02x a x a- + + - =( ) ( )  
is equal to their product, then the 
value(s) of a is (are)

(p) 1

(q) 0

(r) 2

(s) 1/2 

(t) –1

(B)  If the sum of the roots of the equation 
x a x2 2 1 1 0- - - =( )  is equal to the 
sum of their squares, then a is

(C)  If one root of the equation 
x x m m2 3 0 0- - = ¹( ) is twice one 
of the roots of x x m2 0- - = ,  then 
the value of m is

(D)  If the sum of the squares of the roots 
of the equation x x m2 4 0- + =  is 
equal to 16, then m is

Solution: 

(A)  Let a and b be the roots of 2x2 - (a + 1)x + (a - 1) = 0.
Then

a b ab+ =
+

=
-a a1

2

1

2
and

Now

| | ( ) ( ) ( )a b ab a b ab ab- = Þ + - =2 2 2 24

( ) ( ) ( )

( ) ( ) ( )

( )

a a a

a a a

a a

a

+
-

-
=

-

+ - - - - =

- - =

=

1

4

4 1

2

1

4

1 8 1 1 0

2 1 0

2

2 2

2 2

 Answer: (A) Æ (r)

(B)  Let a and b be the roots of x2 - 2a(x - 1) - 1 = 0. 
Then a + b = 2a and ab = 2a - 1. Now

a b a b a b ab a b2 2 2

2

2

2

2

2 2 2 1 2

4 6 2 0

2 3

+ = + Þ + - = +

Þ - - =

Þ - + =

Þ -

( )

( ) ( )a a a

a a

a aa

a a

a

+ =

Þ - - =

Þ =

1 0

2 1 1 0

1

2
1

( )( )

,

 Answer: (B) Æ (p), (s)
(C)  Let a  be one root of x x m2 0 2- - = and a  be a root 

of x x m2 3 0- - = .  Then 

a a a a2 20 2 2 3 0- - = - - =m mand ( ) ( )

Eliminating m, we have a = -0 1, . Also a = 0 Þ m = 0, 
a contradiction to hypothesis. Therefore, a = -1 and 
m = 2.

 Answer: (C) Æ (r)

9.  Suppose that the three quadratic  equations ax2 -2bx +
c bx cx a= - + =0 2 02,  and cx2 - 2ax + b = 0 all have 
only positive roots. Then

(A) b ca2 =   (B) c ab2 =
(C) a bc2 =   (D) a b c= =

Solution: Let a  > 0 and b  > 0 be the roots of ax2 - 2bx +
 c = 0. Then

c
a

= >ab 0

and therefore a and c have the same sign. Similarly, 
b and c have the same sign and a and b have the same 
sign. Therefore, a, b and c have the same sign and 
hence ab > 0. Also (-2b)2 ³ 4ac, that is, b2 ³ ac. Similarly 
c ab a bc2 2³ ³and . Hence

b c a bc c a b ca a b c ab2 2 2 2 2 2 2 2 2³ ³ ³, and

which gives

bc a ca b ab c³ ³ ³2 2 2, and  (since ab, bc 
     and ca are all positive)

But we have a bc b ca c ab2 2 2³ ³ ³, and . Therefore

a bc b ca c ab

a b c abc

a b c

2 2 2

3 3 3

= = =

= = =

= =

, and

 Answers: (A), (B), (C), (D)

10.  Let a and b be two real numbers. If the roots of the 
equation x ax b2 0- - =  have absolute values less 
than 1, then

(A) | |b < 1  (B) a b+ < 1
(C) b a- < 1  (D) a b+ = 0

Solution: Let a and b be the roots of x ax b2 0- - = . 
Then, | | | | .a b< <1 1and  Also

| | | | | | | || |b b= - = = <ab a b 1

Since the roots a and b lie between –1 and 1, we have 
f f( ) and ( ) .- > >1 0 1 0  Therefore

1 0 1 0+ - > - - >a b a band

or  b a a b- < + <1 1and

 Answers: (A), (B), (C)



(D)  Let a and b be the roots of x x m2 4 0- + = . Then 

a b ab+ = =4 and m.  Now

a b a b ab2 2 216 2 16

16 2 16

0

+ = Þ + - =

Þ - =

Þ =

( )

m

m

 Answer: (D) Æ (q)

2.  Match the items in Column I with those in Column II.

Column I Column II

(A)  If the roots of the equation 
ax bx c2 0+ + =  are of the form 
( )/k k+ 1  and ( )/( ),k k+ +2 1  
then ( )a b c+ + =2

(p) 
1

2

2 2( )a b+

(q) 2ac

(r) 3abc

(s) b ac2 4-

(t) - +
1

2

2 2( )a b

(B)  If one root of the equation 
ax bx c2 0+ + =  is the square of 
the other, then b ac a c3 2 2+ + =

(C)  If the sum of the roots of the 
equation ax bx c2 0+ + =  
is equal to the sum of their 
squares, then b a b( )+ =

(D)  If the roots of the equation 

1 1 1

x a x b c+
+

+
=

are equal in magnitude, but 
opposite in sign, then the 
product of the roots is

Solution:
(A)  Since ( )/k k+ 1  and ( )/( )k k+ +2 1  are the roots of 

the given equation we have

 
k

k
k
k

b
a

+
+

+
+

= -
1 2

1
 (4.23)

and  
k

k
c
a

+
=

2
 (4.24)

From Eq. (4.24),

c
a

k
k k

- =
+

- =1
2

1
2

and hence 

k
a

c a
=

-
2

Substituting this value for k in Eq. (4.23), we get

[ /( )]

/( )

[ /( )]

[ /( )]

2 1

2

2 2

2 1

a c a
a c a

a c a
a c a

b
a

- +
-

+
- +
- +

= -

a c
a

c
a c

b
a

a c ac
a a c

b
a

a c ac bc ab

+
+

+
= -

+ +
+

= -

+ + = - -

2

2

4

2

6 2 2

2

2 2

( )

( )

Adding b2 to both the sides and splitting 6ac, we get

a b c ab bc ca b ca

a b c b ca

2 2 2 2

2 2

2 2 2 4

4

+ + + + + = -

+ + = -( )

 Answer: (A) Æ (s)

(B)  Let a  and a2  be the roots of ax bx c2 0+ + = . Then 

a a+ =
-2 b
a

 and a3 =
c
a

Therefore

c
a

c
a

b
a

c
a

c
a

c
a

c
a

æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

=
-

æ
èç

ö
ø÷

+ + æ
èç

ö
ø÷

æ
èç

ö

2 3 1 3

2 2 3

3

/ /

/

øø÷
æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

é

ë
ê
ê

ù

û
ú
ú

=
-

æ
èç

ö
ø÷

+ +

1 3 2 3 1 3 3

3

2

3

/ / /c
a

c
a

b
a

c
a

c
a

c
aa

b
a

b
a

c ca bc
a

b
a

b ac ca abc

-æ
èç

ö
ø÷

= -

+ -
=

-

+ + =

3

3

2

2

3

3

3 2 2

3

3

 Answer: (B) Æ (r)

(C)  Let a  and b  be the roots of ax bx c2 0+ + = ,  then

a b+ = -
b
a

 and ab =
c
a

Therefore

- = + = + = + - = -
b
a

b
a

c
a

a b a b a b ab2 2 2
2

2
2

2
( )

This gives

- = -

= +

ab b ac

ca b ab

2

2

2

2

 Answer: (C) Æ (q)

(D) The given equation is equivalent to

x a b c x ab bc ca2 2 0+ + - + - - =[ ]

If a  and −a  are the roots of this, then

0 2= + - = - -a a( ) c a b and - a - -2 = ab bc ca

Therefore

a b c+ = 2  and - a -2 = +ab c a b( )

Worked-Out Problems 191



Chapter 4  Quadratic Equations192

The product of the roots is

ab c a b ab
a b a b

- -( )
( )

+ = -
+

=
+æ

èç
ö
ø÷

2 2 2

2 2

 Answer: (D) Æ (t)

3.  Match the items in Column I with those in Column II.

Column I Column II

(A)  The values of k for which 
both the roots of the equation 
x kx k k2 26 2 2 9 0- -+ + =  are 
greater than 3 belong to

(p) (2, 5)

(q) -¥æ
èç

ö
ø÷,

3

2

(r) (1, +¥)

(s) 
11

9
, + ¥æ

èç
ö
ø÷

(t) [2, 5]

(B)  If log ( ) log ( ). .0 1

2

0 5

3x x x x+ > +-
log ( ),2 1x -  then x belongs to

(C)  If | | | |,x x x x- - £ - +1 3 42 2  then x 
belongs to

(D)  If | | ,x x x2 2 3 3 3- - < -  then x lies 

in the interval

Solution:

(A)  Let f(x) = x2 - 6kx + 2 - 2k + 9k2 and a and b be the 
roots of f (x) = 0. Then, since 3 < a and 3 < b, we have 
6k > 6 and therefore k > 1. Also 

f

k k

k k

k k

( )

( )( )

3 0

9 20 11 0

9 11 1 0

1
11

9

2

>

- + >

- - >

< >or

Since k > 1, it follows that k > 11/9.

 Answer: (A) Æ (s)

(B)  The inequality is defined for x > 1.  Since

log ( ) log ( ) log ( )
( . ) .2 0 5 0 51 1 11x x x- = - = - --

we have

log ( ) log ( ) log ( ). . .0 1

2

0 5

3

0 5 1x x x x x+ > - - -

Therefore

log ( ) log log ( ). . .0 1

2

0 5

3

0 5

2

1
x x

x x
x

x x+ >
-
-

æ
èç

ö
ø÷

= +

which further gives

x x x x2 21 1 0+ > Þ + - >

x x x< -
+æ

èç
ö

ø÷
>

-1 5

2

5 1

2
or and > 1

This implies x Î (1, ¥)

 Answer: (B) Æ (r)

(C)  We have

| | | |

| | | |

(

x x x x

x x x x

x x x x

- - £ - +

Þ - + £ - +

Þ - + £ - +

1 3 4

1 3 4

1 3 4

2 2

2 2

2 2 since bboth are positive

for all real x

x

)

Þ £
3

2

Therefore 

x Î -¥æ
èç

ö
ø÷

,
3

2

 Answer: (C) Æ (q)

(D) We have

| | |( )( )|x x x x x x2 2 3 3 3 3 1 3 3- - < - Þ - + < -

Case 1:  x < −1.  Then

( )( )x x x x x x- + < - Û - < Û < <3 1 3 3 5 0 0 52

However,  x < −1.

Case 2: −1 < x < 3.  Then

( )( )

( )( )

3 1 3 3 2 3 3 3

0 6

3 2 0

2

2

- + < - Û - + + < -

Û < + -

Û + - >

x x x x x x

x x

x x

Therefore,  x > 2.  Hence

x Î (2, +¥)

Case 3:  x ³ 3.  Then

( )( )

( )

x x x x x x

x x

x

x x

- + < - Û - - < -

Û - <

Û < <

Û £ < ³

3 1 3 3 2 3 3 3

5 0

0 5

3 5 3

2

2

∵

From the above two cases x Î (2, 5)

 Answer: (D) Æ (p)

4.  Match the items in Column I with those in Column II.

Column I Column II

(A) If 
x

x x-
£

3

1
, then x belongs to (p) (−¥, +¥)

(q) (0, 2)

(r) [1, 6]

(s) [−1, 0]

(t) (0, 3)

(B)  
x x

x

2

2

6 7

1
2

+ -
+

£  for all x belonging to

(C) 
( ) ( )

( )

x x
x x
- +

-
£

1 1

2
0

2 3

4
 for all x in 

(D) 1
3 7 8

1
2

2

2
<

- +
+

£
x x

x
 for all x in



1.   Passage: Let f x ax bx c( ) ,= + +2  where a, b and c are 
real and a ¹ 0. Let a b<  be the roots of f x( ) .= 0  Then 

(a)  for all x such that a b< <x f x, ( )  and a have 
opposite signs.

(b)  for x x f x< a bor > , ( )  and a have the same sign.
  Based on this, answer the following three questions.

   (i)  If both the roots of the equation 
x2 - mx + 1 = 0 are less than unity, then

(A) m £ -2  (B) m > 2
(C) - £ £1 3m  (D) 0 5 2£ £m /

 (ii)  If both the roots of the equation x mx2 6- +
9 2 2 02m m- + =  are greater than 3, then

(A) m < 0   (B) m > 1
(C) 0 1< <m  (D) m > 11 9/

 (iii)  If both the roots of the equation 4x2 - 2x + 
m = 0 belong to the interval (-1,1), then

(A) - < < -3 2m  (B) 0 2< <m
(C) 2 5 2< <m /

 
(D) - < £2 1 4m /

Solution:

 (i)   f(x) = x2 - mx + 1 and a £ b are the roots of f(x) = 0. 
Now a b< < 1 implies that f (1) and the coefficients 
of x2  have the same sign. This gives

 

1 1 1 0

2

- + = >

<

m f

m

( )

 (4.25)

Also, discriminant is m2 4 0- ³ . Therefore

 m m£ - ³2 2or  (4.26)

From Eqs. (4.25) and (4.26), m £ -2 . Also, note that 
if m = -2, the roots are - -1 1, .

 Answer: (A)

 (ii)  Let f x x mx m m( ) .= - + - +2 26 9 2 2  Let a b> > 3 be 
the roots of f(x) = 0. Then 6 6< + =a b m and hence 

 m > 1 (4.27)

Also 9 2 2 92m m- + = >ab . Therefore

9 2 7 02m m- - >
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Solution:

(A)  Let 

f x
x

x x
x x
x x

( )
( )

=
-

- =
- +

-3

1 3

3

2

Observe that 

x x x2

2

3
1

2

11

4
0- + = -æ

èç
ö
ø÷

+ >
 

and hence f (x) ¹ 0 for all real x ¹ 0, 3.  Therefore

f x x x x( ) ( )< Û - < Û < <0 3 0 0 3

 Answer: (A) Æ (t)

(B)  Let 

f x
x x

x
( ) =

+ -
+

2

2

6 7

1

Note that x2 + 1 > 0 for all x.  Now, 

f x x x x

x x

x

( ) ( )

( )

£ Û + - £ +

Û - + ³

Û - ³

2 6 7 2 1

6 9 0

3 0

2 2

2

2

which is true for all x.  Also f (3) = 2.

 Answer: (B) Æ (p)

(C)  Let 

f x
x x

x x
( )

( ) ( )

( )
=

- +
-

1 1

2

2 3

4

Now f x x( ) , .= Û = -0 1 1  To determine the change 
of sign of f (x), we have to consider the points −1, 0, 2.

Case 1:  x < -1 Þ (x + 1)3 < 0 and x - 2 < 0. Therefore 
f (x) > 0 for all x < −1.

Case 2:  - < < Þ - <1 0 2 0x x f xand ( ) < 0.

Case 3:  0 2 2 0< < Þ - < Þx x f(x) < 0.  Therefore 
f (x) £ 0 for all x Î - È( , ) ( , ).1 0 0 2

 Answer: (C) Æ (q), (s)

(D) We have

1
3 7 8

1
2

1 3 7 8 2 1

1 3 7 8 3

2

2

2 2 2

2 2 2

<
- +

+
£

Û + < - + £ +

Û + < - +

x x
x

x x x x

x x x x

( )

and -- + £ +

Û - + > - + £

7 8 2 2

2 7 7 0 7 6 0

2

2 2

x x

x x x xand

Note that 

2 7 7 2
7

4

7

8
02

2

x x x- + = -æ
èç

ö
ø÷

+ >  for all x

x x x x x2 7 6 0 1 6 0 1 6- + £ Û - - £ Û £ £( )( )

Therefore, both the inequalities hold for 1 6£ £x .
Also note that

3 7 8

1
2

2

2

x x
x
- +

+
=

when x = 1, 6.

 Answer: (D) Æ (r)
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( )( )9 7 1 0m m+ - >

This gives

 m m<
-

>
7

9
1or  (4.28)

Also, f ( )3  and the coefficient of x2  have the same 
sign. Therefore, f ( ) .3 0>  This gives

  

9 18 9 2 2 0

9 20 11 0

9 11 1 0

1
11

9

2

2

- + - + >

- + >

- - >

< >

m m m

m m

m m

m m

( )( )

or  (4.29)

From Eqs. (4.27)–(4.29), we get

11

9
< m

 Answer: (D)

 (iii)  Let a, b, where a £ b, be the roots of 4x2 - 
2x + m = 0. Then - < <1 1a b,  and 

a b ab+ =
1

2 4
, =

m

Now f ( )-1  and the coefficient of x2  have the same 
sign. Therefore f ( )- >1 0 and hence 4 2 0+ + >m , 
that is

 m > -6  (4.30)

Also, f m( ) .1 0 4 2 0> Þ - + >  This implies

 m > -2  (4.31)

The discriminant is 4 16 0- ³m . Therefore

 m £
1

4
 (4.32)

From Eqs. (4.30)–(4.32), we get

- < £2
1

4
m

If m = 1 4/ , then the given equation is 

4 2
1

4
0

16 8 1 0

2

2

x x

x x

- + =

- + =

Therefore the  roots are 1/4, 1/4. If the roots are dis-
tinct, then 

- < <2
1

4
m

 Answer: (D)

2.  Passage: Let f (x) = ax2 + bx + c, where a, b and c are 
real  numbers and a ¹ 0. If b ac2 4 0- < , then for all 
real x, f (x) and a will have the same sign. If a b<  are 
real roots of f x( ) ,= 0  then

(a)  f x( )  and a are of opposite sign for all x, a b.< <x

(b)  f x( )  and a are of same sign for all x such that 
x < a  or x > b.

Answer the following questions.

 (i)  If ( ) ( ) ( )a x a x a- - + + + >1 1 1 02  for all real x, 
then

(A) a < -5 3/   (B) - < <5 3 5 3/ /a
(C) a < 5 3/   (D) a > 5 3/

 (ii)  If ( )a x ax a+ - + - <4 2 2 6 02  for all real x, then

(A) a < -6  (B) - < <6 0a
(C) - < <6 6a  (D) a > 6

(iii)  If the roots of the equation (2 - x)(x + 1) = a are 
real and positive, then

(A) a < -2   (B) - < <2 2a
(C) 2 9 4< £a /  (D) 9 4 17 4/ /< <a

Solution:
 (i)  Let f(x) º (a - 1)x2 - (a + 1)x + a + 1. Then the discri-

minant is given by

( ) ( )a a a a+ - - = - + +1 4 1 3 2 52 2 2

f x( ) > 0 for all real x, this implies

 

- + + <

- - >

- + >

< - >

3 2 5 0

3 2 5 0

3 5 1 0

1
5

3

2

2

a a

a a

a a

a a

( )( )

or  (4.33)

f x( )  and a - 1 are of same sign. This implies 

 a a- > Þ >1 0 1 (4.34)

From Eqs. (4.33) and (4.34), we have

a >
5

3

 Answer: (D) 

 (ii)  Let f x a x ax a( ) ( ) .= + - + -4 2 2 62  Now f x( ) < 0 for 
all real x, implies

 4 8 4 3 02a a a- + - <( )( )  and a + <4 0 

 a < - 4 and a a a2 22 12 0- + - <( )

 a < - 4 and ( )( )a a+ - >6 4 0 

 a < - 6 

 Answer: (A) 

 (iii)  The given equation is equivalent to x x a2 2 0- + - = .
Let f x x x a( ) .º - + -2 2  Roots of f x( ) = 0 are real 
and positive. Therefore discriminant ³ 0. That is 



Assertion–Reasoning Type Questions

In the following set of questions, a Statement I is given 
and a corresponding Statement II is given just below it. 
Mark the correct answer as:

(A)  Both I and II are true and II is a correct reason for I
( B )  Both I and II are true and II is not a correct reason 

for I
( C )  I is true, but II is false
( D )  I is false, but II is true

1.  Statement I: Let a, b and c be real numbers and 
a ¹ 0. If 4 3 2a b c+ +  and a have same sign, then not 
both the roots of the equation ax bx c2 0+ + =  belong 
to the open interval (1, 2).

   Statement II: A quadratic equation f x( ) = 0 will have 
a root in the interval (a, b) if f a f b( ) ( ) .< 0

Solution: Let f x px qx r( ) = + +2 . If f a( ) and f b( )  are 
of opposite sign, the curve (parabola) y f x= ( ) must 
intersect x-axis at some point. This implies that f (x) has a 
root in (a, b). Therefore, the Statement II is true.
 Let a and b be roots of ax bx c2 0+ + = . Then,

a b ab+ =
- b
a

c
a

and =

By hypothesis, 

 

4 3 2
0

4 3 2 0

4 3 2 0

2 2

a b c
a

b
a

c
a

+ +
>

+ æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

>

- + + >
- - +

( )

(

a b ab
ab a b )) ( )

( )( ) ( )( )

+ - - + >
- - + - - >

ab a b
a b a b

2 2 0

1 2 2 1 0
 

(4.35)

If 1 < a, b < 2, then (a - 1) (b - 2) + (a - 2) (b - 1) < 0 
which is contradiction to Eq. (4.35). Therefore, at least 
one root lies outside (1, 2). 
 Answer: (B)

2.  Statement I: If P x a bx c( ) = + +x2  and Q x ax( ) = - +2

dx c+ , where ac ¹ 0, then the equation P x Q x( ) ( ) = 0 
has at least two real roots.

   Statement II: A quadratic equation with real coeffi-
cients has real roots if and only if the discriminant is 
greater than or equal to zero.

Solution: Let px qx r2 0+ + =  be a quadratic equation. 
The roots are 

- ± -q q pr

p

2 4

2

These are real Û - ³q pr2 4 0. Therefore Statement II 
is true.
 In Statement I, ac ¹ 0. Therefore ac > 0 or ac < 0. If 
ac < 0, then b2 - 4ac > 0, so that P(x) = 0 has two real roots. 
If ac > 0, then d2 + 4ac > 0 so that Q(x) = 0 has two real 
roots. Further, the roots of P(x) = 0 and Q(x) = 0 are also 
the roots of P(x)Q(x) = 0. Therefore, Statement I is true 
and Statement II is a correct reason for Statement I.

 Answer: (A)

3.  Statement I: If a, b and c are real, then the roots of the 
equation (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0 
are imaginary.

   Statement II: If p, q and r are real and p ¹ 0 , then 
the roots of the equation px qx r2 0+ + =  are real or 
imaginary according as q pr q pr2 24 0 4 0- ³ - <or .

Solution: Statement II is obviously true. In Statement I, 
the given equation is 3x2 - 2(a + b + c)x + ab + bc + ca = 0. 
The discriminant is 

4 12

4

2

2

2 2 2

2

( ) ( )

[ ]

[( ) ( )

a b c ab bc ca

a b c ab bc ca

a b b c

+ + - + +

= + + - - -

= - + - ++ - ³( ) ]c a 2 0

Therefore, the equation has real roots. Statement I is 
false and Statement II is true.

 Answer: (D)

Worked-Out Problems 195

1 4 2 0

9

4

- - ³

£

( )a

a

Also, the roots of f x( ) = 0 are 

1 1 4 2

2

1

2
1 9 4 2

± - -
= ± -

( )
( )

a
a

These are given to be positive. Therefore, 

1 9 4 0- - >a

9 4 1

2

- <

>

a

a

Therefore, 

2
9

4
< £a

Note that, when a f x= =9 4 0/ , ( )  takes the form  

4 4 1 02x x- + = ,whose roots are 1 2 1 2/ , / .

 Answer: (C)
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4.  Statement I: Let f x x ax b( ) = + +2 , where a and b are 
integers. Then, for each integer n, there corresponds 
an integer m such that f n f n f m( ) ( ) ( ).+ =1

   Statement II: If a band  are roots of x px q2 0+ + = , 

then x px q x x2 + + = - -( )( ).a b

Solution: Let a and b be roots of f x( ) = 0, where 
a and b may be imaginary. Then f x x x( ) ( )( ),º - -a b  

a b+ = - a  and ab = b.  Now, 

f n f n n n n n

n n n n

( ) ( ) ( )( )( )( )

( )( )( )(

+ = - - + - + -

= - + - - + -

1 1 1

1 1

a b a b

a b b aa

a b ab a

a b ab b

)

[ ( ) ( ) ]

[ ( ) ( ) ]

[ ( )

= + - + + -

´ + - + + -

= + + +

n n n

n n n

n n an b

1

1

1 -- + + + -a b][ ( ) ]n n an b1

Put m = n(n + 1) + an + b. Then m is an integer and f (n)
f (n + 1) = (m - a)(m - b) = f (m).

 Answer: (A)

5.  Statement I: If one root of 2x2 - 2(2a + 1)x + a(a + 1) = 0 
is less than a and the other root is greater than a, then 
a Î -¥ - È +¥( , ) ( , ).1 0

   Statement II: If a b<  are the roots of the equation 
f x ax bx c( ) ,º + + =2 0  then for a b< <x ,  f (x) and a 
have opposite signs.

Solution: Roots are to be real and distinct. The discrim-
inant is

4 2 1 8 1 0

4 4 1 2 2 0

2 2 1 1 0

2

2 2

2 2 2

( ) ( )

( )

a a a

a a a a

a a a a

+ - + >

+ + - - >

+ + = + + >

Therefore a lies between the roots Þ f a( ) and coefficient 
of x2 are of opposite sign. Hence f a( ) < 0 , which gives

2 2 2 1 1 0

1 0

1 0

1 0

2a a a a a

a a

a a

a

- + + + <

+ >

< - >

Î - ¥ - È + ¥

( ) ( )

( )

( , ) ( , )

or

  Therefore both Statements I and II are correct and 
Statement II is a correct reason for Statement I.

 Answer: (A)

6.  Statement I: If a and b are roots of the equa tion 
ax bx c2 0+ + =  and a d+  and b d+  are roots of the 
equa tion px qx r2 0+ + = ,  then

b ac
a

q pr
p

2

2

2

2

4 4-
=

-

   Statement II: If a and b are roots of a quadratic 
 equation f x( ) ,= 0  then the equation whose roots are 
a + h  and b + h  is f x h( ) .- = 0

Solution: Let a¢ = a + d and b¢ = b + d. Then (a¢ - b¢ )2 
= (a - b)2 . That is, 

( ) ( )¢ - ¢ - ¢ ¢ = - -a b a b a b ab2 24 4

Therefore

-æ
èç

ö
ø÷

-
æ
èç

ö
ø÷

=
-æ

èç
ö
ø÷

-

-
=

-

q
p

r
p

b
a

c
a

q pr
p

b ac
a

2 2

2

2

2

2

4 4

4 4

So, Statement I is true.
  For Statement II, put y = x + h. Then x = y - h. Therefore 
a + h and b + h are the roots of f(y - h) = 0. By replacing y 
with x, Statement II is also true, but Statement II is not a 
correct reason for Statement I.

 Answer: (B)

7.  Statement I: If a b c d, , ,  and p are distinct real numbers 
such that

( ) ( )

( )

a b c p ab bc cd p

b c d

2 2 2 2

2 2 2

2

0

+ + - + +

+ + + £

then a b c, ,  and d are in geometric progression, that is

a
b

b
c

c
d

= =

   Statement II: Sum of squares of real numbers is always 
non-negative and equal to zero if and only if each of 
the real numbers is zero.

Solution: Statement II is obviously true. In Statement I, 
the given inequality can be written as 

( ) ( )

( )

( ) (

a p abp b b p bcp c

c d cdp d

ap b bp

2 2 2 2 2 2

2 2 2

2

2 2

2 0

- + + - +

+ - + £

- + - cc cp d) ( )2 2 0+ - £

and hence

or 

ap b bp c cp d

a
b

b
c

c
d p

= = =

= = =

, ,

1

  Therefore, both Statements I and II are true and II is 
a correct reason for I.

 Answer: (A)  



4.1 Quadratic expressions and equations: If a, b, c 
are real numbers and a ≠ 0, the expression of the 
form ax2 + bx + c is called quadratic expression and 
ax2 + bx + c = 0 is called quadratic equation.

4.2 Let f (x) º ax2 + bx + c be a quadratic expression 
and a be a real (complex) number. Then we write 
f (a) for aa2 + ba + c. If f(a) = 0, the a is called a zero 
of f(x) or a root of the equation f(x) = 0.

4.3 Roots: The roots of the quadratic equation ax2 + 
bx + c = 0 are

- + - - - -b b ac

a

b b ac

a

2 24

2

4

2
and

4.4 Discriminant: b2 - 4ac is called the discriminant of 
the quadratic expression (equation) ax2 + bx + c = 0.

4.5 Sum and product of the roots: If a and b are roots of 
the equation ax2 + bx + c = 0, then

a b a b+ =
-

=
b
a

c
a2

and

4.6 Let ax2 + bx + c = 0 be a quadratic equation and 
Δ = b2 - 4ac be its discriminant. Then the following 
hold good.

(1)  Roots are equal Û Δ = 0 (i.e., b2 = 4ac).

(2)  Roots are real and distinct Û Δ > 0.

(3)  Roots are non-real complex (i.e., imaginary) Û 
Δ > 0.

4.7 Theorem: Two quadratic equations ax2 + bx + c = 0 
and ¢ + ¢ + ¢ =a x b x c2 0 have same roots if and only 
if the triples (a, b, c) and (a¢, b¢, c¢ ) are proportional 
and in this case

ax bx c
a
a

a x b x c2 2+ + = ¢ + ¢ + ¢
¢
( )

 4.8 Cube roots of unity: Roots of the equation x3 - 1 = 0 
are called cube roots of unity and they are

1
1

2

3

2
,

-
± i

-1 2 3 2/ /± i  are called non-real cube roots of unity. 
Further each of them is the square of the other and 
the sum of the two non-real cube roots of unity is 
equal to -1. If w ≠ 1 is a cube root of unity and n is 
any positive integer, then 1 + wn + w2n is equal to 3 
or 0 according as n is a multiple of 3 or not.

 4.9 Maximum and minimum values: If f(x) º ax2 + 
bx + c and a ≠ 0, then

f
b
a

ac b
a

-æ
èç

ö
ø÷

=
-

2

4

4

2

is the maximum or minimum value of f according 
as a < 0 or a > 0.

4.10  Theorems (change of sign of ax2 + bx + c): Let f(x) º 
ax2 + bx + c where a, b, c are real and a ≠ 0. If 
a and b are real roots of f(x) = 0 and a < b, then

(1) (i)  f(x) and a (the coefficient of x2) have the 
same sign for all x < a or x > b.

   (ii)  f(x) and a will have opposite signs for all x 
such that a < x < b.

(2)  If f (x) = 0 has imaginary roots, then f(x) and a 
will have the same sign for all real values of x.

4.11  If f(x) is a quadratic expression and f (p)f (q) < 0 
for some real numbers p and q, then the quadratic 
equation f (x) = 0 has a root in between p and q.

   SUMMARY

   EXERCISES

Single Correct Choice Type Questions

1.  The roots of the equation

( ) ( ) ( )/ / /10 25
17

4
502 1 1x x x+ =

are

(A) 2, 1/2 (B) -2, 1/2 (C) 2, -1/2 (D) 1/2, -1/2

2.  If a a l m blm c a l n¹ + + + = + +0 2 02 2and and )( ) (
2 0bln c+ = , then

(A) mn l c a= +2 /  (B) lm n c a= +2 /

(C) ln m c a= +2 /
 

(D) mn l bc a= +2 /

3.  If x is real, then the least value of 

6 22 21

5 18 17

2

2

x x
x x

- +
- +

is

(A) 5/4 (B) 1 (C) 17/4 (D) -5/4

Exercises 197
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 4.  The roots of the equation x m x m2 3 0- - + =( )  are 
such that exactly one of them lies in the interval 
(1, 2). Then

(A) 5 < m < 7  (B) m < 10
(C) 2 < m < 5  (D) m > 10

 5.  If a and b are roots of the equation 2x2 + ax + b = 0, 
then one of the roots of the equation 2(ax + b)2 +
a x b( )a b+ + = 0  is

(A) 0  (B) 
a

a
+ 2

2

b

(C) 
a ba

a
+

2 2
  (D) 

a ba
a
- 2

2 2

 6.  If a < b and x2 + (a + b)x + ab < 0, then

(A) a < x < b  (B) −b < x < −a
(C) x < a or x > b (D) x < −b or x > −a

 7.  If a and b are the roots of x2 − 2x + 4 = 0, then the 
value of a 6 + b 6 is
(A) 64 (B) 128 (C) 256 (D) 32

 8.  The greatest value of the expression 

1

4 2 12t t+ +

is

(A) 4/3 (B) 5/2 (C) 13/14 (D) 14/13

 9.  The roots of the equation 4 3 2 32 02x x- ´ + =+  are

(A) 1, 2 (B) 1, 3 (C) 2, 3 (D) 2, 1/2

10.  If the equations x x a2 3 0- + =  and x ax2 3 0+ - =  
have a common root, then a possible value of a is

(A) 3 (B) 1 (C) –2 (D) 2

11.  If x2 1 0- £  and x x2 2 0- - ³  hold simultaneously 
for a real x, then x belongs to the interval

(A) (–1, 2)  (B) (–1, 1)
(C) [–1, 2)  (D) x = –1

12.  Let a ¹ 1 and a13 = 1. If a = + + + + +- -a a a a a3 4 4 3  
a-1 and b = + + + + +- - -a a a a a a2 5 6 6 5 2 then the 
 quadratic equation whose roots are a and b is

(A) x2 + x + 3 = 0 (B) x2 + x + 4 = 0
(C) x2 + x − 3 = 0 (D) x2 + x − 4 = 0

13.  If ax a x2 22 1 0- + =  and x ax a a2 23 0 0- + = ¹, , have 
a common root, then a3 is a root of the equation

(A) x2 − x − 1 = 0 (B) x2 + x − 1 = 0
(C) x2 + x + 1 = 0 (D) x2 − x - 2 = 0

14.  A sufficient condition for the equation x2 + bx − 
4 = 0 to have integer roots is that

(A) b = 0, ±3  (B) b = 0, ±2
(C) b = 0, ±1  (D) b = 0, ±4

15.  The quadratic expression ax2 + bx + c assumes both 
 positive and negative values if and only if

(A) ab ¹ 0  (B) b2 − 4ac > 0
(C) b2 − 4ac ³ 0 (D) b2 − 4ac < 0

16.  If a > 0 and one root of ax2 + bx + c = 0 is less than –2 
and the other is greater than 2, then

(A) 4 2 0a b c+ + <| |
(B) 4 2 0a b c+ + >| |
(C) 4 2 0a b c+ + =| |
(D) a + b = c

17.  If b and c are real, then the equation x bx c2 0+ + =  
has both roots real and positive if and only if

(A) b < 0 and c > 0
(B) bc b c< ³0 2and
(C) bc b c< ³0 42and
(D) c b c> £ -0 2and

18.  It is given that the quadratic expression ax2 + bx + c 
takes all negative values for all x less than 7. Then

(A) ax2 + bx + c = 0 has equal roots
(B) a is negative
(C) a and b are both negative
(D) a and b are both positive

19.  The value of a for which the equation cos4 x -
( )cos ( )a x a+ - + =2 3 02  

 
possesses solution, belongs 

to the interval

(A) (−¥, 3)  (B) (2, +¥)
(C) [−3, −2]  (D) (0, +¥)

20.  If the expression ax x+ - ³( / )1 2 0  for all positive 
values of x, then the minimum value of a is

(A) 1 (B) 2 (C) 1/4 (D) 1/2

21.  If a, b and c are real, a b c¹ ¹0,  and the equations 
x2 + abx + c = 0 and x2 + cax + b = 0 have a common 
root, then

(A) a2 (b + c) = −1 (B) b2 (c + a) = 1
(C) c2 (a + b) = 1 (D) a2 (b + c) = 1

22.  If ( ) ( )( )( ) ( )x x a x x x x a2 2 2 22 3 2 1 4+ + - - + + + + + - ´
( )x x2 21 0+ + =  has atleast one real root, then

(A) 0 < a < 5  (B) 5 19 3< £a /
(C) 5 £ a < 7  (D) a ³ 7
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Multiple Correct Choice Type Questions
1.  The equation x x x( / )(log ) log ( / )3 4 5 42

2
2 2+ - =  has

(A) atleast one real solution
(B) exactly three solutions
(C) exactly one irrational solution
(D) complex roots

2.  If S is the set of all real values of x such that

2 1

2 3
0

3 2

x
x x x

-
+ +

>

then S is a superset of

(A) ( , / )-¥ - 3 2  (B) (-3/2, -1/4)

(C) ( / , / )-1 4 1 2  (D) (1/2, 3)

3.  If || | | || | |x x x x x2 25 4 2 3 3 1- + - - = - + , then x belongs 
to the interval

(A) (−¥, 1]  (B) (1, 3/2)
(C) [3/2, 4]  (D) (4, +¥)

4.  Let 

y
x x

x
=

+ -
-

( )( )1 3

2
 

Then the set of real values of x for which y is real is

(A) [−1, 2)  (B) (2, 3)
(C) (−¥, −1)  (D) [3, +¥)

5.  Let a, b and c be distinct positive reals such that the 
 quadratics ax bx c bx cx a2 2+ + + +,  and cx ax b2 + +
are all positive for all real x and 

s
a b c

ab bc ca
=

+ +
+ +

2 2 2

Then

(A) s £ 1  (B) 1 < s < 4 
(C) s Ï -¥ È +¥( , ) ( , )1 4  (D) 0 < s < 1

6.  If a and 1/a (a > 0) are roots of ax2 - bx + c = 0, then

(A) c = a  (B) c b³ 2

(C) b a³ 2   (D) a b³ 2

7.  If 

k
x

a
x c

b
x c2

=
+

+
-

where c ¹ 0, a and b are positive, has equal roots, then 
the value of k is

(A) a + b   (B) a − b 
(C) ( )a b+ 2  (D) ( )a b- 2

 8.  If the product of the roots of the equation

x mx e m2 24 3 4 0- + - =log

is 8, then the roots are

(A) real   (B) non-real
 (C) rational  (D) irrational

 9.  If 3 11 9
2 10 3 1- - + £log [ ( / ) ]/ x x , then x belongs to

(A) [0, 1/3)   (B) (1/3, 1)
(C) (2, 3)  (D) (3, 10/3]

10.  If every pair of the equations x2 + ax + bc = 0, x2 + bx + 
ca = 0 and x2 + cx + ab = 0 has a common root, then

(A) sum of these common roots is - + +( / )( )1 2 a b c
 (B) sum of these common roots is ( / )( )1 2 a b c+ +
 (C) product of the common roots is abc
(D) product of the common roots is −(abc)

11.  If the equations 4 11 2 0 3 02 2x x k x x k- + = - - =and  
have a common root a, then

(A) k = 0   (B) k = -17 36/

(C) a = 0  (D) a = 17 6/

12.  If a and b are real and  x
2 + ax + b2 = 0 and  x

2 + ax + a2 = 0 
have a common root, then which of the following are 
true?

(A) a = b
(B) a + b is the common root
(C) for real roots, a = b = 0
(D) no real values of a and b exist

13.  For a > 1, the equation

( ) ( )a a a a ax x x x+ - + - - =- -2 2 2 21 1 2
2 2

 

has

(A) three real roots
 (B) roots which are independent of a
 (C) roots whose sum is 3
(D) roots whose product is –1

14.  If a, b and c are positive real and a = 2b + 3c, then the 
 equation ax bx c2 0+ + =  has real roots for

(A) 
b
c

- ³4 2 7   (B) 
c
b

- ³4 2 7

(C) 
a
c

- ³11 4 7  (D) 
a
b

+ ³4 2
13

3
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In each of the following questions, statements are given 
in two columns, which have to be matched. The state-
ments in Column I are labeled as (A), (B), (C) and 
(D), while those in Column II are labeled as (p), (q), 
(r), (s) and (t). Any given statement in Column I can 
have  correct matching with one or more statements in 
Column II. The appropriate bubbles corresponding to 
the answers to these questions have to be darkened as 
illustrated in the  following example.

Example: If the correct matches are (A) ® (p), (s); 
(B) ® (q), (s), (t); (C) ® (r); (D) ® (r), (t); that is if the 
matches are (A) ® (p) and (s); (B) ® (q), (s) and (t); 
(C) ® (r); and (D) ® (r), (t), then the correct darkening 
of  bubbles will look as follows:

A

B

C

D

p q r s t

1.  Match the items in Column I with those in Column II.

Column I Column II

(A)  If a and b are roots of 
x x2 1 0+ + =  and k is a 
positive integer and not 
a multiple of 3, then the 
equation whose roots 
are a bk kand  is

(p) x a x a2 4 2 0+ + + =( )

(q) x x2 1 0- + =

(r) x x2 1 0+ + =

(s) bx ax2 1 0- - =

(t) bx ax2 1 0+ + =

(B)  If a and b are roots of 

x x2 1 0+ + = ,  then the 
equation whose roots 
are a b2009 2009 and  is

(C)  If a and b are roots of 

x ax b b2 0 0+ + = ¹, ,  
then the equation 
whose roots are 

1 1/ , /a b  is

(D)  If a and b are roots 
of x ax2 4 0+ - = ,  
then the equation 
whose roots are 
a b- -2 2and  is

2.  Let a and b be roots of the equation ax bx c2 0+ + =  
and ab ¹ 0. Then match the items in Column I with 
those in Column II.

Column I Column II

(A)  The equation 
whose roots are 
a b ab+ and  is

(p) cx bx a2 0+ + =

(q) a x ac b x c2 2 2 22 0+ - + =( )

(r) a x a b c x bc2 2 0+ - - =( )

(s)  ax ac b x ac2 22+ + + +( )
bc c+ = 0

(t) cx bx a2 0- + =

(B)  The equation 
whose roots are a 2 
and b 2 is

(C)  The equation 
whose roots are 

1 1/ /a band  is

(D)  The equation 
whose roots are 
a b- -c cand  is

3.  Match the items in Column I with those in Column II.

Column I Column II

(A) The maximum value of 

x x
x x

2

2

6 4

2 4

- +
+ +  

(x is real) is

(p) 0

(q) 1

(r) –1

(s) -1/3

(t) 5

(B)  The correct value of a 
for which the equation

( ) ( )a a x a a x2 2 24 3 2+ + + - - +
a a( )+ =1 0  has more than two roots is

(C)  The number of real values of x 
satisfying 5 5 10

25x x+ =- log  is

(D)  If the ratio of the roots of the 
equation ax bx b2 0+ + =  (a and b 
positive) is in the ratio l : m (l and m 
positive), then 

l
m

m
l

b
a

+ -

is equal to

4.  For the equation ( ) ( ) ,x x x2 2 26 81 2 3- = + -  match the 
items in Column I with those in Column II.

Column I Column II

(A) The number of rational roots is (p) 12

(q) 6

 (r) 2

 (s) 99

 (t) –99

(B) The number of irrational roots is

(C) Sum of all the real roots is

(D) Product of the real roots is

Matrix-Match Type Questions
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5.  Let 

f x
x x
x x

( ) =
- +
- +

2

2

6 5

5 6

Then match the items in Column I with those in 
Column II.

Column I Column II

(A) If - < <1 1x ,  then f (x) satisfies (p) 0 1< <f x( )

(q) f x( ) < 0

(r) f x( ) > 0

(s) f x( ) < 1

(t) f x( ) = 0

(B) If 1 2< <x ,  then f x( )  satisfies

(C) If 3 5< <x , then f x( )  satisfies

(D) If x > 5, then f x( )  satisfies

6.  Match the items in Column I with those in Column II.

Column I Column II

(A) If x is real, the expression

x

x
x

+( ) -
-( ) ¹

3 24

2 2
2

2

( )

(p) [1, 7]

admits all values except those in 
the interval

(B) If the expression 

px x
p x x

2

2

3 4

3 4

+ -
+ -

( )p x x+ - ¹3 4 02  takes all real 
values, then p lies in the interval

(q) [-1/11, 1]

(r) (−3, −2)

(s) (4, 6)

(t) (3, 5)

(C) If x is real, then 

x
x x2 5 9- +

must lie in the interval

(D) If x ¹ - 2 and x ¹ -3, then

x x
x x

2

2

4 5

5 6
0

- +
+ +

<

for all x in the interval

Comprehension-Type Questions

1.  Passage: To solve equations of the form

( )( )ax bx c ax bx d k2 2+ + + + =

use the substitution ax bx y2 + = , so that the given equa-
tion transforms into a quadratic equation in y which 
can be solved. Answer the following three questions.

 (i)  The number of real roots of the equation

1

2

1

1

1

122x x x( ) ( )+
-

+
=

is

(A) 2 (B) 1 (C) 0 (D) 4

 (ii)  The equation

24

2 8

15

2 3
2

2 2x x x x+ -
-

+ -
=

has

(A) all positive solutions
(B) three positive and one negative solutions
(C) two non-negative and two negative solutions
(D) two real and two imaginary solutions

 (iii)  The real solution set of the equation

( )( )( )( )x x x x- + + + =2 1 4 7 19

contains

(A) four elements (B) three elements
(C) two elements (D) no elements

2.  Passage: Let f x ax bx c( ) = + +2  and a ¹ 0. If a and b 
are roots of f (x) = 0, then a b ab+ = - =b a c a/ / .and

 
Further, if a and b are real roots with a < b, then f (x) 
and a have the same sign for all x x f x< >a bor  and, ( ) 
and a have opposite sign for all a b< <x . Consider 
the quadratic equation

( ) ( ) ( )1 2 1 3 1 8 02+ - + + + =m x m x m

Now, answer the following three questions.

 (i)  The number of real values m such that the roots 
of the given quadratic equation are in the ratio 
2:3 is

(A) 2  (B) 4
(C) 0  (D) infinite
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In each of the following, two statements, I and II, are given 
and one of the following four alternatives has to be chosen.

(A)  Both I and II are correct and II is a correct  reasoning 
for I.

(B)  Both I and II are correct but II is not a  correct 
 reasoning for I.

(C)  I is true, but II is not true.
(D)  I is not true, but II is true.

1.  Statement I: If f x ax bx c( ) º + +2  is positive for all x  
greater than 5, then a > 0, but b may be negative or 
may not be negative.

Assertion–Reasoning Type Questions

 (ii)  The set of values of m such that both the roots of 
the  equation are positive is

(A) (−¥, + ¥)
(B) - < <1 3m
(C) 3 £ < ¥m
(D) ( , ) ( , ) { }-¥ - È +¥ È1 3 0

 (iii)  The values of m for which the equation has equal 
roots are

(A) 0, 3 (B) −1, 3 (C) −1, 0 (D) 1, 3

3.  Passage: Let f x ax bx c a( ) , .º + + ¹2 0  Let a and b be 
roots of f (x) = 0. Then the following hold good.

(a)  a + h and b + h are roots of f(x - h) = 0 for all h.
(b)  la + h and lb + h are roots of f [(x - h)/l] = 0 for all 

h and for all l ¹ 0.

Now, answer the following three questions.

 (i)  If a and b are the roots of ax2 + bx + c = 0, then 
the  equation whose roots are 

a
a

b
b

+
-

+
-

1

2

1

2
and

is

(A) a x b x x c x( ) ( )( ) ( )+ + + - + - =1 1 2 2 02 2

(B) a x b x x c x( ) ( )( ) ( )- + + - + + =2 1 2 1 02 2

(C) a x b x x c x( ) ( )( ) ( )2 3 1 2 2 02 2+ + + + + + =
(D) a x b x x c x( ) ( )( ) ( )2 1 2 1 1 1 02 2+ + + - + - =

 (ii)  If a and b are roots of the equation 2x2 + 4x - 
5 = 0, then the equation whose roots are 2a - 3 
and 2b - 3 is

(A) x x2 10 11 0+ - =
(B) 11 10 1 02x x+ - =
(C) x x2 10 11 0+ + =
(D) 11 10 1 02x x- + =

 (iii)  If a and b are roots of ax bx c2 0+ + = , then the 
equation whose roots are a b+ +( / ) ( / )c a c aand  is

(A) a x ac b x c a b2 2 2 0- + + + =( ) ( )
(B) a x ca b x c a b2 2 0- + + + =( ) ( )

(C) a x ac b x c a b c2 2 2 0+ + - + + =( ) ( )

(D) a x a b c x c a b c2 2 2 0- + + + + =( ) ( )

4.  Passage: Let a, b and c be real numbers, a ¹ 0 and 
f(x) º ax2 + bx + c. If a < b are roots of f(x) = 0, then it 
is known that

(A)  f x a( )× < 0 for all x in the open interval (a,  b).
(B)  f x a( )× > 0 for all x such that either x x< >a bor .

Now, answer the following three questions.

 (i)  If the equation (a2 + 1)x2 - (a + 1)x + (a2 - a - 2) = 0 
has one positive and one negative root, then which  
one of the following is possible?

(A) a £ -1  (B) - < <1 2a
(C) 2 5£ £a   (D) a > 5

 (ii)  If mx m x2 1 3 0- + + =( )  has roots belonging to 
(1, 2), then

(A) 0 < m < 1 (B) 1 2£ £m
(C) m < 0  (D)  no real value for m 

exists

 (iii)  If x m x m m2 21 8 0- + + + - =( )  has one root 
in the open interval ( , )-¥ 1  and the other in 
( , ),1 +¥  then

(A) m < -2 2  (B) m > 2 2

(C) - < <2 2 2 2m  (D)  no real value for m 
exists

5.  Passage: Let f x ax bx c( ) ,º + +2  where a, b and c are 
real and a ¹ 0. Then f x( ) = 0 has real roots or imagi-
nary roots according as b ac b ac2 24 0 4 0- ³ - <or .  
Answer the following three questions.

 (i) If the function 

y
x x

mx
=

-
-

2

1

takes all real values for real values of x, then

(A) m < 0  (B) 0 < m < 1  (C) m > 0  (D) m > 1

 (ii) If 

y
x x c
x x c

=
+ +
+ +

2

2

2

4 3

takes all real values, then

(A) 0 < c < 1  (B) c < −1
(C) c > 1  (D) c > 0

 (iii) If 

x ax
x x

2

2

1

1
3

+ +
+ +

<
 

for all real x, then

(A) a < 0  (B) a < −1
(C) −1 < a < 7 (D) a > 7



   Statement II: If f x ax bx c( ) º + + >2 0 for all x > 5, 
then the equation f x( ) = 0 may not have real roots or 
will have real roots less than or equal to 5.

2.  Statement I: If a, b and c are positive integers and 
ax bx c2 0- + =  has two distinct roots in the integer 
(0, 1), then log ( ) .5 2abc ³

   Statement II: If a quadratic equation f x( ) = 0 has 

roots in an interval (h, k), then f h f k( ), ( ) > 0

3.  Statement I: There are only two values for sin x satis-
fying the equation 2 5 2 7

2 2sin cos .x x+ ´ =

   Statement II: Maximum value of sin2 x is 1.

4.  Statement I: If x = 1 is a root of the quadratic equa-
tion ax bx c2 0+ + = ,  then the roots of the equation 
4 32ax bx+ +  2 0c =  are imaginary.

   Statement II: For any polynomial equation, 1 is a root 
if and only if the sum of all the coefficients of the poly-
nomial is zero.

5.  Let a, b, c, p and q be real numbers and a and b be 
roots of  the equation x px q2 2 0+ + = .  Suppose a and 
1/b are roots of the equation ax bx c2 2 0+ + =  where 

b2 1 0 1Ï -{ , , }.

   Statement I: ( )( )p q b ac2 2 0- - ³

   Statement II: b pa c qa¹ ¹or

6.  Statement I: Let a, b, a and b be real numbers. If a +
ib (a ¹ 0, b ¹ 0) is a root of the equation x3 + bx + c = 0, 
then 2a is a root of one of the  following equations.

 (i) x bx c3 0- + =  (ii) x bx c3 0- - =
(iii) x bx c3 0+ - =  (iv) x bx c3 2 0+ - =

   Statement II: Complex roots occur in  conjugate pairs 
for any polynomial equation with real coefficients.

7.  Statement I: The maximum value of

3 9 17

3 9 7

2

2

x x
x x

x
+ +
+ +

( )is real

is 8.

   Statement II: If a, b, and c are real numbers and a > 0, 
then the minimum value of ax2 + bx + c (x is real) is 

4

4

2ac b
a
-

8.  Statement I: Suppose a, b and c are real numbers and 
a ¹ 0.  If the equation ax bx c2 0+ + =  has two roots 
of which one is less than –1 and the other is greater 
than 1, then

1 0+ + <
c
a

b
a

    Statement II: Let f (x) º ax2 + bx + c, where a, b and c 
are real numbers and a ¹ 0. If f x( ) = 0 has real roots, 
then af x( ) < 0 for all real x lying between the roots 
of f(x) = 0.

 9.  Statement I: Let 

y
x x
x x

=
- +
+ +

2

2

1

1

where x is real. Then y cannot lie between 1/3 and 3.

    Statement II: If a, b and c are real, then the quadratic 
 equation ax2 + bx + c = 0 has real roots if and only if 
b ac2 4 0- ³ .

10.  Statement I: For all real values of x, the range of the 
function 

y
ax b cx d
bx a dx c

=
- -
- -

( )( )

( )( )

is ¡ if a, b, c and d are real, a b c d a b¹ ¹ -, and ( )2 2

(c2 - d2) > 0.

    Statement II: A quadratic equation will have real 
roots if its discriminant is greater than or equal to 
zero.

11.  Statement I: Suppose a, b and c are real, c > 0, 
a + b + c > 0 and a - b + c > 0. Then both the roots 
of the equation ax2 + bx + c = 0 lie between –1 and 1.

    Statement II: For a quadratic expression f (x), if  f (p) 
and f (q) are of opposite sign, then f (x) = 0 has a root 
in between p and q.

12.  Statement I: Let f x g x( ) and ( ) be quadratic expres-
sions with rational coefficients. Suppose they have 

a common root of the form a b+  where b is not a 
 perfect square of a rational number. Then g x f x( ) ( )= g  
for some rational number g.

    Statement II: For a quadratic equation, with rational 

coefficients, if a b+  (b is not a perfect square of 
a rational number) is a root, then a b-  is also a root.

13.  Statement I: If the equation x2 + px + q = 0 has rational 
roots and p and q are integers, then the roots are 
integers.

    Statement II: A quadratic equation has rational roots 
if and only if its discriminant is a perfect square of a 
rational number.

Exercises 203
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Integer Answer Type Questions

The answer to each of the questions in this section is 
a non-negative integer. The appropriate bubbles below 
the respective question numbers have to be darkened. 
For example, as shown in the figure, if the correct answer 
to the question number Y is 246, then the bubbles under 
Y labeled as 2, 4, 6 are to be darkened.

0 0 0 0

1 1 1 1

3 3 3 3

5 5 5 5

7 7 7 7

8 8 8 8

9 9 9 9

4 4 4

6 6 6

2 2 2

X Y Z W

1.  The integer value of k for which

x k x k k2 22 4 1 15 2 7 0- - + - - >( )

for all real x is .

2.  The number of negative integer solutions of x x2 12´ ++  
2 2 23 2 2 3 4 1| | | |x x xx- + - + -= ´ + is .

3.  If ( )/a + 5 2i  is a root of the equation 2 6 02x x k- + = , 
then the value of k is .

4.  If the equation x x a2

1 24 0- + =log /  does not have 
distinct real roots, then the minimum value of 1/a
is .

5.  If a is the greatest negative integer satisfying

x x x2 24 77 0 4- - < >and

simultaneously, then the value of |  a  | is .

6.  The number of values of k for which the quad-
ratic equations (2k - 5)x2 - 4x - 15 = 0 and (3k - 8)
x2 - 5x - 21 = 0 have a common root is .

7.  The number of real roots of the equation 2 62x x- -
5 3 6 02x x- - =  is .

   ANSWERS

Single Correct Choice Type Questions

 1. (D)
 2. (A) 
 3. (B) 
 4. (D) 
 5. (A) 
 6. (B)
 7. (B)
 8. (A) 
 9. (C) 
10. (D) 
11. (D) 

12. (C)
13. (A) 
14. (A) 
15. (B) 
16. (A) 
17. (D) 
18. (B)
19. (C)
20. (A) 
21. (A) 
22. (B)

Multiple Correct Choice Type Questions

 1. (A), (B), (C) 
 2. (A), (D) 
 3. (A), (C) 
 4. (A), (D)
 5. (B), (C) 
 6. (A), (C) 
 7. (C), (D) 

 8. (A), (D)
 9. (A), (D) 
10. (A), (C), (D) 
11. (A), (B), (C), (D) 
12. (A), (B), (C)
13. (A), (B), (C), (D) 
14. (A), (C)



Integer Answer Type Questions

1. 3
2. 0
3. 17
4. 16

 5. 3
 6. 2
 7. 4

Comprehension-Type Questions

1. (i) (A); (ii) (C); (iii) (A) 
2. (i) (A); (ii) (D);       (iii) (A)
3. (i) (D); (ii) (C); (iii) (D)

 4. (i) (B); (ii) (D); (iii) (C)
 5. (i) (D);       (ii) (A);        (iii) (C)

Assertion–Reasoning Type Questions

1. (A) 
2. (A) 
3. (A) 
4. (D) 
5. (B)
6. (A) 
7. (D) 

 8. (A) 
 9. (D) 
10. (A)
11. (A) 
12. (A) 
13. (A)

Matrix-Match Type Questions

1.  (A) ® (r),  (B) ® (r), (C) ® (t), (D) ® (p)
2.  (A) ® (r),  (B) ® (q), (C) ® (p), (D) ® (s)
3.  (A) ® (t),  (B) ® (r), (C) ® (p), (D) ® (p)
4.  (A) ® (r),  (B) ® (r), (C) ® (p), (D) ® (t)

 5.  (A) ® (p), (r), (s), (B) ® (q), (s),  
(C) ® (q), (s),  (D) ® (p), (r), (s) 

 6.  (A) ® (s),  (B) ® (p), (C) ® (q), (D) ® (r)
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Sequences: A sequence is an 
ordered list of objects (or 
events). It contains  members 
(also called elements or terms), 
and the number of terms 
 (possibly infinite) is called the 
length of the sequence. Order 
matters and the exactly same 
elements can appear multiple 
times at different positions in 
the sequence.

Series: The sum of terms of 
a sequence is a series.

Contents
5.1 Sequences and Series
5.2 Arithmetic Progressions
5.3 Geometric Progressions
5.4 Harmonic Progressions

 Worked-Out Problems
 Summary
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We have defined the concept of a function and its domain, codomain and range in Chapter 1. A sequence is a function 
whose domain is the set of natural numbers and codomain is a given set. In this chapter, we discuss various aspects of 
sequences, in particular of sequences defined in certain recursive types.

5.1 | Sequences and Series

In this section, we will introduce the notion of a sequence and the corresponding series and their limits. Though the 
concept of limit is discussed in another volume of this series, we assume a certain intuitive idea about the limit or the 
approaching value. For example, the value of 1/n  decreases as n increases and 1/n  becomes nearer to zero (and it is 
never zero) as we take bigger values for n. A naive idea like this is enough to understand the concepts introduced in 
this chapter.

Sequence of Elements

DEFINITION 5.1 Let �+  be the set of positive integers and X any set. Then a mapping a X: �+ ®  is called a 
sequence of elements in X or, simply, a sequence in X. For any n Î +� , we prefer to write an  for 
the image a(n). This an  is called the nth term of the sequence.

Usually a sequence is denoted by its range {an | n Î�+} or simply { }an  or { , , , }.a a a1 2 3 …

(1)  { / }1 n  is a sequence of real numbers. Here the sequence 

a : � �+ ®  is given by a nn = 1/  for any n Î +� .

(2)  { }n2  is a sequence of integers. Here a nn = 2 for all n Î +� .

(3)  {log }2n  is a sequence of real numbers. Here the sequence 

a : � �+ ®  is given by a nn = log2  for any n Î +� .

(4)  {in} is a sequence of complex numbers. Here the 
sequence a : �+ ® � is given by an = in for any n Î�+. 
Recall that in = 1 if n is a multiple of 4, in = i if n = 4m + 1, 
in = -1 if n = 4m + 2 and in = -i if n = 4m + 3.

Examples

DEFINITION 5.2 A sequence an{ } is called finite if its range is a finite set. In other words, the set

{an | n Î�+}

is a finite set. An infinite sequence is a sequence which is not finite.

(1)  The sequence {in} is finite, since {1, i, -1, -i} is  precisely 
the range.

(2) The sequence {(-1)n} is finite, since {1, -1} is its range.

(3) For any m > 1, {mn} is an infinite sequence.

(4) The sequence {log2 n} is infinite.

Examples

DEFINITION 5.3 A sequence { }an  is called constant if a a1 2= =	  (i.e., a an m=  for all n and m Î +� ). { }an  is called 
ultimately constant if it is constant after a certain stage in the sense that, there is a positive 
 integer m such that

a am m k= +  for all k Î +�

or a a am m m= = =+ +1 2 	

Quite often, ultimately constant sequences are also called finite sequences for the simple reason that their ranges are 
finite. As per our terminology, any ultimately constant sequence is finite and not vice-versa; for, consider the  following 
examples:
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(1)  The sequence {(-1)n} is finite but not ultimately 
constant, since an ¹ an+1 for all n Î �+, where an = (-1)n, 
an = 1 if n is even and an = -1 if n is odd.

(2)  The sequence {an}, where a nn = [ / ]1  (the integral part of 
1/n), is ultimately constant, since [ / ]1 0n =  for all n > 1.

(3)  Define the sequence {an} by an = the remainder obtained 
by dividing n with 2. Then an is 1 or 0 depending on 

whether n is odd or even, respectively. In this case 
{an} is finite, but not ultimately constant. Here also, 
an ¹ an+1 for all n Î �+.

(4)  The sequence { }in  is also finite, but not ultimately 
constant. 

Examples

Quite often, sequences are defined  recursively in the sense that an  is defined in terms of a a a an n- -1 2 2 1, , , ,… . Of 
course, one has to define the first term a1 or the first few terms.

Try it out

1. Let a1 2=  and a an n= +-1 2  for any n > 1. Then show that

a a

a a

a a

2 1

3 2

4 3

2 2 2 4

2 6

2 8

= + = + =

= + =

= + = , etc.

2. Let a a1 21 4= =,  and a a a an n= + + + -1 2 1	  for n ³ 3. Then show that

a a a3 1 2 5= + =

a a a a4 1 2 3 10= + + =

a a a a a5 1 2 3 4 20= + + + = , etc.

 Note that a an n= -2 1 for n > 3.

3. Let a a1 21 2= =,  and a a an n n= +- -1 2  for any n > 2 . Then show that

a a a3 2 1 3= + =

a a a

a a a

a a a

4 3 2

5 4 3

6 5 4

5

8

13

= + =

= + =

= + =

a a a7 6 5 21= + = , etc.

4. Let

a1

1

2
=  and a

a
an

n

n

=
+

-

-

1

11 2
 for all n > 1

 Then show that

a a a a2 3 4 5

1

4

1

6

1

8

1

10
= = = =, , , ,  etc.

 Note that a nn = 1 2/  for all n Î +� .

Series

DEFINITION 5.4  If { }an  is a sequence of real or complex numbers, then an expression of the form

a a a1 2 3+ + + 	
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is called a series. If sn is the sum of the first n-terms of the sequence { }an , that is,

s a a an n= + + +1 2 	

then { }sn  is again a sequence and sn is called the nth partial sum of the series.

(1) 1 2 3+ + + 	 is a series and the partial sum is given by

s n
n n

n = + + + =
+

1 2
1

2
	

( )

(2)  1 1 1 1+ - + + - +( ) ( ) 	  is a series and the partial sum 
is sn = 1 or 0 depending on whether n is odd or even.

Examples

Note: An ultimately constant sequence { }an  is some times referred as a finite sequence and is expressed as a a an1 2, , ,…  
with the assumption that a an n= =+1 	

Limit

DEFINITION 5.5  Let { }an  be a sequence of real numbers and a be a real number. Then a is said to be limit of the 
sequence { }an  if, for each Î> 0 , there exists a positive integer n0  such that

| |a an - < Î for all n n³ 0

That is, a a an- Î< < + Î for all n n³ 0.

THEOREM 5.1

PROOF

Any sequence can have at most one limit.

Let { }an  be a sequence and a and b be limits of { }.an  Suppose that a b¹ . Take 

Î= -
1

2
| |a b

Since a is a limit of { },an  there exists n0 Î +�  such that

| |a an - < Î for all n n³ 0

Similarly, there exists n1 Î +�  such that

| |a bn - < Î for all n n³ 1

Choose n Î +�  such that n n n> max{ , }.0 1  Then

| | | | | | | |a b a a a b a bn n- £ - + + < Î+ Î= -

which is a contradiction. Thus a = b. ■

DEFINITION 5.6  If a is the limit of { },an  then we write lim
n na a

®¥
=  or, simply, lim a an =  and denote it by a an ® .

(1)  Consider the sequence { / }1 n . Then lim( / ) .1 0n =  For, 
if Î> 0  is given, choose a positive integer n0 1> Î/  so 
that, for any n n³ 0

1
0

1 1

0n n n
- = £ < Î

(2) The sequence { }n  has no limit.

(3)  If lim a an =  and lim bn = b, then lim( )a b a bm n± = ±  
and lim anbn = ab.

(4)  If a is the limit of a sequence { },an  then a is the limit of 
any sequence obtained by omitting a finite number 
of consecutive terms from { }.an

Examples
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Convergent and Divergent Series

DEFINITION 5.7 Let {an} be any sequence of real numbers and s a a an n= + + +1 2 	 . If the sequence {sn} has limit s, 
then we write

a sn
n=

¥

å =
1

In this case, the infinite series ann=

¥å 1
 is said to be convergent to s. If {sn} has no limit, then the series ann=

¥å 1
 is said to 

be divergent.

(1) 1
21 nn=

¥å  is convergent.

(2) 1
1 nn=

¥å  is divergent.

(3) If ann=

¥å 1
 is convergent, then lim .an = 0

(4)  If lim an = 0, then ann=

¥å 1
 may not be convergent (see 

example given in point 2). 

Examples

5.2 | Arithmetic Progressions

A sequence whose terms satisfy a specific condition is called a progression. In this section we discuss sequences in 
which the difference between any two consecutive terms is a fixed constant. Such sequences are called arithmetic 
 progressions. We begin with the formal definition in the following.

DEFINITION 5.8  A sequence { }an  is called an arithmetic progression if a a a an n n n+ -- = -1 1  for all integers n > 1 
and, in this case, a an n+ -1  is called the common difference.

An arithmetic progression is also called an arithmetic sequence. Note that { }an  is an arithmetic progression if and 
only if

a a an n n+ -+ =1 1 2

for all integers n > 1.
Before going for examples, let us have the following fundamental characterization of arithmetical progressions.

THEOREM 5.2

PROOF

Let { }tn  be a sequence of real numbers. Then { }tn  is an arithmetic progression if and only if there 
exist unique real numbers a and d such that

t a n dn = + -( )1

for all integers n ³ 1.

Suppose that { }tn  is an arithmetic progression. Then

t t t tn n n n+ -- = -1 1  for all n > 1

Take a t= 1 and d t t= -2 1. Then

t a d

t t t t a d

t t t t t t t

1

2 1 2 1

3 2 3 2 2 2 1

1 1

2 1

= + -

= + - = + -

= + - = + - =

( )

( ) ( )

( ) ( ) aa d d a d+ + = + 2

and, in general, we can prove by induction that t t t t a n d d a n dn n n n= + - = + - + = + -- -1 1 2 1( ) ( ) ( )  
for any positive integer n.
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Conversely, suppose that there are real numbers a and d such that tn = a + (n - 1)d for all 
 positive integers n. Then

t t a n d a n d dn n+ - = + + - - + - =1 1 1 1( ) ( ( ) )

for all n Î +�  and therefore { }tn  is an arithmetic progression. The uniqueness of a and d follows 
from the facts that t a1 =  and t t d2 1- = .  ■

QUICK LOOK 1

1.  In any arithmetic progression {tn} the first term t1  
and the common difference tn+1 - tn determine all the 
terms and, therefore, the first and second terms (t1 = a 
and t2 - t1 = d) of an arithmetic progression deter-
mine the whole sequence. Also, by examining the 
first three terms (in fact any three consecutive terms) 
we can get a clue that the given sequence is or is not 
an arithmetic progression.

2.  A sequence {tn} is an arithmetic progression if and 
only if twice of any term is equal to the sum of its 
proceeding term and succeeding term.

3.  Any arithmetic progression must be of the form 
a a d a d a d, , , ,+ + +2 3 … where a is the first term 
and d is the common difference. This is called the
general form of an arithmetic progression.

4. The nth term of an arithmetic progression is

t a n dn = + -( )1

where a is the first term t1  and d is the common 

 difference t t t tn n+ - = -1 2 1( ).

Examples

(1)  The sequence { }n  is an arithmetic progression. Here 
the first term and the common difference are both 
equal to 1.

(2)  Any constant sequence is an arithmetic  progression 
the common difference being zero.

QUICK LOOK 2

1.  If {an} is an arithmetic progression, then for any real 
number k a kn, { }+  is also an arithmetic  progression 
with the same common difference as {an}, since 
( ) ( ) ,a k a k a an n n n+ ++ - + = -1 1  for any n Î +� .

2.  If {an} is an arithmetic progression with common 
difference d and k is any real number, then {kan} is 

also an arithmetic progression whose common differ-
ence is kd.

3.  If {an} and {bn} are arithmetic progressions, then  
{an + bn} is also an arithmetic progression;  however  
{anbn} is not so, in general. In this  direction, we have 
the following.

THEOREM 5.3

PROOF

Let {an} and {bn} be arithmetic progressions. Then {an bn} is an arithmetic progression if and only if 
either {an} or {bn} is a constant sequence.

If {an} or {bn} is constant, then by point 2 of Quick look 2, {anbn} is an arithmetic progression. 
To  prove the converse, let d and e be the common differences of {an} and {bn}, respectively. 
Then

{ } is an APa b a b a b a b a b

a a b b

n n n n n n n n n n

n n n n

Þ - = -

Þ - +
+ + - -

+ +

1 1 1 1

1 1( ) ( ++ - - -

+ -

- = - + -

Þ + = +

Þ

1 1 1 1

1 1

b a a a b b b a

db e a db e a

d

n n n n n n n n

n n n n

) ( ) ( )

(bb b e a a

de de

n n n n+ -- = - -

Þ = -
1 1) ( )
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 Þ =

Þ = =

Þ

2

or

is constant or is constant

de

d e

a bn n

0

0 0

{ } { }  ■

DEFINITION 5.9  Let a a an1 2, , ,…  be given numbers. Then a a an1 2, , ,…  are said to be in arithmetic progression if 
these are, in this order, consecutive terms of an arithmetic progression.

THEOREM 5.4

PROOF

a a an1 2, , ,…  are in arithmetic progression (where n > 2) if and only if 2a a ar r k r k= ++ -  for all r and k 
such that 1 £ - < < + £r k r r k n.

If 2a a ar r k r k= ++ - , then

a a a ar r r r+ -- = -1 1  for all 1 < <r n

and hence a a r a ar = + - -1 2 11( )( ) for all 1 £ r £ n. Therefore a1, a2, …, an are in
arithmetic progression. ■

Try it out The converse is clear. It is left for the reader as an exercise.

1.  Any two real numbers a1, a2 are in arithmetic progres-
sion whose common difference is a2 - a1.

2.  a1, a2 , a3 are in AP if and only if 2 2 1 3a a a= + .
3.  Three numbers in AP can be taken as a - d, a, a + d 

for some a and d.
4.  Four numbers in AP can be taken as a − 3d, a − d, 

a + d, a + 3d.
5.  Five numbers in AP can be taken as a − 2d, a − d, 

a, a + d, a + 2d.

6.  In general, ( )2 1r +  numbers in AP can be taken as 
a rd a r d a a r a rd- - - + +, ( ) , , , , , .1 … …

7.   In general 2r  numbers ( )r Î +�  in AP can be taken as 
a r d a r d a d a d a d- - - - - + +( ) , ( ) , , , , , ,2 1 2 3 3… …
a + (2r − 1)d.

8.   A sequence { }an  is an AP if and only if the nth term 
an  is a linear expression in n.

QUICK LOOK 3

THEOREM 5.5

PROOF

The sum of the first n terms of an arithmetic progression is given by

s n a
n

dn = +
-é

ëê
ù
ûú1

1

2

where a1 is the first term and d is the common difference.

Let { }an  be an arithmetic progression and d the common difference. Then

a a n dn = + -1 1( )  for all n Î +�

Let sn  be the sum of the first n terms in { }an . Then

s a a a

a a r d

na r

n n

i
r

n

r

n

r

n

= + + +

= = + -

= + -
æ
èç

ö
ø

= =

=

å å

å

1 2

1

1

1

1

1

1

1

	

( ( ) )

( )÷÷ d
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= + + + + + -

= + -

= + -æ
èç

ö
ø÷

na n d

na
n n

d

n a
n

d

1

1

1

0 1 2 1

1

2

1

2

[ ( )]

( )

	

The sum of the first n terms of an AP is given by 

n a
n

d
d

n a
d

n1

2

1

1

2 2 2
+

-é
ëê

ù
ûú

= æ
èç

ö
ø÷

+ -æ
èç

ö
ø÷

which is a quadratic expression in n, with constant term zero. ■

Converse of Theorem 5.5 is proved in the following theorem.

THEOREM 5.6

PROOF

A sequence is an arithmetic progression if and only if the sum of the first n terms is a quadratic 
expression in n with the constant term zero.

Let { }an  be a sequence and s a a an n= + + +1 2 	 , for any n Î +� . Then the nth term is given by

a s sn n n= - -1

Now, suppose that sn  is a quadratic expression in n with constant term zero, that is,

s an bnn = +2

where a and b are real numbers. Then

a s s

an bn a n b n

a n n b n n

n n n= -

= + - - + -

= - - + - -

-1

2 2

2 2

1 1

1 1

[ ( ) ( )]

[ ( ) ] [ ( )]

== - +( )2 1n a b

Therefore, the nth term is a n a bn = - +( )2 1  and so, for any n > 1,

a a n a b n a b

n n a a

n n- = - + - - - +

= - - - =
-1 2 1 2 1 1

2 1 2 3 2

( ) [( ( ) ) ]

[ ( )]

This shows that a an n- -1  is a constant for all n and hence { }an  is an arithmetic progression with a 
common difference 2a and first term a + b. ■

QUICK LOOK 4

1.  In the above, if s an bn cn = + +2  with c ¹ 0 , then {an} 
is not an arithmetic progression. In this case, it can 
be observed that

a a an n- =-1 2  for n > 2

and a a s s a s s

a b c a b c

a c a c

2 1 2 1 1 2 12

4 2 2

2 2

- = - - = -

= + + - + +

= - ¹ ¹

( )

( ) ( )

(since 00)

 Therefore {an} is not an arithmetic progression. 
However, a a a a2 3 4 5, , , , … are in AP, with common 
 difference 2a. That is, excluding a an1, { } is an AP.

2.  If the sum of the first n terms of a sequence is 
an bn2 +  for all n Î +� , then the sequence is an AP 
whose first term is a b+  and the common  difference 
is 2a.
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Example     5.1   

If the first, second and nth term of an arithmetic 
 progression are a, b and c respectively, then find the sum 
of the first n terms of the sequence.

Solution: The given sequence can be written as

a b b b b c bn n, , , , , , , ,3 4 1 1… …- +

The common difference must be b - a. Also, c which is 
the nth term equals

a n d a n b a+ - = + - -( ) ( )( )1 1

Therefore

n
c a
b a

c b a
b a

=
-
-

+ =
+ -

-
1

2

The sum of the first n terms is given by

n a
n

d n a
c a
b a

b a

c b a
b a

a
c a

+
-æ

èç
ö
ø÷

= +
-
-

-
æ
èç

ö
ø÷

=
+ -

-
+

-æ
èç

ö

1

2 2

2

2

( )
( )

øø÷

=
+ - +

-
( )( )

( )

c b a a c
b a
2

2

Arithmetic Mean

DEFINITION 5.10  If three numbers a, b, c are in arithmetic progression, then b is called the arithmetic mean (AM) 
between a and c. In general, if a, b1, b2,  …, bn, c are in arithmetic progression, then b1, b2, …, bn 
are called n arithmetic means (n AMs) between a and c.

THEOREM 5.7

PROOF

If A1, A2,  …, An are n arithmetic means between a and c, then

A a
k c a

nk = +
-
+

( )

1
 for 1 £ £k n

Let a, A1, A2,  …,  An, c be in arithmetic progression and d be the common difference. Then

A a d A a d A a kd A a ndk n1 2 2= + = + = + = +, , , ,…

and  c a n d= + +( )1  

Therefore,

 d
c a
n

=
-
+ 1

 and A a
c a
n

kk = +
-
+ 1

 
■

QUICK LOOK 5

1. If b is the arithmetic mean between a and c then 

b
a c

=
+
2

2. For any real numbers a and b,

a
a b

b, ,
+
2

are in arithmetic progression.

3.  If A1, A2, …, An are n arithmetic means between a and 
b, then

A A A n
a b

n1 2
2

+ + + =
+æ

èç
ö
ø÷

	

That is, the sum of n arithmetic means between two 
given real numbers a and b is equal to n times of the 
AM of a and b.

4.  If a is the first term and b is the nth term in an AP, 
then the sum of the first n terms is equal to

n
a b

2
( )+
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THEOREM 5.8

PROOF

If Tn and Tn
¢ are the nth terms of two arithmetic progression and sn and ¢sn  are their sums of the 

first n terms, respectively, then

T

T

s

s
n

n

n

n¢
=

¢
-

-

2 1

2 1

Let the two AP’s be

a a d a d, , ,+ + 2 … and b b e b e, , ,+ + 2 …

Then, by Theorem 5.4, we have

 

s
s

n a n d

n b n e

a

n

n

2 1

2 1

2 1 2 2 2

2 1 2 2 2
-

-¢
=

- + -[ ]
- + -[ ]

= +

( ) {( )/ }

( ) {( )/ }

(nn d
b n e

T
T

n

n

-
+ -

=
¢

1

1

)

( ) ■

Example     5.2   

The nth terms of two AP’s { }an  and { }bn  are 10 and 15, 
respectively. If sum of the first n terms of { }an  is 30n, then 
find the sum of the first 21 terms of { }.bn

Solution: If sn  and tn  are the sums of the first n terms 
of { }an  and { },bn  respectively, then by Theorem 5.7,

30 2 1 10

152 1

2 1

2 1

( )n
t

s

t

a

bn

n

n

n

n

-
= = =

-

-

-

and hence 

 
t

n
nn2 1

30 2 1 15

10
45 2 1- =

- ´
= -

( )
( )

Thus, the sum of the first 21 terms in { }bn  is given by

t t21 2 11 1 45 21 945= = =´ - ( )

Example     5.3   

The 22nd term and 46th term of an AP are 36 and 72, 
respectively. Find the general term of the AP.

Solution: The 22nd term is 36. This means

a + 21d = 36

The 46th term is 72 which implies

a + 45d = 72

Here, a is the first term and d is the common difference 
of the AP.

Then, solving the above two equations in two variables 
we get

24 36
3

2
d d= Þ =

Substituting this value of d in any one of the above equa-
tions gives

a = 9

2

Therefore, the nth term is given by

a
n

n = + -9

2

1 3

2

( )

Example     5.4   

The sum of four integers in AP is 24 and their product is 
945. Find these integers. 

Solution: Let the four integers be a - 3d, a - d, a + d, 
and a + 3d. Then, it is given that

( ) ( ) ( ) ( )a d a d a d a d- + - + + + + =3 3 24

and ( )( )( )( )a d a d a d a d- - + + =3 3 945

Therefore, from the first equation we get

4 24 6a a= =or
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Also from the second equation we have

( )( )a d a d2 2 2 29 945- - =

( )( )

( )

36 36 9 945

9 360 36 36 945

40 144 105

2 2

4 2

4 2

- - =

- + ´ =

- + =

d d

d d

d d

d d

d d

4 2

2 2

40 39 0

1 39 0

- + =

- - =( )( )

Since the terms of the given AP are integers, so is d. 
Therefore, d2 ¹ 39. This gives d2 = 1 or d = ±1. Hence, the 
given integers are

3, 5, 7, 9 or 9, 7, 5, 3

5.3 | Geometric Progressions

A sequence in which the ratio of any term, and its immediate predecessor term is constant is called a geometric 
 progression. In this section we will discuss various properties of geometric progressions.

DEFINITION 5.11  A sequence {an} of non-zero real numbers is called a geometric progression (GP) if

a
a

a
a

nn

n

n

n-

+=
1

1 for all 1>

DEFINITION 5.12  Let {an} be a geometric progression and r be the constant an+1/an. Then r is called the common 
ratio.

(1)  The sequence {1, 2, 22, 23,  …} is a geometric progres-
sion with common ratio 2.

(2)  {3, -3/2, 3/4, -3/8, 3/16, -3/32,  …} is a geometric 
progression with common ratio -1/2.

(3)  The common ratio of a geometric progression is 1 if 
and only if it is a constant sequence.

(4)  {3, -3, 3, -3, 3, -3,  …} is a geometric progression with 
common ratio -1.

Examples

DEFINITION 5.13  Non-zero real numbers t1, t2,  …, tm are said to be in geometric progression (GP) if these are 
 consecutive terms of a geometric progression.

QUICK LOOK 6

1.  Any geometric progression with first term a and 
common ratio r can be expressed as

a ar ar arn, , , , ,2 … …

This is known as the general form of a GP.

2.  Three non-zero real numbers a, b and c are in GP if 
and only if b2 = ac.

3.  In general, non-zero real numbers a1, a2,  …, an are in 
GP if and only if

a
a
a

a i ni

i

=
æ
èç

ö
ø÷

£ £
-

2

1

1

1 1for all

4.  The nth term of a GP with first term a and common 
ratio r is given by

t r a nn
n= Î- +1 , for any �

THEOREM 5.9 Let a1, a2,  …, an be in GP with common ratio r.

1.  For any non-zero constant l, la1, la2,  …, lan are in GP with common ratio r.

2.  For any real number b > 1, logb a1, logb a2,  …, logb an are in AP with common difference logb r, 
provided ai > 0 for 1 £ i £ n.
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PROOF 1.  The first part is clear, since 

l
l

a

a

a

a
r nn

n

n

n- -

= =
1 1

1for all >

2.  The second part follows from the fact that

 log log log logb n b n b
n

n
ba a

a

a
r n- =

æ
èç

ö
ø÷

= >-
-

1

1

1for all  
■

THEOREM 5.10 The sum of the first n terms of the GP with first term a and common ratio r ¹ 1 is given by

s
a r

rn

n

= -
-

( )1

1

PROOF The GP with first term a and common ratio r can be expressed as 

a, ar, ar2,  …

If sn is the sum of the first n terms, then

s a ar ar

s r a ar a r

n
n

n
n n

= + + +

- = - = -

-	 1

1 1( ) ( )

and therefore, 

 s
a r

r
rn

n

= -
-

¹( )1

1
1if  ■

QUICK LOOK 7

If the common ratio of a GP is 1, then the sum of the first n terms is na, where a is the first term.

DEFINITION 5.14  Let 

s
a r

rn

n

= -
-

( )1

1

be the sum of the first n terms of a GP with first term a and common ratio r. If |  r  | < 1, then 

lim
n ns

a
r®¥

=
-1

is called the sum to infinity of the GP and this will be generally denoted by s¥.

Example     5.5   

Consider the sequence

1

4

1

16

1

64

1

256
, , , ,…

Calculate the sum of first n terms and the sum to infinity.

Solution: The nth term of the sequence is (1/4)n. The 
sequence is a GP with first term 1/4 and common ratio 
1/4. Therefore,

s sn

n n

n= -
-

= -
×

=
-

=- ¥
1 1 4

1 1 4

4 1

3 4

1

1 1 4

4

31

( / )

( / ) ( / )
and



5.3   Geometric Progressions 219

Geometric Mean

DEFINITION 5.15  If three numbers a, b and c are in GP, then b is called the geometric mean (GM) of a and c or 
geometric mean between a and c.

QUICK LOOK 8

1.  A number b is the GM between a and c if and only if 

b
a

c
b

=

or, equivalently,

b2 = ac

2.  If x and y are any non-negative real numbers, then 
x xy y, ,  are in GP.

DEFINITION 5.16  If a, g1, g2,  …, gn, b are in GP, then g1, g2,  …, gn are called n geometric means or, simply, n GMs 
between a and b.

In the following we discuss the insertion of n GM’s between two given non-zero real numbers, where n is a given posi-
tive integer.

THEOREM 5.11 Let a and b be two given non-zero real numbers and n a positive integer. If 

g a
b
a

k nk

k n

= æ
èç

ö
ø÷ £ £

+/( )1

1 for

then g1, g2,  …, gn are n geometric means between a and b.

PROOF Let 

g a
b
a

k nk

k n

= æ
èç

ö
ø÷ £ £

+/( )1

1 for

and consider a, g1, g2,  …, gn, b. Then

g
a

b
a

n
1

1 1

= æ
èç

ö
ø÷

+/( )

g
g

a b a
a b a

b
a

g
g

a b

n

n

n

k

k

2

1

2 1

1 1

1 1

1

= = æ
èç

ö
ø÷

=

+

+

+

-

( / )

( / )

( /

/( )

/( )

/( )

aa
a b a

b
a

b
g

k n

k n

n

n

)

( / )

/( )

( )/( )

/( )+

- +

+

= æ
èç

ö
ø÷ =

1

1 1

1 1

Therefore a, g1, g2,  …, gn, b are in GP with common ratio (b/a)1(n+1) and hence g1, g2,  …, gn are the 
n GMs between a and b. ■

QUICK LOOK 9

If g1, g2,  …, gn are n geometric means between a and b, 
then their product is given by

g g g abn
n

1 2, , , ( )… =

since

g a
b
ak

k

n k n

k

n

=

+

=
Õ Õ= æ

èç
ö
ø÷

1

1

1

/( )

= æ
èç

ö
ø÷

= æ
èç

ö
ø÷

=

+ + + +

a
b
a

a
b
a

ab

n
n n

n
n

n

( )/( )

/

( )

1 2 1

2
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Example     5.6   

Insert 8 geometric means between 1 and 16.

Solution: Let 1, g1, g2,  …, g8, 16 be in GP. Then

g kk

k

= æ
èç

ö
ø÷ £ £

+

1
16

1
1 8

8 1/( )

for

and hence gk = (16)k/9. Therefore,

( ) , ( ) , , ( )/ / /16 16 161 9 2 9 8 9…

are the 8 GMs between 1 and 16.

Arithmetic Geometric Progression

DEFINITION 5.17  A sequence of the form

a a d r a d r a d r, ( ) , ( ) , ( ) ,+ + +2 32 3 …

is called arithmetic geometric progression (AGP) the nth term in AGP is [a + (n - 1)d]rn-1, 
where d and r are non-zero real numbers.

THEOREM 5.12 The sum of the first n terms of an AGP is given by

s
a

r
dr r

r
a n d r

rn

n n

=
-

+ -
-

- + -
-

-

1

1

1

1

1

1

2

( )

( )

( ( ) )

If |  r  | < 1, the sum to infinity is

s
a

r
dr

r¥ =
-

+
-1 1 2( )

PROOF Let a, (a + d)r, (a + 2d)r2,  … be an AGP and sn be the sum of first n-term; that is,

s a a d r a d r a n d rn
n= + + + + + + + - -( ) ( ) [ ( ) ]2 12 1	

Then

rs ar a d r a d r a n d rn
n= + + + + + + + -( ) ( ) [ ( ) ]2 32 1	

Now using the two equation we get

( )
( )

[ ( ) ]

(

1
1

1
1

1

1

1

- = - = + -
-

- + -

=
-

+ -

-

r s s rs a
dr r

r
a n d r

s
a

r
dr r

n n n

n
n

n

n--

-
- + -

-

1

21

1

1

)

( )

[ ( ) ]

r
a n d r

r

n

If |  r  | < 1, then 

 s s
a

r
dr

rn n¥ ®¥
= =

-
+

-
lim

( )1 1 2
 

■

Example     5.7   

Find the sum to infinity of the series 

1
4

5

7

5

10

52 3
+ + + +	

Solution: The given series is of the form

a a d r a d r, ( ) , ( ) ,+ + 2 2 …

which is an arithmetic geometric progression with a = 1, 
d = 3 and r = 1/5. Since |  r  | < 1, the sum to infinity of the 
AGP is given by

a
r

dr
r1 1

1

1 1 5

3 1 5

1 1 5

5

4

15

16

35

162 2-
+

-
=

-
+

-
= + =

( ) ( / )

( / )

[ ( / )]
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5.4 | Harmonic Progressions and Series

In this section we consider sequences in which the reciprocals of the terms form an arithmetic progression. Such 
sequences are called harmonic progressions. Let us begin with the following.

DEFINITION 5.18  A sequence of non-zero real numbers is said to be a harmonic progression (HP) if their 
reciprocals form an arithmetic progression (AP). That is, {a1, a2,  …} is said to be a HP if 

 (i) 0 ¹ an Î � for all n

 (ii) {1/a1, 1/a2,  …} is an AP

DEFINITION 5.19  Non-zero real numbers a1, a2,  …, an are said to be in HP if they are consecutive terms of a HP, 
that is,

1 1 1 1

1 1a a a a
i n

i i i i

- = -
- +

for all 1 < <

QUICK LOOK 10

The general form of an HP is

1 1 1

2a a d a d
, , ,

+ +
…

where the nth term is

1

1a n d+ -( )

Examples

(1)  {1, 1/2, 1/3, 1/4,  …} is an HP .

(2)  For any 0 < a Î� and 0 ¹ d Î�,

1 1 1

2a a d a d
, , ,

+ +
ì
í
î

ü
ý
þ

…

is an HP, if a ¹ -nd for all n Î�+.

(3)  The numbers 1/3, 1/7, 1/11 are in HP .

Harmonic Mean

DEFINITION 5.20  If a, b, c are in HP, then b is called the harmonic mean (HM) between a and c. Note that b is 
the HM between a and c if and only if 

b
ac

a c b a c b
=

+
- = -æ

èç
ö
ø÷

2 1 1 1 1
i.e.,

Examples

(1)  Note that 1/5 is the HM of 1/3 and 1/7. (2)  If y is the AM of x and z, then 1/y is the HM of 1/x 
and 1/z.

DEFINITION 5.21  h1, h2,  …, hn are said to be n harmonic means between two given real numbers a and b if a, h1,
h2,  …, hn, b are in HP.

THEOREM 5.13 If h1, h2,  …, hn are n HMs between two non-zero real numbers a and b, then

h
ab n

b n K a b
K nK = +

+ + -
( )

( ) ( )

1

1
for any 1 £ £



Chapter 5  Progressions, Sequences and Series222

PROOF Suppose that a, h1, h2,  …, hn, b are in HP. Then 

1 1 1 1 1

1 2a h h h bn

, , , , ,…

are in AP. If d is the common difference of this AP, then

1 1 1 1
2

1

1 2h a
d

h a
d h

a
ndn= + = + = +, , ,…  

and 
1 1

1
b a

n d= + +( )

and so

d
n b a

a b
n ab

=
+

-é
ëê

ù
ûú

= -
+

1

1

1 1

1( )

Therefore

 

1 1

1

1

1

1

h a
K

a b
n ab

b n K a b
n ab

h
n ab

b n

K

K

= + -
+

æ
èç

ö
ø÷

= + + -
+

= +

( )

( ) ( )

( )

( )

( ++ + -1) ( )K a b 
■

THEOREM 5.14 If A, G and H are the arithmetic, geometric and harmonic means, respectively, between two 
 positive real numbers a and b, then

AH = G2

that is, A, G, H are in GP or G is the GM of A and H.

PROOF Since A, G and H are the arithmetic, geometric and harmonic means, respectively, we have

A
a b

G ab H
ab

a b
= + = =

+2

2
, and

Therefore,

 AH
a b ab

a b
ab G=

+
×

+
= =

2

2 2

 ■

Note: In Theorem 5.14, one has to take a and b to be non-zero, but in this theorem a and b must be positive. Also, note 
that A ³ G ³ H and that the equality holds at the two places if and only if a = b. These are proved in the more general 
cases later (see Theorem 5.15).

Some inequality problems and maxima and minima problems can be solved by using the inequalities A ³ G ³ H, 
where A, G and H are arithmetic, geometric and harmonic means, respectively, of two positive real numbers. Let us 
begin with the following.

DEFINITION 5.22  Let a1, a2,  …, an be positive real numbers (n ³ 2). Then

 (i) (a1 + a2 + 	 + an)/n is called the arithmetic mean (AM)

 (ii) (a1a2 	 an)
1/n is called the geometric mean (GM)

 (iii) n/[(1/a1) + (1/a2) + 	 + (1/an)] is called the harmonic mean (HM)

THEOREM 5.15 If a1, a2,  …, an (n ≥ 2) are positive real numbers and A and G be their AM and GM, respectively, 
then A ³ G and the equality holds if and only if ai = aj for all 1 £ i, j £ n.
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PROOF We will use mathematical induction on n. If a1, a2,  …, an are all equal to each other, then clearly 
A = G = a1. Suppose that, not all the ais are equal. For n = 2

A
a a

G a a= + =1 2
1 2

2
and

so that

A G
a a

- =
-

>
( )1 2

2

2
0

and hence A > G. Now, consider the case n = 3. Let a1, a2, a3 be positive real numbers and let

x a y a z a= = =( ) , ( ) ( )/ / /

1

1 3

2

1 3

3

1 3and

Then x, y and z are positive and

A G
a a a

a a a

x y z xyz

x y z x y

- = + + -

= + + -

= + + +

1 2 3
1 2 3

1 3

3 3 3

2

3

1

3
3

1

3

( )

( )

( )(

/

22 2

2 2 21

6
0

+ - - -

= + + - + - + - ³

z xy yz zx

x y z x y y z z x

)

( )(( ) ( ) ( ) )

Hence A ³ G. Also, A = G if and only if x = y = z and hence a1 = a2 = a3. Therefore the theorem is 
valid for n = 2 and n = 3.

Now, let n > 3 and assume that the theorem is valid for any n - 1 positive real numbers. Let 
a1, a2,  …, an be any positive real numbers that are not all equal. We can suppose that a1 ³ a2 ³ 	 ³ an 
and a1 > an.  Let

A
a a a

n
G a a an

n
n= + + + =1 2

1 2

1	
	and ( ) /

Consider a2, a3,  …, an-1, a1an/G (which are n - 1 in number). By the induction hypothesis,

1

1
2 3 1

1
2 3 1

1

1 1

2

n
a a a

a a
G

a a a
a a
G

a

n
n

n
n

n

-
+ + + +æ

èç
ö
ø÷ > æ

èç
ö
ø÷- -

-

	 	
/( )

++ + + + > - æ
èç

ö
ø÷ = -- -a a

a a
G

n a a a
a a
G

n Gn
n

n
n

3 1
1

2 3 1
11 1	 	( ) ( )

Therefore

nG G a a a
a a

G

G nA a a
a a

G

nA
G a a G

n
n

n
n

n

< + + + + +

= + - + +

= +
- + +

-2 3 1
1

1
1

2

1

	

( )

( ) aa a

G

nA
G a G a

G

nA a G a

n

n

n

1

1

1

= +
- -

< > >

( )( )

( )since

Therefore G < A. ■
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Note: If any two of the ais are not equal, say a1 ¹ a2, then we can write

a a a
n

a a a a a a a
n

a a

n n1 2 1 2 1 2 3 4

1 2

2 2

2

+ + + = + + + + + + +

³ +æ
èç

ö

	 	[( )/ ] [( )/ ]

øø÷
æ

èç
ö

ø÷

>

2

3 4

1

1 2 3 4

1

a a a

a a a a a

n

n

n
n

	

	

/

/( )

COROLLARY 5.1 If a1, a2,  …, an are positive real numbers such that their sum is a fixed positive real numbers, then 
their product is greatest when each of

a
s
n

i ni = =( , , , )1 2 …

PROOF By Theorem 5.15,

a a a n a a an n
n

1 2 1 2

1+ + + ³	 ( ) /¼

where equality holds if 

a a a a
s
nn1 2 3= = = = =	

Therefore greatest value of a1a2a3  	  an is (s/n)n. ■

COROLLARY 5.2 If a1, a2,  …, an are positive real numbers such that their product is a fixed positive real number P, 
then their sum is least when each of a1, a2,  …, an is equal to P1/n.

PROOF The following equality

a a a
n

a a a Pn
n

n n1 2
1 2

1 1+ + + ³ =	
	( ) / /

holds when each ai = P1/n. Therefore, the least value of a1 + a2 + 	 + an is nP1/n. ■

The following formulae and the methods of their derivation will help us in finding the sum to n terms of certain series.

Example     5.8   

If a, b, c are in HP, then show that a : a - b = a + c : a - c.

Solution: If a, b, c are in HP  then 1/a, 1/b, 1/c are in AP. 
Therefore

1 1 1 1

b a c b
- = -

a b
ab

b c
bc

- = -

a b
a

b c
c

a b b c
a c

a c
a c

- = - = - + -
+

= -
+

( ) ( )

From the first and the last fractions we get

a : a - b = a + c : a - c

Example     5.9   

Find the harmonic mean of the roots of the quadratic 
equation 

( ) ( ) ( )5 2 4 5 2 4 5 02+ - + + + =x x

Solution: Let a and b be the roots of the given equa-
tion. Then 

a b ab+ = +
+

= +
+

4 5

5 2

2 4 5

5 2
and

( )

Therefore, the harmonic mean of a and b is

2
4

ab
a b+

=
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5.5 | Some Useful Formulae

 I.  Telescopic Series: Suppose that we have to find the sum to n terms of a series u1 + u2 + u3 + 	  . If a1 + a2 + a3 + 	  
is another series such that

u a a KK K K= - +1 for all

then u u u a an n1 2 1 1+ + + = - +	

For example, consider 
1

2 3

1

3 4

1

4 5×
+

×
+

×
+	.  Here, we have

1

1

1 1

1
2

K K K K
K

( )+
= -

+
³for all

 II.  Suppose that the nth term un of a given series is the product of r successive terms of an AP beginning with the nth 
term of the AP; that is, suppose that

u a n d a nd a n r dn = + - + + + -[ ( ) ]( ) [ ( ) ]1 2	

By choosing an = un[a + (n + r - 1)d], we can write

u
r d

a an n n=
+

- -
1

1
1

( )
[ ]

so that the sum to n terms is equal to

1

1
0

( )
( )

r d
a an+

-

For example, consider 

(i) 1 2 3 2 3 4 3 4 5  × × + × × + × × +	
(ii) 1 3 5 7 3 5 7 9 5 7 9 11× × × + × × × + × × × +	

III. Suppose that the nth term of a series is the reciprocal of the nth term of the series given in II; that is,

u
a n d a nd a n r dn =

+ - + + + -
1

1 2[ ( ) ][ ] [ ( ) ]	

Then, we can choose

a u a n dn n= + -[ ( ) ]1

so that

u
r d

a an n n=
-

--
1

1
1

( )
( )

and sum to n terms is given by

1

1
0

( )
( )

r d
a an-

-

For example, consider

(i) 
1

1 4 7

1

4 7 10

1

7 10 13× ×
+

× ×
+

× ×
+	

(ii) 
1

1 3 5 7

1

3 5 7 9

1

5 7 9 11× × ×
+

× × ×
+

× × ×
+	

 IV.  Successive Differences Method: Suppose that in a given series, we cannot express the nth term by using induction. 
But when we take the successive differences of the series, ultimately we may arrive at an AP or a GP. Then we can 
find the nth term by the following method.
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Let the given series be u1 + u2 + u3 + 	  . Let

Du u u

v

u u

v

u u

v
n = - + - + - +( ) ( ) ( )2 1

1

3 2

2

4 3

1

�� �� �� �� �� �� 	

D = - + - + - +2

2 1 3 1 4 3u v v v v v vn ( ) ( ) ( ) 	

 (i)  Suppose that DKun becomes a series where all the terms are equal. Afterwards DK+1un becomes a series in 
which each term is zero. We stop at DKun. Let the first terms of Dun, D

2un, D
3un,  …,   DKun be d1, d2, d3,  …, dn, 

respectively. Then

u u
d n d n n d n n n

n = + - + - - + - - - +1
1 2 31

1

1 2

2

1 2 3

3

( )

!

( )( )

!

( )( )( )

!
	

DKun is called the Kth-order differences of the given series.

Example

Let us find the sum to n terms of the series 2, 10, 30, 68, 
130, 222, 350,  …

D =

D =

D =

u

u

u

n

n

n

8 20 38 62 92 128

12 18 24 30 36

6 6 6 6

2

3

, , , , , ,

, , , , ,

, , , ,

…

…

…

DD =4 0 0 0un , , ,…

Now, 

u
n n n n n n

n n

n = + - + - - + - - -

= + - +

2
8 1

1

12 1 2

2

6 1 2 3

3

2 8 8 6

( )

!

( )( )

!

( )( )( )

!

( 22 2

3

3 2 3 2 3- + + - + -

= +

n n n n

n n

) ( )( )

One can check that n3 + n is the general term by giving 
values 1, 2, 3,  … for n.

 (ii)  Suppose that DK+1un forms a geometric progression. In this case, the nth term un is of the form

ar a a n a n nn- + + - + - - +1

0 1 21 1 2( ) ( )( ) 	

where r is the common ratio and the values of a, a0, a1, a2,  … can be evaluated by giving values 1, 2, 3,  … to n 
and equating the terms to the corresponding terms of the given series.

Example     5.10   

Consider the series 6 + 9 + 14 + 23 + 40 + 	  . Find the nth 
term and sum to n terms.

Solution: We have Dun = 3, 5, 9, 17,  …  . Therefore

D =2 2 4 8un , , ,…

which is a GP. Therefore

u a a a nn
n= + + --2 11

0 1 ( )

Taking n = 1, we get

 6 = u1 = a + a0 (5.1)

Taking n = 2, we get

 9 = u1 = 2a + a0 + a1 (5.2)

Taking n = 3, we get

 14 = u3 = 4a + a0 + 2a1  (5.3)

Solving Eqs. (5.1)-(5.3), we get that a = 2, a0 = 4 and 
a1 = 1. Therefore

u n nn
n n= + + - = + +2 4 1 2 3( )

Hence the sum to n terms is given by

( ) ( )
( )

( )

2 3 2 2 2
1

2
3

2 2
1

2
3

1

2

1

K

K

n
n

n

K
n n

n

n n
n

+ + = + + + + + +

= - + + +

=

+

å 	
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   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions

1.  Sum of the first 20 terms of the AP 

2 3
1

4
4

1

2
5

3

4
, , , ,…

is

(A) 274
1

2
 (B) 277

1

2
 (C) 277 (D) 274

Solution: First term a and the common difference d 
are given by

a d= =2 1
1

4
and

Therefore the sum of the first 20 terms is given by

20

2
4 19

5

4
277

1

2
+ ´æ

èç
ö
ø÷ =

 Answer: (B)

2.  The third term of an AP is 18 and the seventh term is 
30, then the sum of the first 17 terms is

(A) 812 (B) 512 (C) 612 (D) 712

Solution: Let “a” be the first term and “d” the common 
difference. Then

 a + 2d = 18  (5.4)

 a + 6d = 30 (5.5)

Solving Eqs. (5.4) and (5.5), we get a = 12, d = 3. Therefore 
sum of 17 terms is

17

2
24 16 3 17 36 612( )+ ´ = ´ =

 Answer: (C)

3.  The nth term of an AP is 4n + 1. The sum of the first 
15 terms is

(A) 495 (B) 555 (C) 395 (D) 695

Solution: The progression is: 5, 9, 13, 17,  …. Here the 
first term is a = 5, the common difference is d = 4 and 
the number of terms is n = 15. Then the sum of the first 
15 terms is

15

2
10 14 4 15 33 495( )+ ´ = ´ =

 Answer: (A)

4.  The sum of the first 15 terms of an AP is 600 and the 
common difference is 5. The first term is equal to

(A) 8 (B) 9 (C) 10 (D) 5

Solution: Using the formula for sum of an AP and 
 substituting the values, we get

600
15

2
2 14 5

35 40

5

= + ´

+ =

=

( )a

a

a

 Answer: (D)

5.  If 17 arithmetic means are inserted between 7/2 and 
-83/2, then the 17th AM is

(A) -19 (B) -29 (C) -39 (D) -49

Solution: Let d be the common difference. Then

d = - - = -( / ) ( / )83 2 7 2

18

5

2

Therefore the 17th mean is given by (using Theorem 5.6)

7

2
17

5

2
39+ -æ

èç
ö
ø÷ = -

 Answer: (C)

6.  The number of terms of the series 26, 21, 16, 11,  … to 
be added so as to get the sum 74 is

(A) 5 (B) 4 (C) 3 (D) 6

Solution: In the given series a = 26, d = -5. Suppose 
sum of the first n terms is 74. This implies

74
2

52 1 5

148 57 5

5 57 148 0

5 20 37 14

2

2

= + - -

= -

- + =

- - +

n
n

n n

n n

n n n

[ ( )( )]

( )

88 0

5 4 37 4 0

4

=

- - - =

=

n n n

n

( ) ( )

 Answer: (B)

7.  The sum of the first n terms of two arithmetic series 
are in the ratio (7n + 1) : (4n + 27). The ratio of their 
11th terms is

(A) 2 : 3 (B) 3 : 2 (C) 3 : 4 (D) 4 : 3

Solution: It is given that

S

S

n
n

n

n
¢

= +
+

7 1

4 27
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Therefore, using Theorem 5.8 we get

T

T

n
n

n
n

n

n
¢

= - +
- +

= -
+

7 2 1 1

4 2 1 27

14 6

8 23

( )

( )

Substituting n = 11 in this equation we get

T

T
11

11

148

111

4

3¢
= =

 Answer: (D)

8.  If S1, S2, S3,  …  , Sp are the sums of first n terms of p 
arithmetic progressions whose first terms are 1, 2, 
3,  …,  p and whose common differences are 1, 3, 5, 7,  …, 
then the value of S1 + S2 + S3 +  	  + Sp is

(A) np(np + 1)/2 (B) np(np - 1)/2 

(C) (np - 1) (np + 1)/2 (D) n(np + 1) 

Solution: We have

S
n

n
n n

S
n

n
n n

S
n

n

1

2

3

2
2 1 1

1

2

2
4 1 3

3 1

2

2
6

= + - = +

= + - = +

= + -

[ ( ) ]
( )

[ ( ) ]
( )

[ ( 11 5
5 1

2

2
2 1 2 1

2 1 1

2

) ]
( )

[ ( )( )]
[( ) ]

= +

= + - - = - +

n n

S
n

k n k
n k n

k

Therefore

S
n

n p p

n
np p

np
np

k
k

p

=
å = + + + + - +

= +

= +

1

2

2
1 3 5 2 1

2

2
1

[ { ( )} ]

( )

( )

	

 Answer: (A)

9.  A total of n arithmetic means are inserted between 
x and 2y and further n arithmetic means are inserted 
between 2x and y. If the kth arithmetic means of both 
sets are equal, then a relation between x and y is

(A) ky = (n - k)x (B) ky = (n + 1 - k)x

(C) k(y + 1) = (n - k)x (D) k(y + 1) = (n + 1 - k)x

Solution: Let A Ak kand ¢ be the kth AMs between x and 
2y and 2x and y, respectively. Then 

A x k
y x

nk = + -
+

( )2

1

and A x
k y x

nk
¢ = + -

+
2

2

1

( )
 (Theorem 5.7)

Therefore

A A x
k y x

n
x

k y x
n

k y x x n k y x

k

k k= ¢ Þ + -
+

= + -
+

Þ - = + + -

Þ

( ) ( )

( ) ( ) ( )

2

1
2

2

1

2 1 2

yy n k x= + -( )1

 Answer: (B)

10.  Between two numbers whose sum is 2 1
6 , an even 

number of arithmetic means is inserted; the sum of 
these means exceeds their number by unity. Then, 
the number of means is

(A) 8 (B) 10 (C) 12 (D) 16

Solution: Let x and y be the given numbers so that

 x y+ = 13

6
 (5.6)

Let A1, A2,  …, A2n be the means between x and y. Then

( )2
2

n
x y

n
+æ

èç
ö
ø÷ = = +Sum of the means 2 1

Therefore by Eq. (5.6)

n n
13

6
2 1

æ
èç

ö
ø÷ = +

This implies n = 6 and 2n = 12 is the number of means.

 Answer: (C)

11.  The number of terms in an AP is even. The sum of 
the odd terms is 24 and the sum of the even terms 
is 30. If the last term exceeds the first term by 10 1

2 , 
then the number of terms in the AP is

(A) 6 (B) 8 (C) 10 (D) 12

Solution: Let a, a + d,  …,  a + (2n - 1)d be the 2n num-
bers. Therefore, by hypothesis

24 Sum of the odd terms= = + -n
a n d

2
2 1 2[ ( ) ]

This gives

 n[a + (n - 1)d] = 24 (5.7)

Also, again by hypothesis,

30 Sum of the even terms= = + + -n
a d n d

2
2 1 2[ ( ) ( ) ]

This gives

 n(a + nd) = 30 (5.8)

Now it is given that the last term exceeds the first term 
by 10 1

2 ,  so
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a n d a

n d

+ - = +

- =

( )

( )

2 1
21

2

2 1
21

2
 (5.9)

From Eqs. (5.7) and (5.8) we get

 
30 24

6

- =

=

nd

nd
 (5.10)

From Eqs. (5.9) and (5.10) we have

12
21

2

3

2
6

3

2
4

- =

= = = æ
èç

ö
ø÷ Þ =

d

d nd n nand

Therefore the number of terms is 2n = 8.

 Answer: (B)

12.  The mth term of an AP is a and its nth term is b, and 
m ¹ n. Then the sum of the first (m + n) terms of the AP is

(A) 
m n

a b
a b
m n

+ + + -
-

é

ë
ê

ù

û
ú

2

(B) 
m n

a b
a b
m n

+ + - -
-

é

ë
ê

ù

û
ú

2
( )

(C) 
m n

a b
a b
m n

+ + + +
+

é

ë
ê

ù

û
ú

2
( )

(D) 
m n

a b
a b
m n

+ - - -
+

é

ë
ê

ù

û
ú

2
( )

( )

Solution: Let a be the first term and d the common 
 difference. Then

 
a

a

+ - =

+ - =

( )

( )

m d a

n d b

1

1
 (5.11)

Therefore

d
a b
m n

= -
-

Substituting the value of d in the first equation of Eq. (5.11), 
we get

a = - - -
-

= - - - -
-

= - - + + -
-

=

a
m a b

m n

a m n m a b
m n

am an am a bm b
m n

( )( )

( ) ( )( )

1

1

bb m a n
m n

( ) ( )- - -
-

1 1

Therefore the sum of the first (m + n) terms is given by

m n b m a n
m n

m n
a b
m n

m n
m n

+ - - -
-

ì
í
î

ü
ý
þ

+ + - -
-

é

ë
ê

ù

û
ú

= +
-

2
2

1 1
1

2

1

( ) ( )
( )

( )

[[ ( ) ( ) ( )( )]

[

2 1 2 1 1

2

1

b m a n a b m n

m n
m n

bm bn b an

- - - + - + -
é

ë
ê

ù

û
ú

= +
-

- - - + aam a

m n
m n

m a b n a b a b

m n
m n

+
é

ë
ê

ù

û
ú

= +
-

+ - + + -
é

ë
ê

ù

û
ú

= +
-

]

[ ( ) ( ) ( )]

[

2

1

2

1
(( )( ) ( )]

( )

a b m n a b

m n
a b

a b
m n

+ - + -
é

ë
ê

ù

û
ú

= + + + -
-

é

ë
ê

ù

û
ú

2

 Answer: (A)

13.  The sum of the first and fifth terms of an AP is 26 
and the product of the second and fourth is 160. Then 
the sum of the first six terms of the progression is

(A) 59 or 69  (B) 69 or 87

(C) 87 or 109  (D) -69 or 87

Solution: Let a be the first term and d the common 
 difference, then

 a + (a + 4d) = 26

 Þ a + 2d = 13 (5.12)

 (a + d)(a + 3d) = 160 (5.13)

 (13 - d)(13 + d) = 160 [from Eq. (5.12)]

169 160

3 7 19

2- =

= ± =

d

d aand ,

Therefore the sum of the first six terms = 69, 87.

 Answer: (B)

14.  If the sum of first n terms of an AP is cn2, then the 
sum of the squares of these terms is 

(A) [n(4n2 - 1)c2]/6 (B) [n(4n2 + 1)c2]/3

(C) [n(4n2 - 1)c2]/3 (D) [n(4n2 + 1)c2]/6 

Solution: Let an be the nth term. Therefore

an = (sum of first n terms) - [sum of first (n - 1) terms]

= - -

= -

cn c n

c n

2 21

2 1

( )

( )
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This gives

a c k

c k k

c k k

k
k

n

k

n

k

n

k

n

K

2

1

2 2

1

2 2

1

2 2

1 1

2 1

4 4 1

4 4

= =

=

= =

å å

å

å

= -

= - +

= -

( )

( )

nn

n

c
n n n n n

n

c
n n n

å +
é

ë
ê

ù

û
ú

= + + - + +é
ëê

ù
ûú

= +

2

2

4 1 2 1

6

4 1

2

2 1 2

( )( ) ( )

( )( ++ - +é
ëê

ù
ûú

= + + -

= -

1

3
2 1

2 1

3
2 1 3

4 1

3

2

2 2

)
( )

( )
[ ( ) ]

( )

n n

n n
n c

n n c

 Answer: (C)

15.  If the numbers 32a -1, 14, 34-2a (0 < a < 1) are the first 
three terms of an AP, then its fifth term is equal to

(A) 33 (B) 43 (C) 53 (D) 63

Solution: By hypothesis 32a -1 + 34-2a = 28. Therefore

9

3

81

9
28

a

a+ =

Substituting 9a = x, we get

x
x

x x

x x

x x

3

81
28

84 243 0

81 3 0

81 3

2

+ =

- + =

- - =

= =

( )( )

or

This gives

9 81 9 3

2
1

2

0 1
1

2

a a

a

a a

= =

=

< < Þ =

or

or

Therefore, the numbers are 1, 14, 27, which are in AP with 
common difference 13. The fifth term is 1 + 4 ´ 13 = 53.

 Answer: (C)

16.  If the sum of the first 2n terms of the AP, 2, 5, 8, 11,  … 
is equal to the sum of the first n terms of the AP. 
57,  59, 61, 63,  …, then n is equal to

(A) 10 (B) 12 (C) 11 (D) 13

Solution: The sum s2n = 2 + 5 + 8 + 	 upto 2n terms is

2

2
4 2 1 3 6 1

n
n n n[ ( ) ] ( )+ - = +

Now the sum sn
¢ = + + +57 59 61 	 upto n terms is

n
n n n

2
114 1 2 56[ ( ) ] ( )+ - = +

Therefore

s s n n n n

n n

n

n n2

2

6 1 56

5 55 0

11

= ¢ Þ + = +

Þ - =

Þ =

( ) ( )

 Answer: (C)

17.  In an AP, if sn is the sum of the first n terms (n is odd) 
and sn

¢  is the sum of the first n odd terms, then s sn n/ ¢ =
(A) 2n/n + 1  (B) n/n + 1

(C) n + 1/2n  (D) n + 1/n

Solution: Let a be the first term and d the common 
difference. Then

s
n

a n d

s a a d a d a
n

d

n

n

= + -

¢ = + + + + + + + + -æ
èç

ö
ø÷

é
ëê

ù
2

2 1

2 4
1

2
1 2

[ ( ) ]

( ) ( ) 	
ûûú

= +æ
èç

ö
ø÷ + -n

a n d
1

4
2 1[ ( ) ]

Therefore

s

s

n a n d
n a n d

n
n

n
n

n

n
¢

= + -
+ + -

= ×
+

=
+

( / )[ ( ) ]

[( )/ ][ ( ) ]

2 2 1

1 4 2 1 2

4

1

2

1

 Answer: (A)

18.  The series of natural numbers is divided into groups 
(1), (2, 3, 4), (5, 6, 7, 8, 9)… and so on. The sum of the 
 numbers in the nth group is

(A) n3 + (n + 1)3 (B) (n - 1)3 + n3 

(C) n3 + 1 + (n - 1)3 (D) (n + 1)3 + (n - 1)3 

Solution: Clearly the nth group contains 2n - 1  numbers. 
The last terms of each group are 12, 22, 32,  … and hence the 
last term of nth group is n2. Also, the first term of each 
group is one more than the last term of its  previous group. 
Therefore the first term of the nth group is 

( )n - +1 12

Hence the sum of the numbers in the nth group is

2 1

2
1 1 2 1 1

1

2 2 2

3 3

n
n n n n n

n n

- - + + = - - +

= - +

[( ) ] ( )( )

( )

 Answer: (B)
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19.  If log , log ( ), log ( )10 10 102 2 1 2 3x x- +  are in AP, then

(A) x = 1  (B) x = 2

(C) x = log2 5  (D) x = log10 5

Solution: By hypothesis log10 2, log10 (2
x − 1), log10 (2

x + 3) 
are in AP and so

log log ( ) log ( )

( ) ( )

(

10 10 10

10 10

2

2 2 3 2 2 1

2 2 3 2 1

2

+ + = -

+ = -

x x

x xlog log

22 3 2 1

2 4 2 5 0

4 5 0 2

5 1

2

2

2

x x

x x

xa a a

a a

+ = -

- × - =

- - = =

- + =

) ( )

)

( )( )

 (where

00

2 1 2 5x x= - =or

But 2x cannot be negative. Therefore

2 5

52

x

x

=

= log

 Answer: (C)

20.  In a sequence a1, a2, a3,  … of real numbers it is observed 

that a a ap q r= = =2 3 5, , and  where p, q, r are 
positive integers such that 1 £ p < q < r. Then

(A) ap, aq, ar can be terms of an AP

(B) 1/ap, 1/aq, 1/ar  can be terms of an AP

(C)  ap, aq, ar can be terms of an AP if and only if 
p, q, r are perfect-squares

(D)  Neither ap, aq, ar are in AP nor 1/ap, 1/aq, 1/ar are 
in AP

Solution: Suppose

2 1

3 1

5 1

= = + -

= = + -

= = + -

a a l d

a a m d

a a n d

p

q

r

( )

( )

( )

where l, m, n are positive integers in the increasing order. 
Therefore

( ) ( )m l d n m d- = - - = -3 2 5 3and

and so

m l
n m

-
-

= -
-

5 3

3 2

which is absurd because left-hand side (LHS) is rational.

 Answer: (D)

21.  The arithmetic mean of two numbers is 18 3
4  and the 

positive square root of their product is 15. The larger 
of the two numbers is

(A) 24 (B) 25 (C) 20 (D) 30

Solution: Let a and b be the positive numbers. Then

and 

a b
a b

ab ab

+ = Þ + =

= Þ =

2
18

3

4

75

2

15 225

 

Therefore

a b ab- = ± æ
èç

ö
ø÷ -

= ± - ´

= ± +æ
èç

ö
ø÷ -æ

èç
ö
ø÷

=

75

2
4

75

4
4 15

75

2
30

75

2
30

2

2
2

±±
´

= ±
135 15

2

45

2

Case 1:  a + b = 75/2 and a - b = 45/2

Solving the two equations we get a = 30 and b = 15/2 

Case 2: a + b = 75/2 and a - b = -45/2. Solving the two 
equations we get

a b= =15

2
30and

Therefore larger of the numbers is 30.

 Answer: (D)

22.  The sum of the integers from 1 to 100 which are 
divisible by exactly one of 2 and 5 is

(A) 2505 (B) 1055 (C) 2550 (D) 3050

Solution: Let A, B and C be the set of all integers from 
1 to 100 that are divisible by 2, 5 and 10, respectively. 
Therefore

and 

A B

C

= =

=

{ , , , }, { , , , , }

{ , , , , }

2 4 6 100 5 10 15 100

10 20 30 100

… …

…

,

Clearly, C = A Ç B. Therefore

 (i)  A contains 50 numbers which are in AP with first 
term 2 and common difference 2.

 (ii)  B contains 20 numbers that are in AP with first 
term 5 and common difference 5.

 (iii)  C = A Ç B contains 10 numbers which are in AP 
with common difference 10 and first term 10.

Therefore the required sum is

x y z
x A y B z CÎ Î Î
å å å+ - = + + +

- + =

50

2
2 100

20

2
5 100

10

2
10 100 3050

( ) ( )

( )

 Answer: (D)
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23.  If the sum of the roots of the quadratic equation 
ax2 + bx + c = 0 is equal to the sum of the squares of 
their reciprocals, then

(A) bc2, ca2, ab2 are in AP

(B) bc2, ab2, ca2 are in AP

(C) ca2, bc2, ab2 are in AP

(D) ab, bc, ca are in AP

Solution: Let a and b  be the roots of the equation. 
Then

a b ab+ = - =b
a

c
a

,

Now

a b
a b

+ = +

Þ - = -

- = -

- = -

1 1

2

2

2

2 2

2 2

2 2

2

2

2 2

 

b
a

b a c a
c a

b
a

b ca
c

bc ab

( / ) ( / )

/

cca

ca ab bc

2

2 2 22 = +

Therefore, bc2, ca2, ab2 are in AP.

 Answer: (A)

24.  If the reciprocals of the roots of the equation 
10x3 - ax2 - 54x - 27 = 0 are in AP, then the value of a is

(A) 6 (B) 8 (C) -9 (D) 9

Solution: Let a , b, g  be the roots of the given equation. 
Then

a b g ab bg ga abg+ + = + + = - =a
10

54

10

27

10
, ,

Now the reciprocals of the roots of the equation are in 
AP, that is

1 1 2

a g b
+ =

Adding 1/b to both the sides we get

 

 

 

 

1 1 1 3

3

54

27

3

3

2

a b g b

bg ga ab
abg b

b

b

+ + =

+ + =

- =

= -

Since b is a root of the given equation we get

10 54 27 03 2b b b- - - =a

Substituting the value of b we get

10
3

2

3

2
54

3

2
27 0

10
27

8

9

4

3 2

-æ
èç

ö
ø÷ - -æ

èç
ö
ø÷ - -æ

èç
ö
ø÷ - =

-æ
èç

ö
ø÷ - +

a

a
881 27 0

9

4

10 27

8
54

4
30

8
6

18

2
9

- =

= - ´ +

= - +æ
èç

ö
ø÷ = =

a

a

 Answer: (D)

25.  The fifth and 31st terms of an AP are, respectively, 
1 and -77.  If kth term of the given AP is -17, then k is

(A) 12 (B) 10 (C) 11 (D) 13

Solution: The fifth term is 1; therefore,

 a + 4d = 1 (5.14)

The 31st term is -77; therefore,

 a + 30d = -77 (5.15)

Solving Eqs. (5.14) and (5.15) we get

26 78 3d d= Þ = -

Substituting the value of d in either equation we get

a = 13

Now the kth term of the given AP is -17; therefore,

a k d

k

k

k

+ - = -

Þ - - = -

Þ =

Þ =

( )

( )

1 17

13 3 1 17

3 33

11

 Answer: (C)

26.  The sum of the four arithmetic means between 4 and 
40 is 

(A) 90 (B) 88 (C) 108 (D) 118

Solution: Sum of the four means is given by

4
4 40

2
88

( )+ =

 Answer: (B)

27.  In an increasing arithmetic progression, the sum 
of the first three terms is 27 and the sum of their 
squares is 275. The common difference of the AP is

(A) 6 (B) 8 (C) 2 (D) 4
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Solution: Let a - d, a, a + d be the first three terms. 
Since the terms are increasing, d > 0. By hypothesis

3 27 9

2752 2 2

a a

a d a a d

= Þ =

- + + + =( ) ( )

and 3a2 + 2d2 = 275

d d2 16 4= Þ = ±

Since d > 0, we get d = 4.

 Answer: (D)

28.  If 52 × 54 × 56  	  52n = (0.04)-28, then n is equal to

(A) 7 (B) 5 (C) 6 (D) 3

Solution: The given equation can be written as

( ) ( ) ( ) ( ) ( )

[ ( )/ ]

5 5 5 5 5

25 25

25

2 2 2 2 3 2 2 28

1 2 3 28

1 2

× × =

=

=

+ + + +

+

	
	

n

n

n n 22528

Since the bases are the same, equating the powers we get

n n

n n

n n

n

( )

( )

( )( )

,

+ =

+ =

+ - =

= -

1

2
28

1 56

8 7 0

8 7

Now n = -8 is not possible. Hence n = 7.

 Answer: (A)

29.  The interior angles of a polygon are in AP.  The 
smallest angle is 120° and the common difference 
is 5°. The number of sides of the polygon is

(A) 11 (B) 9 (C) 12 (D) 13

Solution: Sum of the interior angles of a polygon of 
n sides equals (2n - 4) right angles. Therefore

n
n n

n n

n n

n n

2
240 5 1 2 4 90

5 125 720 0

25 144 0

9 1

2

2

[ ( )] ( )

( )(

+ - = -

- + =

- + =

- - 66 0) =

Now this gives two values of n = 9 and 16. We take n = 9, 
as n = 16 is rejected because the last angle becomes

120 15 5 195° + ´ ° =( ) °

Therefore number of sides = 9.

 Answer: (B)

30.  The ratio of sum of m terms to the sum of n 
terms of an AP is m2 : n2. If Tk is the kth term, then
T5 /T2 is

(A) 6 (B) 5 (C) 4 (D) 3

Solution: By hypothesis

s
s

m
n

m

n

=
2

2

Also

T
T

s s
s s

m m
n n

m
n

m

n

m m

n n

= -
-

= - -
- -

= -
-

-

-

1

1

2 2

2 2

1

1

2 1

2 1

( )

( )

Substituting m = 5 and n = 2 in this equation we get

T
T

5

2

2 5 1

2 2 1

9

3
3= -

-
= =( )

( )

 Answer: (D)

31.  The sum of the first eight terms of a GP whose nth 
term is 2 × 3n(n = 1, 2, 3,  …) is

(A) 19880 (B) 19860 (C) 19660 (D) 19680

Solution: The terms of the GP are

2 × 3, 2 × 32, 2 × 33,  …,   2 × 38

First term is 6 and the common ratio is 3. Therefore the 
sum of the first 8 terms is

6 1 3

1 3
19680

8( )-
-

=

 Answer: (D)

32.  The difference between the fourth and the first term 
of a GP is 52 and the sum of the first three terms 
is 26. Then the sum of the first six terms is

(A) 720 (B) 725 (C) 728 (D) 780

Solution: Let the GP be a, ar, ar2,  …  .  Then by hypothesis

ar a

a ar ar

r
r r

3

2

3

2

52

26

1

1

52

26
2

- =

+ + =

-
+ +

= =

Therefore 

r r- = Þ =1 2 3

Using this value we get a = 2. Therefore the sum of the 
first six terms is

2 3 1

3 1
728

6( )-
-

=

 Answer: (C)
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33.  The sequence {an} is a GP such that 

a
a

a a4

6

2 5

1

4
216= + =and

If the common ratio is positive, then the first term is

(A) 12 (B) 11 (C) 103/7 (D) 13

Solution: Let a1 = a, a2 = ar, a3 = ar2, a4 = ar3, a5 = ar4 and 
a6 = ar5. Then

1

4

14

6

3

5 2
= = =a

a
ar
ar r

and hence r = 2 (since r > 0). Therefore

a a a r r a2 5

4216 216 12+ = Þ + = Þ =( )

 Answer: (A)

34.  a, b, c, d are in GP and are in ascending order such that 
a + d = 112 and b + c = 48. If the GP is continued with 
a as the first term, then the sum of the first six terms is

(A) 1156 (B) 1256 (C) 1356 (D) 1456

Solution: Let r be the common ratio so that b = ar, c = ar2, 
and d = ar3. Therefore

a ar ar ar+ = + =3 2112 48and

Dividing the first equation by the second and canceling a
we get

1 112

48

7

3

1 1

1

7

3

3 1 7

3 10

3

2

2

2

2

+
+

= =

+ - +
+

=

- + =

-

r
r r

r r r
r r

r r r

r r

( )( )

( )

( )

++ =

- - =

=

3 0

3 1 3 0

3
1

3

( )( )r r

r or

 (i) r = 3 Þ a = 4

(ii) r = 1/3 Þ a = 108

But, it is given that a < b < c < d.  Therefore, the GP is 4, 12, 
36, 108, 324, 972,  …  . Hence the sum of the first 6 terms is

4 + 12 + 36 + 108 + 324 + 972 = 1456

 Answer: (D)

35.  The sum of the first n terms of the series

1

2

3

4

7

8

15

16
+ + + +	

is equal to

(A) 2n - n - 1  (B) 1 - 2-n

(C) 2-n + n - 1  (D) 2n + 1

Solution: The given series is

1
1

2
1

1

4
1

1

16
-æ

èç
ö
ø÷ + -æ

èç
ö
ø÷ + -æ

èç
ö
ø÷ +	

Therefore the sum of the first n terms is

( )

( / )

( /

1 1
1

2
1

1

2

1

2

1

2

1

2

1 1 2

1 1 2

2 1
+ + + - + + + +æ

èç
ö
ø÷

= - -
-

-	 	n

n

n

n

times

))

æ
èç

ö
ø÷

= + --2 1n n

 Answer: (C)

36.  Let a and b be the roots of the quadratic equation 
ax2 + bx + c = 0 and Δ = b2 − 4ac. If a + b, a 2 + b 2 and 
a 3 + b 3 are in GP, then

(A) Δ ¹ 0 (B) bΔ = 0 (C) cΔ = 0 (D) Δ = 0

Solution: Since a and b be the roots of the given 
 quadratic equation, we have

a b ab+ = - =b
a

c
a

and

Now

a b a b ab

a b a b ab a b

2 2 2
2

2

3 3 3
3

3 2

2
2

3
3

+ = + - = -

+ = + - + = - +

( )

( ) ( )

b
a

c
a

b
a

bc
a

Suppose that a + b, a 2 + b 2, a 3 + b 3 are in GP. Then

( ) ( )( )

(

a b a b a b2 2 2 3 3

2

2

2 3

3 2

2 3

+ = + +

-
æ
èç

ö
ø÷

= - - +
æ
èç

ö
ø÷

b
a

c
a

b
a

b
a

bc
a

bb ac b b abc

c a b b ac b ab c

b ca c a

c

2 2 3

2 2 4 2 4 2

2 2 2

2 3

4 4 3

4 0

- = - - +

+ - = -

- =

) ( )

aa b ac( )2 4 0- =

Since a ¹ 0, cΔ = 0.

 Answer: (C)

37.  The first term of a GP a1, a2, a3,  … is unity. The value 
of 4a2 + 5a3 is minimum when the common ratio is

(A) 1/3 (B) -1/3 (C) 2/5 (D) -2/5

Solution: Let r be the common ratio. Then

a a r a r a rn
n

1 2 3

2 11= = = = -, , , ,…

Now 4a2 + 5a3 = 4r + 5r2, which is minimum when

r = -
´

= -4

2 5

2

5

 Answer: (D)
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(Note that, if a > 0, then ax2 + bx + c assumes its  minimum 
value at x = -b/2a.)

38.  Three numbers are in AP. If 8 is added to the first 
number, we get a GP with sum of the terms is equal 
to 26. Then the common ratio of the GP when they 
are written in the ascending order, is

(A) 3 (B) 1/3 (C) 2 (D) 1/2

Solution: Let the three numbers which are in AP be 
a - d, a, a + d. Then a - d + 8, a, a + d are given to be in 
GP. Therefore

a a d a d a d a d2 2 28 8= - + + = - + +( )( ) ( )

 -d2 + 8a + 8d = 0 (5.16)

Also (a - d + 8) + a + (a + d) = 26. Therefore

3a + 8 = 26

and hence a = 6.
From Eq. (5.16), we get

d d

d d

2 48 8 0

4 12 0

- - =

+ - =( )( )

and hence d = 12 or - 4.

  (i) If d = 12, the GP a - d + 8, a, a + d is 2, 6, 18

(ii) If d = -4, the GP a - d + 8, a, a + d is 18, 6, 2

When we write the GP in the ascending order, the 
common ratio is 3.

 Answer: (A)

39.  Three distinct numbers a, b, c form a GP in that order 
and the numbers a + b, b + c, c + a form an AP in that 
order. Then the common ratio of the GP is

(A) 1/2 (B) -1/2 (C) -2 (D) 2

Solution: Let b = ar and c = ar2. Then

2

2 2 2

2 0

2 1 0

2 2

2 2

2

( ) ( ) ( )

( )( )

ar ar a ar ar a

r r r r

r r

r r

r

+ = + + +

+ = + +

+ - =

+ - =

== - 2 1or

Since a, b and c are distinct, r ¹ 1. Therefore r = -2.

 Answer: (C)

40.  The number of geometric progressions containing
27, 8 and 12 as three of their terms, is

(A) 1  (B) 2

(C) 5  (D) infinite

Solution: Let a be the first term and r the common 
ratio of a GP containing 27, 8 and 12 as lth, mth and nth 
terms, respectively. Then

ar ar arl m n- - -= = =1 1 127 8 12, and

 
3

2

27

8

3 1

1

æ
èç

ö
ø÷ = = =

-

-
-r

r
r

l

m
l m  (5.17)

 
3

2

8

12

1 1

1

æ
èç

ö
ø÷ = = =

- -

-
-r

r
r

m

n
m n  (5.18)

From Eqs. (5.17) and (5.18), we have

r l m m n= - = - = -3

2
3, and 1

Therefore

l m n m n= + = + = -3 2 1and

Each value of n determines the values of l and m. 
Therefore, there are infinitely many GP’s satisfying the 
given conditions.

 Answer: (D)

41.  If a < b < c are numbers lying between 2 and 18 such 
that

 (i) a + b + c = 25

 (ii)  2, a, b are three consecutive terms of an AP in 
that order 

 (iii)  b, c, 18 are three consecutive terms of a GP in 
that order

then the product abc is equal to

(A) 480 (B) 680 (C) 440 (D) 640

Solution: Given 2 < a < b < c < 18,

 a + b + c = 25 (5.19)

 
2

2

+ =b
a  (5.20)

 c2 = 18b (5.21)

From Eqs. (5.19) and (5.20), we get

 3a + c = 27 (5.22)

From Eqs. (5.20) and (5.21), we get

 c2 = 36(a - 1) (5.23)

From Eqs. (5.22) and (5.23), we get

( ) ( )

( ) ( )

( )( )

27 3 36 1

9 4 1

22 85 0

5 17 0

5

2

2

2

- = -

- = -

- + =

- - =

=

a a

a a

a a

a a

a or 117

Case 1:  Let a = 5. Then b = 2a - 2 = 8 and

c b

c

2 18 18 8 9 16

12

= = ´ = ´

implies =
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Case 2:  Let a = 17.  Then b = 2a - 2 = 32 and

c b

c

2 18 18 32 9 64

3 8 24

= = ´ = ´

= ´ =implies

But 2 < a < b < c < 18. Therefore a = 5, b = 8, c = 12 and 
abc = 480.

 Answer: (A)

42.  An infinite GP has first term x and sum 5. Then

(A) x < -10  (B) -10 < x < 0

(C) 0 < x < 10  (D) x > 10

Solution: Let r be the common ratio. Then |  r  | < 1. 
Therefore

x
r

r
x

1
5

5-
= = -and 1

Since 

- < < - < - <1 1 1 1
5

1r
x

,

Therefore

- < - <

- < - <

< <

2
5

0

10 0

0 10

x

x

x

 Answer: (C)

43.  If x, y, z are in GP, x - 2, y - 6, z - 58 are in AP and 
x - 1, y - 3, z - 9 are in GP, then the numbers x, y, z are

(A) 3, 9, 27  (B) 12, 36, 108

(C) 9, 36, 144  (D) 27, 81, 243

Solution: From the hypothesis, we have

 y2 = xz (5.24)

or 

2 6 2 58

2 48

( ) ( ) ( )y x z

y x z

- = - + -

= + -  (5.25)

and (y - 3)2 = (x - 1)(z - 9) (5.26)

Using Eq. (5.24) and (5.26), we get

 6y = 9x + z (5.27)

From Eqs. (5.25) and (5.27), we get

 
6 2 144 0

3 72

x z

x z

- + =

- = -
 (5.28)

 

2 48

3 72 48

4 24

2 12

y x z

x x

x

y x

= + -

= + + -

= +

= +

( )
 (5.29)

From Eqs. (5.24) and (5.29), we get

( ) ( )

( )

2 12 3 72

24 144 0

12 0

2

2

2

x x x

x x

x

+ = +

- + =

- =

 

 

Therefore x = 12, y = 36, z = 108.

 Answer: (B)

44.  Let a, b, c be in GP. If p is the AM between a and b 
and q is the AM between b and c, then b is equal to

(A) p + q/2  (B) p + q/pq

(C) p + q/2pq  (D) 2pq/p + q 

Solution: Given that 

b ac p
a b

q
b c2

2 2
= = + = +

, and

Therefore a = 2p - b and c = 2q - b. Hence

b ac p b q b pq b p q b2 22 2 4 2= = - - = - + +( )( ) ( )

This gives

b
pq

p q
=

+
2

 Answer: (D)

45.  If a1, a2, a3,  … is a GP satisfying the relation ak + ak+2 =  
3ak+1 for all k ³ 1, then common ratio is

(A) ( )/3 1 2±  (B) ( )/5 2 2±

(C) ( )/3 5 2±  (D) ( )/4 5 2±

Solution: Let a be the first term and r the common 
ratio. Then 

ar ar ark k k- ++ =1 1 3

Therefore

r r

r

2 3 1 0

3 5

2

- + =

= ±

 Answer: (C)

46.  The value of

2 1

2 1
3

2 1

2 1
5

2 1

2 1

2 3

n
n

n
n

n
n

+
-

+ +
-

æ
èç

ö
ø÷

+ +
-

æ
èç

ö
ø÷

+	

upto n terms is 

(A) n(2n + 1)  (B) (n + 1)(2n + 1)

(C) n(2n + 3)  (D) (n + 1)(2n + 3) 

Solution: Let

x
n
n

= +
-

2 1

2 1
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and s x x x n xn
n= + + + + -3 5 2 12 3 	 ( )

Then 

xs x x n x n xn
n n= + + + - + - +2 3 13 2 3 2 1	 ( ) ( )

Therefore

( ) ( )

( ) (

1 2 2 2 2 1

2 2 1

2 3 1

2 3

- = + + + + - -

= + + + + - - -

+x s x x x x n x

x x x x x n

n
n n

n

	

	 ))xn+1

1
2 1 1 2 1

2 1

1
1 2

2 1-æ
èç

ö
ø÷ = + + + + - - -

= -
-

- - -

-x
x

s x x x n x

x
x

n

n
n n

n

( ) ( )

( )
(

	

11)xn

Now, 

1 1 2 1 2 1

2 1 2 1

2

2 1

- = - + -
+ -

= -
+

x
x

n n
n n n

[( )/( )]

( )/( )

Therefore

-
+

æ
èç

ö
ø÷

=
- + -
- + -

-

-

2

2 1

2 1 2 1 2 1

1 2 1 2 1
1

2

n
s

n n
n nn

n[ {( )/( )} ]

[( )/( )]

( nn
n
n

n
n
n

n

n

-
+
-

æ
èç

ö
ø÷

= - - -
+
-

æ
èç

ö
ø÷

é

ë
ê
ê

ù

û
ú
ú

-

-

1
2 1

2 1

2 1 1
2 1

2 1
1

2

)

( )

( nn
n
n

n n

n

-
+
-

æ
èç

ö
ø÷

= - - - = -

1
2 1

2 1

2 1 1 2

)

( )

Hence sn = n(2n + 1).

 Answer: (A)

47.  Sum to infinity of a GP is 15 and the sum to infinity 
of their squares is 45. If a is the first term and r is the 
common ratio, then the sum of the first 5 terms of 
the AP with first term a and common difference 3r is

(A) 25 (B) 35 (C) 45 (D) 55

Solution: By the hypothesis, we have 

 
a

r1
15

-
=  (5.30)

 

a
r

a
r r

a
r

2

2

2

1
45

1 1
45

1
3

-
=

- +
=

+
=

( )( )

[using Eq. (5.30)]

 (5.31)

Dividing Eq. (5.30) by Eq. (5.31) we get

1

1

15

3
5

2

3

+
-

= =

=

r
r

r

Using this value of r in Eq. (5.30) we get a = 5. Also 3r = 2. 
Therefore

[ ( ) ] [ ( )( )]a k r a k r
k

+ - = + - =
=

å 1 3
5

2
2 1 3 45

1

5

Hence, the required sum is 45.

 Answer: (C)

48.  The value of 0 423232323 0 423. ( . )	 =  is

(A) 419/423  (B) 419/990

(C) 423/990  (D) 419/999

Solution: We have

0 423
4

10

23

10

23

10

4

10

23

10
1

1

10

1

10

4

10

3 5

3 2 3

. = + + + + ¥

= + + + +æ
èç

ö
ø÷

=

	

	

++
-

æ
èç

ö
ø÷

= +
æ
èç

ö
ø÷

=

23

10

1

1 1 10

4

10

23

10

10

99

419

990

3 2

3

2

( / )

 Answer: (B)

49.  If x, y and z are, respectively, the fourth, seventh and 
10th terms of a GP, then

(A) x2 = y2 + z2 (B) y2 = zx

(C) x2 = yz  (D) z2 = xy

Solution: Let the first term be a and common ratio r. 
Then

x ar y ar z ar= = =3 6 9, ,

Therefore,

y a r ar ar xz2 2 12 3 9= = =( )( )

 Answer: (B)

50.  In a certain GP, if the first, second and eighth terms 
are x-4, xK and x52, respectively, then the value of
K is

(A) 2 (B) 3 (C) 4 (D) 0

Solution: Let a, ar, ar2,  … be the terms of the GP. Then

a x ar x ar xK= = =-4 7 52, and
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Therefore

x r x x r x

r x r x

x x

K

K

K

- -

+

+

= =

= =

=

4 4 7 52

4 7 56

7 4 56

and

and

( )

Equating the powers we get

7 4 56

4 8

4

( )K

K

K

+ =

+ =

=
 Answer: (C)

51.  Three numbers a, b, c are in GP. If a, b, c - 64 are in 
AP and a, b - 8, c - 64 are in GP, then the sum of the 
numbers may be

(A) 124 (B) 241 (C) 142 (D) 214

Solution: Let b = ar and c = ar2. Given that a, ar, ar2 − 4 
are in AP.  Therefore

 
a ar ar

a r r

+ - =

- + =

( ) ( )

( )

2

2

64 2

2 1 64
 (5.32)

Again a, ar - 8, ar2 - 64 are in GP.  Therefore

 
a ar ar

a r

( ) ( )

( )

2 264 8

16 64 64

- = -

- =
 (5.33)

From Eqs. (5.32) and (5.33), we get

r r r

r r

r r

r

2

2

2 1 16 64

18 65 0

5 13 0

5 13

- + = -

- + =

- - =

=

( )( )

or

If r = 5, then a(80 - 64) = 64 and hence a = 4. In this case 
the numbers are 4, 20, 100 and their sum is 124.

 Answer: (A)

52.  The product of nine GMs inserted between the 
 numbers 2/9 and 9/2 is

(A) 9 (B) 1 (C) 3 (D) 3 3

Solution: The product of n GMs inserted between two 
 positive real numbers a and b is ( ) .ab n  Here a = 2/9, 
b = 9/2 and n = 9. Substituting these values we get the 
required product as

2

9

9

2
1

9

×
æ

èç
ö

ø÷
=

 Answer: (B)

53.  Let A be the arithmetic mean of x and y. If p and q 
are two GM’s between x and y and p3 + q3 = K(pq)A, 
then the value of K is

(A) 1 (B) 2 (C) 3 (D) 4

Solution: It is given that A is the arithmetic mean of 
x and y; that is

A
x y= +

2

Now x, p, q, y are in GP. Therefore

p xr q xr y xr= = =, 2 3and

where r = p/x. Then

r
y
x

= æ
èç

ö
ø÷

1 3/

Hence

p xr x
y
x

x y

q x
y
x

x y pq

= = æ
èç

ö
ø÷ = ×

= æ
èç

ö
ø÷ = × =

1 3

2 3 1 3

2 3

1 3 2 3

/

/ /

/

/ / and  xxy

Now

p q x y xy

xy x y

xy A pq A

3 3 2 2

2 2

+ = +

= +

= =

( )

( )( ) ( )( )

Therefore K = 2.

 Answer: (B)

54.  Let f : � ® � be a function such that f(1) = 2 and it 
satisfies the relation f(x + y) = f(x)f(y) for all  natural 
numbers x and y. Then the value of the natural number 
a such that

f a K
K

n
n( ) ( )+ = -

=
å

1

16 2 1

is

(A) 3 (B) 4 (C) 5 (D) 6

Solution: f(1) = 2

 
f f f f

f f f f

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1 1 1 2

3 2 1 2 1 2

2

3

= + = =

= + = =

This implies

f(K) = 2K for any natural number K

Now

16 2 1
1 1

( ) ( ) ( ) ( )n

K

n

K

n

f a K f a f K- = + =
= =

å å
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= + + +

= -+

2 2 2 2

2 2 1

2

1

a n

a n

( )

( )

	

Therefore

2 16 21 4a+ = = ( )

Equating the powers we get a = 3.

 Answer: (A)

55.  In an HP, if the mth term is n and the nth term is m, 
then (m + n)th term is

(A) m - n/m + n (B) mn/m + n

(C) m + n/mn  (D) 2mn/m + n 

Solution: By hypothesis

n m
a m d

= =
+ -

th term
1

1( )

m n
a n d

= =
+ -

th term
1

1( )

Therefore

[ ( ) ] [ ( ) ]

( )

a m d a n d
n m

m n
mn

m n d
m n

mn

d
mn

+ - - + - = - = -

- = -

=

1 1
1 1

1
 

Now

a m d
n

a
m
mn n

a
n

m
mn mn

+ - =

+ - =

= - - =

( )1
1

1 1

1 1 1

 

Therefore the (m + n)th term is 

1
1

1
1

mn
m n

mn
mn

m n
+ + -æ

èç
ö
ø÷ =

+

-

( )

 Answer: (B)

56.  If a, b, c are in HP (in this order), then

(A) 
1 1

b a b c
c a

ca-
+

-
= +

 (B) 
1 1

a b b c
c a

ca+
+

+
= +

(C) 
1 1 1 1

c a b a a c-
+

-
= +  (D) 

1 1 1 1

a b b c
+ = +

Solution: We have

1 1 1

a b c
, ,

are in AP.  Therefore

b
ac

a c
=

+
2

Now

1 1 1

2

1

2

2 2

b a b c ac a c a ac a c c

a c
ac a

a c
ac c

-
+

-
=

+ -
+

+ -

= +
-

+ +
-

=

[ /( )] [ /( )]

(( )
( ) ( )

a c
a c a c a c

a c
ac

+
-

+
-

é

ë
ê

ù

û
ú

= +

1 1

 Answer: (A)

57.  If (m + 1)th term, (n + 1)th term and (r + 1)th terms 
of an AP are in GP and m, n and r are in HP, then 
the ratio of the common difference to the first term 
of AP is 

(A) -1/n (B) 1/n (C) 2/n (D) -2/n

Solution: By hypothesis,

( )( ) ( )a md a rd a nd n
mr

m r
+ + = + =

+
2 2

and

Therefore

a ad m r mrd a and n d

a m r mrd an n d

d n mr a m

2 2 2 2 2

2

2

2

2

+ + + = + +

+ + = +

- =

( )

( )

( ) ( ++ -

= + -
-

= + -
- +

= +æ
è

r n

d
a

m r n
n mr

m r n
n n m r

mr
n m r

2

2 2

2

2

2 2

)

( ) ( )

[ ( )/ ]

( )
∵çç

ö
ø÷

= + -
- -

= -2 2

2

2[ ]

( )

m r n
n n m r n

 Answer: (D)

58.  Three numbers l,  m and n are in GP.  The lth, mth 
and nth terms of an AP are in HP.  Then the ratio of 
the first term of the AP to its common difference is

(A) m : 1  (B) 1 :  m

(C) 1 :  m + 1  (D) m + 1 : 1

Solution: Since l, m and n are in GP, we have m2 = ln. 
Let the AP be a, a + d, a + 2d,  …  . Therefore

a l d a m d a n d+ - + - + -( ) , ( ) ( )1 1 1and

are in HP. Hence
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a m d
a l d a n d

a l d a n d

a l

+ - = + - + -
+ - + + -

+ -

( )
[ ( ) ][ ( ) ]

[ ( ) ] [ ( ) ]

[ (

1
2 1 1

1 1

2 11 1

1 2 2

2 2 2 1

) ][ ( ) ]

[ ( ) ][ ( )]

( ) ( )(

d a n d

a m d a d l m

ad l n l n

+ -

= + - + + -

+ - + - --

= + - + - + - + -

+ - + - -

1

2 2 2 1 2

2 2 2 1 1

2

2

)

( ) ( )( )

( ) ( )( )

d

ad l n m m l n d

a l n l n d

== + + - + - + -

+ - - - - +

= - +

a l n m m l n d

a l n l n m

d m l

( ) ( )( )

[ ]

[( )(

2 4 1 2

2 2 4 2 4

1

2

nn l n

a l n m

d m l n m m

a
d

m

- - - -

+ -

= + + - =

= +

2 2 1 1

2

1 2

1

2

) ( )( )]

( )

( )( ) ( )∵ ln

 Answer: (D)

59.  If a1, a2, a3,  …, an are in HP and

f K a ar
r

n

K( ) =
æ
èç

ö
ø÷

-
=

å
1

then 

a
f

a
f

a
f n

n1 2

1 2( )
,

( )
, ,

( )
…

are in

(A) AP (B) GP (C) HP (D) AGP

Solution: It is given that

f K a aK r
r

n

( ) + =
=

å
1

and 
1 1 1

1 2a a an

, , ,…  are in AP

Therefore

a

a

a

a

a

a

r
r

n

r
r

n

r
r

n

n

= = =
å å å

1

1

1

2

1, , ,…  are in AP

a f
a

a f
a

a f n
a

n

n

1

1

2

2

1 2+ + +( )
,

( )
, ,

( )
…  are in AP

f
a

f
a

f n
an

( )
,

( )
, ,

( )1 2

1 2

…  are in AP

Finally,

a
f

a
f

a
f n

n1 2

1 2( )
,

( )
, ,

( )
…  are in HP

 Answer: (C)

60.  Two AMs A1 and A2, two GMs G1 and G2 and two 
HMs H1 and H2 are inserted between two given 
 non-zero real numbers x and y. Then 

1 1

1 2H H
+ =

(A) 
1 1

1 2A A
+   (B) 

1 1

1 2G G
+

(C) 
G G

A A
1 2

1 2+
  (D) 

A A
G G

1 2

1 2

+

Solution: Given that

A x
y x x y

A
x y

G x
y
x

x y G x

1 2

1

1 3

2 3 1 3

2

1

3

2

3

2

3
= + - = + = +

= æ
èç

ö
ø÷ = =

and

and

/

/ / // /

( )

3 2 3

1 2

3

3

3

2

3

2

y

H
xy

y x y
xy

x y
H

xy
x y

=
+ -

=
+

=
+

and  

Therefore

1 1 2 2

3

3

3

1 2

1 2

1 2

H H
x y x y

xy

x y
xy

x y
xy

A A
G G

+ = + + +

= + = + = +

( ) ( )

( )

 Answer: (D)

61.  Let a1, a2,  …, a10 be in AP and h1, h2,  …, h10 be in HP. If 
a1 = h1 = 2 and a10 = h10 = 3, then a4h7 =
(A) 2 (B) 3 (C) 5 (D) 6

Solution: Given a1, a2,  …, a9  are 8 AMs between 2 and 3 
and h1, h2,  …, h9 be 8 HMs between 2 and 3. Therefore

a4 2 3
3 2

9

7

3
= + -æ

èç
ö
ø÷ =

and h7

6 9

3 9 6 2 3

54

21
=

+ -
=( )

( ) ( )

Therefore

a h4 7

7

3

54

21
6= × =

 Answer: (D)

62.  If a, b, c are distinct real numbers and are in AP and 
a2, b2, c2 are in HP, then

(A) a, b, c/2 are in GP (B) a, b, -c/2 are in GP

(C) a/2, b, c are in GP (D) a, b/2, c/2 are in GP

Solution: By hypothesis, 

2
1 1 1 1

2 2 2 2
b a c

b a c b
= + - = -and
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Therefore

( )( ) ( )( )a b a b
a b

b c b c
b c

a b
a

b c
c

b a c b

c a

- + = - +

+ = + - = -

2 2 2 2

2 2

2

 (since )

++ = +

- + - =

+ + = ¹

+

c b a b a c

ac c a b c a

ac b c a c a

ac b

2 2 2

2 2

2

0

0

2

( ) ( )

( ) ( )since

== + =0 2( )since c a b

Hence a, b, -c/2 are in GP.

 Answer: (B)

63.  If the roots of the equation 10x3 - Kx2 - 54x - 27 = 0 
are in HP, then K is equal to

(A) 3 (B) 6 (C) 9 (D) 12

Solution: Let a, b, g  be the roots of the given  equation. 
Then

a b g ab bg g a = abg+ + = - =K, ,+ + 54 27

Now a, b, g are in HP, and hence 1/a, 1/b, 1/g are in 
AP.  This gives

- = + + = + + =

= -

54

27

1 1 1 3

3

2

ab bg ga
abg a b g b

b

Since b is a root of the given equation, substituting the 
value of b in it we get

10
3

2

3

2
54

3

2
27 0

270

8

9

4
81 27 0

3 2-æ
èç

ö
ø÷ - -æ

èç
ö
ø÷ - -æ

èç
ö
ø÷ - =

- - + - =

K

K

99

4

162

8

K

K

=

= 9

 Answer: (C)

64.  Let G and H be, respectively, the GM and HM 
between two numbers. If H : G = 4 : 5, then the ratio 
of the numbers can be

(A) 1 : 4 (B) 5 : 9 (C) 9 : 2 (D) 3 : 4

Solution: Let a and b be the numbers. Then

G ab H
ab

a b
= =

+
and

2

Given that

H
G

= 4

5

Therefore

2 4

5

10 4

5 2 1

ab

ab a b

ab a b

a
b

a
b

( )

( )

+
=

= +

= +æ
èç

ö
ø÷

Let x a b= / . Substituting this we get

5 2 1

2 2 1 0

2
1

2

2x x

x x

x

= +

- - =

=

( )

( )( )

or  

 (i)  When x = 2, a/b = 4.

 (ii)  When x = 1/2, a/b = 1/4.

 Answer: (A)

65.  If a, b, c are in GP and a - b, c - a, b - c are in HP, 
then the value of a + 4b + c is equal to

(A) 1 (B) 0 (C) 2abc (D) b2 + ac

Solution: It is given that b = ar and c = ar2. Also

2 1 1

2 1 1

2

1

1

1

1

1

1

2 2

2

c a a b b c

ar a a ar ar ar

r r r r
r

r

-
=

-
+

-

-
=

-
+

-

-
=

-
+

-
= +

( ) (11

2

1

1

2 1

4 1 0

4 0

4 0

2

2

2

-

-
+

= +

- = +

+ + =

+ + =

+ + =

r

r
r

r

r r

r r

ar ar a

c b a

)

( )

 Answer: (B)

66.  If a, b, c are in AP, b, c, d are in GP and c, d, e are in 
HP, then a, c, e are in

(A) AP (B) GP (C) HP (D) AGP

Solution: It is given that

b
a c

c bd d
ce

c e
= + = =

+2

22, and



Chapter 5  Progressions, Sequences and Series242

Therefore

c bd
a c ce

c e

c c e ce a c

c ea

2

2

2

2

2= = + ×
+

+ = +

=

( ) ( )

This implies a, c, e are in GP.

 Answer: (B)

67.  If ax = by = cz and a, b, c are in GP, then x, y, z, are in

(A) AP (B) GP (C) HP (D) AGP

Solution: From the hypothesis we have

a b c b b acy x y z= = =/ /, and 2

Therefore

b b b b

y
x

y
z

xz y x z

y
xz

x z

y x y z y x y z2

2

2

2

= =

= +

= +

=
+

+/ / ( / ) ( / ),

( )

Therefore x, y, z are in HP. 

 Answer: (C)

68.  Sum to n terms of the series 1 + 5 + 19 + 65 + 211 + 	  
is equal to

(A) 1/2(3n+1 - 2n+2 + 1) (B) 1/2(3n + 2n - 1)

(C) 3n+1 - 2n+1 - 1 (D) 3n + 2n + 1

Solution: We have

1 3 2 5 3 2 19 3 2

65 3 2 211 3 2

2 2 3 3

4 4 5 5

= - = - = -

= - = -

, , ,

, ,…

Therefore sum to n terms is

( ) ( ) ( )

( ) ( )

3 2 3 3 3 2 2 2

3 3 1

3 1

2 2 1

2 1

1

2 2K K

K

n
n n

n n

- = + + + - + + +

= -
-

- -
-

=
å 	 	

== - - -

= - ++ +

3

2
3 1 2 2 1

1

2
3 2 11 2

( ) ( )

( )

n n

n n

 Answer: (A)

69.  For any positive integer n, let

f n
n n

n n
( ) =

+ -
+ + -

4 4 1

2 1 2 1

2

Then f K
K

( ) =
=å 1

40

(A) 365 (B) 366 (C) 364 (D) 363

Solution: Let x n y n= + = -2 1 2 1and . Then 

x y n

x y

xy n

2 2

2 2

2

4

2

4 1

+ =

- =

= -

 

Therefore

f n
x y xy

x y
x y
x y

n n( ) [( ) ( ) ]/ /= + +
+

= -
-

= + - -
2 2 3 3

2 2

3 2 3 21

2
2 1 2 1

Substituting n = 1 to 40 we get

f

f

f

f

( ) ( )

( ) ( )

( ) ( )

(

/ /

/ /

/ /

1
1

2
3 1

2
1

2
5 3

3
1

2
7 5

4

3 2 3 2

3 2 3 2

3 2 3 2

= -

= -

= -

�

00
1

2
81 793 2 3 2) ( )/ /= -

Therefore

f n
n

( ) ( )/ /

=
å = - =

1

40
3 2 3 21

2
81 1 364

 Answer: (C)

70.  Let 

x = + + + + + + + +

+ + + +

1
1

1

1

2
1

1

2

1

3
1

1

3

1

4

1
1

2009

1

2010

2 2 2 2 2 2

2 2
	

Then 

( )2010 2009

2010

x - =

(A) 2010 (B) 2009 (C) 1999 (D) 2000

Solution: Let

T
n n

n n n n
n nn = + +

+
= + + + +

+
1

1 1

1

1 1

12 2

2 2 2 2

2 2( )

( ) ( )

( )

Then

T
n n
n n n n n nn = + +

+
= +

+
= + -

+

2 1

1
1

1

1
1

1 1

1( ) ( )
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Therefore,

x T
n nn

n n

= = + -
+

æ
èç

ö
ø÷

= + -
+

æ
èç

ö
ø÷

=

= =
å å

1

2009

1

2009

1
1 1

1

2009 1
1

2009 1

(( )2010 1

2010

2011 2009

2010

2 -

= ×

Therefore

2010 2009

2010
2009

x - =

 Answer: (B)

71.  Sum to infinity of the series 

1

2 1

1

4 1

1

6 12 2 2-
+

-
+

-
+	

is

(A) 1/3 (B) 1 (C) 2/3 (D) 1/2

Solution: The nth term 

u
n n nn =

-
=

-
-

+
æ
èç

ö
ø÷

1

4 1

1

2

1

2 1

1

2 12

Therefore

s u u u
nn n= + + + = -

+
æ
èç

ö
ø÷1 2

1

2
1

1

2 1
	

Now sum to infinity is given by

s s
n n¥ ®¥

= =lim
1

2

 Answer: (D)

72.  Odd natural numbers are arranged in groups as (1), 
(3, 5), (7, 9, 11), (13, 15, 17, 19), (21, 23, 25, 27, 29),  …. 
Then the sum of the natural numbers in the nth 
group is

(A) n3 + n (B) n3 (C) (n + 1)3 (D) n3 - n

Solution: The nth group consists of n natural odd 
 numbers. Let un be the first number in the nth group. We 
thus have

u u u u u u1 2 3 4 5 61 3 7 13 21 31= = = = = =, , , , , ,…

Now

D = - - - - -

=

un 3 1 7 3 13 7 21 13 31 21

2 4 6 8 10

, , , ,

, , , ,

 D =2 2 2 2un , , ,…

which is an AP.  Then, using Sec. 5.5, IV(i), we get

u
n n n

n n n

n n

n = + - + - -

= + - + - +

= - +

1
2 1

1

2 1 2

2

1 2 2 3 2

1

2

2

( )

!

( )( )

!

The sum of the numbers in the nth group is 

( ) ( ) ( )

( )

( ) [

n n n n n n

n n n

n n n

2 2 2

2

2

1 3 5

2 1

1 3 5

- + + - + + - + + +

- + -

= - + + + + +

	

	 (( )]2 1

3 2 2 3

n

n n n n

-

= - + =
 Answer: (B)

73.  Sum to n terms of the series 1, 2, 3, 6, 17, 54, 171,  … is

(A) 1/8(3n - 1) - n/12(2n2 - 9n - 2)

(B) 1/8(3n + 1) + n/12(2n2 - 9n + 2)

(C) 1/8(3n - 1) + n/12(2n2 - 9n + 2) 

(D) 1/8(3n + 1) - n/12(2n2 + 9n - 2) 

Solution: Given series is 1, 2, 3, 6, 17, 54, 171,  …

D =

D =

D =

u

u

u

n

n

n

1 1 3 11 37 117

0 2 8 26 80

2 6 18 54

2

3

, , , , , ,

, , , , ,

, , , , ,

…

…

…

which is a GP with common ratio 3. By Sec. 5.5, IV(ii), 
we get 

u a a a n a n nn
n= + + - + - --3 1 1 21

0 1 2( ) ( )( )

Therefore

1

2 3

3 9 2 2

6 27 3 6

1 0

2 0 1

3 0 1 2

4 0 1

= = +

= = + +

= = + + +

= = + + +

u a a

u a a a

u a a a a

u a a a a22

Solving the above set of equations for a, a0, a1, a2, we get that

a a a a= = = = -1

4

3

4

1

2

1

2
0 1 2, , ,

Hence

u
n n n

s

n n n

n

n

n
n

= + +
-

-
- -

= + + + +

+ +
-

-

-

3

4

3

4

1

2

1 2

2

1

4
1 3 3 3

3

4

1

1

2 1

( )( )

( )

(

	

)) ( )( )

( ) ( )

4

1

2

2 1

3

1

8
3 1

12
2 9 22

-
- -

= - - - -

n n n

n
n nn

 Answer: (A)
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74.  Sum to n terms of the series

1

1 3

2

3 5

3

5 7

4 4 4

×
+

×
+

×
+	

is

(A) n(n + 1)(2n2 + 1)/8(2n + 1)

(B) n(n + 1)(n2 + n + 1)/6(2n + 1)

(C) (n + 1)[(2n + 1)2 + 1]/8(2n + 1)

(D) n(n + 1)[(2n + 1)2 + 1]/16(2n + 1) 

Solution: The Kth term of the given series is 

u
K

K K
K

K KK =
- +

= + +
-

-
+

æ
èç

ö
ø÷

4 2

2 1 2 1 4

1

16

1

32

1

2 1

1

2 1( )( )

Therefore the sum of n terms is

s u u u

K
n

n

n n n

n n

K

n

= + + +

= + + -
+

æ
èç

ö
ø÷

= + +

=
å

1 2

2

1

1

4 16

1

32
1

1

2 1

1 2 1

4

	

( )( )

××
+ +

+

= + + +
+

6 16 16 2 1

1 1

6 2 1

2

n n
n

n n n n
n

( )

( )( )

( )

 Answer: (B)

Multiple Correct Choice Type Questions
1.  Consider the AP 

20 19
1

3
18

2

3
18, , , ,…

Then

(A) sum of the first 25 terms is 300

(B) sum of the first 36 terms is 300

(C) sum of the terms from 26th term to 36th term is zero

(D) the sum of all the non-negative terms is 310

Solution: The given series is an AP with first term 
a = 20 and the common difference d = - 2 3/ .  Let 

s
n

a n dn = + -
2

2 1[ ( ) ]

be the sum of the first n terms. The sum of the first 
25 terms is given by

s25

25

2
40 24

2

3

25 20 12
2

3
25 12 3

= + -æ
èç

ö
ø÷

é
ëê

ù
ûú

= + -æ
èç

ö
ø÷

é
ëê

ù
ûú

= ´ = 000

Again sum of first 36 terms is 

s36

36

2
40 35

2

3
18

50

3
300= + -æ

èç
ö
ø÷

é
ëê

ù
ûú

= æ
èç

ö
ø÷

=

Now s s36 25=  implies that the sum of the terms from 26th 
to 36th is zero.

If Tn is the last non-negative term, then

T n

n

n

n = + - -æ
èç

ö
ø÷

³

Þ - + ³

Þ £

20 1
2

3
0

60 2 2 0

31

( )

When n = 31, Tn = 0. Therefore

s31

31

2
20 0 310= + =( )

 Answers: (A), (B), (C), (D)

2.  The sum of the first 8 and 19 terms of an AP is 64 and 
361, respectively. Then

(A) common difference is 2

(B) first term is 1

(C) sum of the first n terms is n2

(D) nth term is 2n

Solution: The sum of first 8 terms is 64; therefore,

2 7 16a d+ =

The sum of first 19 terms is 361; therefore,

19 171 361a d+ =

Solving these two equations in two variables, we get 
d = 2, a = 1.

 Answers: (A), (B), (C)

3.  Let an bn2 +  be the sum of the first n terms of an AP. Then

(A) first term is a + b
(B) first term is a - b
(C) common difference is 2a
(D) common differences is b - a

Solution: By hypothesis

s an bnn = +2

The nth term is given by

s s a n n b n n n a bn n- = - - + - - = - +-1

2 21 1 2 1[ ( ) ] [ ( )] ( )

Therefore, the series is a + b, 3a + b, 5a + b, …  . In this case 
the first term is a + b and the common difference is 2a.

 Answers: (A), (C)



4.  The numbers a, b, c and A, B, C are in AP. The 
common difference of the second set is one more than 
the common difference of the first. If 

and 

a b c A B C

abc
ABC

+ + = + + =

=

15

7

8
 

then

(A) a = 7, A = 6 (B) B = b = 5 

(C) a = 5, A = 6 (D) a = 6, A = 5 

(It is given that the two sets of numbers are in the 
descending order.)

Solution: Let a d b c d= - = = +a a a, , . By hypothesis

A d B C d= - + = = + +b b b( ), , ( )1 1

which gives

3 15 3 5a b a b= = Þ = =

Now

7

8 1

7 25 1 8 25

8

2 2

2 2

2 2

2

= =
-

- +

- + = -

- +

abc
ABC

d
d

d d

d d

a a
b b

( )

[ ( ) ]

[ ( ) ] ( )

( 11 7 25

14 32 0

2 16

2

2

)

,

=

- - =

= -

d d

d

Therefore if d = -2, then

a d A b B= - = = - - + = = =a 7 5 2 1 6 5, ( ) and

 Answers: (A), (B)

5.  The second, 31st and last terms of an AP are, 
 respectively, 31/4, 1/2 and -13/2. Then

(A) first term is 8  (B) number of terms is 58

(C) number of terms is 59 (D) first term is 6

Solution: Let a be the first term and d the common 
difference. Also let the nth term be the last term. Then

 a d+ =
31

4
 (5.34)

 a d+ =30
1

2
 (5.35)

 a n d+ - = -( )1
13

2
 (5.36)

From Eqs. (5.34) and (5.35) we get

d a= - =1

4
8,

Substituting these values in Eq. (5.36), we get n = 59.

 Answers: (A), (C)

6.  If a b c2 2 2, ,  are in AP, then

(A) 1 1 1/( ), /( ), /( )b c c a a b+ + +  are in AP

(B) a b c b c a c a b/( ), /( ), /( )+ + +  are in AP

(C) ( )/ , ( )/ , ( )/b c a a c a b b a b c c+ - + - + -  are not in AP

(D) 1 1 1/ , / , /a b c  are in AP

Solution: By hypothesis b a c b2 2 2 2- = - .  Therefore

 ( )( ) ( )( )b a b a c b c b- + = - +  (5.37)

(A) We have

 

1 1

2 2

c a b c
b a

c a c b

b a
a b b c c a

+
-

+
=

-
+ +

=
-

+ + +

( )( )

( )( )( )
 (5.38)

 

1 1

2 2

a b c a
c b

a b c a

c b
a b b c c a

+
-

+
=

-
+ +

=
-

+ + +

( )( )

( )( )( )
 (5.39)

Equations (5.38), (5.39) and b a c b2 2 2 2- = -  give

1 1 1 1

c a b c a b c a+
-

+
=

+
-

+

Therefore

1 1 1

b c c a a b+ + +
, ,  

are in AP. Therefore (A) is true.

(B) We have 

a
b c

b
c a

c
a b+ + +

, , are in AP 

Û
+

+
+

+
+

+
a

b c
b

c a
c

a b
1 1 1, , are in AP

Û
+ +

+
+ +

+
+ +

+
a b c

b c
a b c

c a
a b c

a b
, , are in AP

Û
+ + +
1 1 1

b c c a a b
, , are in AP  and this is true

Therefore

a
b c

b
c a

c
a b+ + +

, ,

are in AP.  Therefore (B) is true.
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(C) We have

b c a
a

c a b
b

a b c
c

+ - + - + -
, and  

are in AP. This implies

b c
a

c a
b

a b
c

+ + +
, ,

are in AP and this is not true according to B. 
Therefore (C) is not true.

(D) We have

1 1 1 1 1 1 1

a b c b a c b
, , are in AP Û - = -  

Û
-

=
-a b

ab
b c

bc

Û
-
-

=
a b
b c

a
c

This is not true because from Eq. (5.37). Then

a b
b c

b c
b a

-
-

=
+
+

Therefore (D) is not true.

 Answers: (A), (B)

7.  Consider an infinite geometric series with first term 
a and common ratio r. If its sum is 4 and the second 
term is 3/4, then

(A) a r= =4 7 3 7/ , /  (B) a r= =1 3 4, /

(C) a r= =3 2 1 2/ , /  (D) a r= =3 1 4, /

Solution: By hypothesis

ar
a

r
=

-
=

3

4 1
4and

Dividing the first equation by the second we get

r r

r r

r r

r

( )

( )( )

1
3

4

1

4

3

16

16 16 3 0

4 1 4 3 0

1

4

3

4

2

- = × =

- + =

- - =

= or

 (i) r a= Þ =1 4 3/

(ii) r a= Þ =3 4 1/

 Answers: (B), (D)

8.  The sum of the first two terms of an infinite GP is 
equal to 5 and every term is three times the sum of all 
the terms that follow. If a and r are the first term and 
common ratio, respectively, then

(A) a = 4   (B) a = 3

(C) r = 1 4/   (D) r = 2 3/

Solution: By hypothesis

a ar a
ar

r
+ = =

-
æ
èç

ö
ø÷

5 3
1

and

Therefore 1 3 1 4- = Þ =r r r / . This value of r gives a = 4.

 Answers: (A), (C)

9.  If x, y, z are in GP and x y y z z x+ + +, ,  are in AP in 
that order, then
(A) common ratio of the GP is 2

(B) x y z= =
(C) common ratio of the GP is -2

(D) common ratio is 1 2/

Solution: Let y xr z xr= =and 2. Then

x y x r y z xr r z x x r+ = + + = + + = +( ), ( ), ( )1 1 12  

These are in AP.  Therefore

2 1 1 1 2

2 1 2

2 0

2 2

2

2

xr r x r x r x r r

r r r r

r r

r

( ) ( ) ( ) ( )

( )

(

+ = + + + = + +

+ = + +

+ - =

+ 22 1 0

1 2

)( )r

r

- =

= -or

 Answers: (B), (C)

10.  The first two terms of an infinitely decreasing GP are 
3  and 2 3 1/( ).+  Then the

(A) common ratio is ( )/3 1 3-
(B) sum to infinity of the GP is 3 3

(C) common ratio is 1 3/

(D) sum to infinity is 3

Solution: The common ratio is 

2

3 1 3

3 1

3( )+
=

-

The sum to infinity is 

3

1 3 1 3

3

1 3
3

- -
= =

[( )/ ] /

 Answers: (A), (D)



11.  If d ¹ 0 and the sequence a(a + d), (a + d)(a + 2d), 
(a + 2d) a forms a GP, then

(A) common ratio of the GP is -2

(B) 3 2a d= -
(C) a d= -2

(D) common ratio is 2

Solution: It is given that

( )( )

( )

( )

( )( )

a d a d
a a d

a d a
a d a d

a d
a

a
a d

a ad d a

+ +
+

=
+

+ +

+
=

+

+ + =

2 2

2

2

3 22 2 22

3 2 0d a d( )+ =

Therefore 3 2a d= -  (since d ¹ 0). Hence, the common ratio 
is

a d
a

a a
a

+
=

-
= -

2 3
2

 Answers: (A), (B)

Note : If x, y, z are in AP with a non-zero common differ-
ence and xy yz zx, ,  are in GP, then common ratio of the 
GP is -2 and also 3 2x z y= - -( ).

12.  The sum of the first three terms of a GP is 6 and the 
sum of its first three odd terms is 10.5. Then the first 
term and the common ratio are

(A) 8 1 2, /-   (B) 8 1 2, /

(C) 24 19 3 2/ , /   (D) 24 29 3 2/ , /

Solution: Let a ar ar, , ,2 …  be the GP. It is given that 

 a r r( )1 62+ + =  (5.40)

 a r r( )1
21

2

2 4+ + =  (5.41)

Dividing Eq. (5.41) by Eq. (5.40) we get

1

1

21

12

7

4

4 4 4 7 7 7

4 3 7 3 0

2 4

2

2 4 2

4 2

+ +
+ +

= =

+ + = + +

- - - =

r r
r r

r r r r

r r r

Now r = -1 2/  is a solution. We have

( )( )

( )( )( )

2 1 2 3 0

2 1 2 3 1 0

3 2

2

r r r r

r r r r

+ - - - =

+ - + + =

Therefore

r = -1

2

3

2
,

 (i) When r = -1/2, a = 8
 (ii) When r = 3/2, a = 24/19

 Answers: (A), (C)

13.  The ratio of the sum of the cubes of an infinitely 
decreasing GP to the sum of its squares is 12:13. The 
sum of the first and second terms is equal to 4/3. If 
a, r and s¥  denote the first term, common ratio and 
sum to infinity of the GP, then

(A) r a s= = =¥1 3 6 5 9 5/ , / , /

(B) r a= =1 3 1/ ,

(C) r a s= - = - = -¥4 3 1 3 1 7/ , / , /

(D) s¥ = 3 2/

Solution: By  hypothesis, | |r < 1 and 

a
r

a
r

a r
r

3

3

2

2

2

3

1 1
12 13

1

1

12

13

- -
=

-
-

=

: :

( )

Therefore

 13 1 12 1 2a r r r( ) ( )+ = + +  (5.42)

Also, given that 

 a ar+ =
4

3
 (5.43)

From Eqs. (5.42) and (5.43), we get

13
4

3
12 1

13 9 1

9 9 4 0

3 1 3 4 0

2

2

2

´ = + +

= + +

+ - =

- + =

( )

( )

( )( )

r r

r r

r r

r r

The values of r thus obtained are

r =
1

3
 or 

-4

3

 (i) When r = 1/3, then a = 1 and 

s¥ =
-

=
1

1 1 3

3

2( / )

(ii) When r = -4/3, then a = 4.

Therefore (C) is not possible.

 Answers: (B), (D)

14.  Let

x = + + + ¥æ
èç

ö
ø÷

log
5

1

4

1

8

1

16
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Then

(A) x = -2 25log  (B) 5 2x =
(C) ( . )0 2 4x =   (D) ( . )0 2 2x =

Solution: We have

1

4

1

8

1

16

1 4

1 1 2

1

2
+ + + =

-
=	

/

( / )

Therefore

x

x

x

= æ
èç

ö
ø÷

= -

= æ
èç

ö
ø÷

= =

=

-

-

log log

( . )

log

log

5 5

2 2

4

1

2
2 2

0 2
1

5
5 4

5 5

5

5

22 2 1 45 55
1

4

log log ( / )= =

 Answers: (A), (C)

15.  If s s1 2,  and s3  are, respectively, equal to the sums of 

the first n n, 2  and 3n terms of a GP, then

(A) s s s s s1 3 2 2 1

2( ) ( )- = -  (B) s s s s s1

2

2

2

1 2 3+ = +( )

(C) s s s s s1 2 3 1 2

2( ) ( )+ = +  (D) s s s2

2

1 3=

Solution: Let the GP be a ar ar, , , .2 …  Given that

s
a r

r
s

a r
r

s
a r

r

n n n

1 2

2

3

31

1

1

1

1

1
=

-
-

=
-
-

=
-
-

( )
;

( )
;

( )

Then

s s
a

r
r r

r a r
r

r s

s s s
a r

n n
n n

n

n

3 2

2 3
2

2

1

1 3 2

1

1

1

1

1

- =
-

- =
-

-
=

- =
-
-

( )
( )

( )
( )

rr
r

s s
ar r

r

s s s s s

n

n n

é

ë
ê

ù

û
ú

- =
-

-

- = -

2

2 1

2 1

2

1 3 2

1

1

( )

( ) ( )

Also,

( ) ( )s s s s s s s s2 1

2

1 2 1 3 2 22 2- + = - +

and hence

s s s s s1

2

2

2

1 3 2+ = +( )

 Answers: (A), (B)

16.  If a, b, c and d are in GP, then

(A) ( )( ) ( )a b c b c d ab bc cd2 2 2 2 2 2 2+ + + + = + +
(B) ( ) ( ) ( ) ( )a d b c c a d b- = - + - + -2 2 2 2

(C) a b b c c d2 2 2 2 2 2- - -, ,  are in GP

(D) a b b c c d2 2 2 2 2 2+ + +, ,  are in GP

Solution: Let b ar c ar= =, 2  and d ar= 3.

(A) ( )( )

( ) ( )

a b c b c d

a r r a r r r

2 2 2 2 2 2

2 2 4 2 2 4 61

+ + + +

= + + + +

= + +

= + +

= + +

a r r r

a r a r a r

ab bc cd

4 2 2 4 2

2 2 3 2 5 2

2

1( )

( )

( )

Therefore (A) is true.

(B) ( ) ( ) ( )

( ) ( ) ( )

[(

b c c a d b

ar ar ar a ar ar

a r

- + - + -

= - + - + -

= -

2 2 2

2 2 2 2 3 2

2 4 2rr r r r

r r r

a r r

a r

d

3 2 4 2

6 4 2

2 6 3

2 3 2

2 1

2

2 1

1

+ + - +

+ - +

= - +

= -

= -

) ( )

( )]

( )

( )

( aa)2

Therefore (B) is true.

(C) a b a r b c a r r a r r2 2 2 2 2 2 2 2 4 2 2 21 1- = - - = - = -( ), ( ) ( )

and c d a r r a r r2 2 2 4 6 2 4 21- = - = -( ) ( )

So,

( )( ) ( ) ( )a b c d a r r b c2 2 2 2 4 4 2 2 2 2 21- - = - = -

Therefore (C) is true.

(D) a b a r b c a r r2 2 2 2 2 2 2 2 21 1+ = + + = +( ), ( )

and c d a r r2 2 2 4 21+ = +( )

So,

( )( ) ( ) ( )a b c d a r r b c2 2 2 2 4 4 2 2 2 2 21+ + = + = +

Therefore (D) is true.

 Answers: (A), (B), (C), (D)

17.  Let a, b, c be three distinct real numbers in GP. If x is 
real and a b c xb+ + = , then

(A) x < -1 (B) 0 1< <x  (C) 2 3< <x  (D) x > 3

Solution: Let b ar=  and c ar= 2,  and r ¹ 1. Then

a r r xar( )1 2+ + =

Therefore

r x r

x

x x

x x

x x

2

2

2

1 1 0

1 4 0

2 3 0

1 3 0

1 3

+ - + =

- - ³

- - ³

+ - ³

£ - ³

( )

( )

( )( )

or



 (i)  When x = -1,  then r r2 2 1 0+ + =  and hence r = -1, 
so that a c= , a contradiction to the hypothesis.

(ii)  When x = 3,  then r r2 2 1 0- + =  and hence r = 1,  so 
that a b c= = .

Therefore x < -1 or x > 3.

  Answers: (A), (D)

18.  Let a and b be positive real numbers. If a A A b, , ,1 2  
are in AP, a G G b, , ,1 2  are in GP and a H H b, , ,1 2  are 
in HP, then

G G
H H

1 2

1 2

=

(A) ( )( )/2 2 9a b a b ab+ +  (B) ( )/( )H H A A1 2 1 2

(C) ( )/( )A A H H1 2 1 2+ +  (D) ( )/( )H H A A1 2 1 2+ +

Solution: It is given that

A a
b a a b

A a
b a a b

G a
b
a

a b

1 2

1

1 3

2 3 1

3

2

3

2

3

2

3
= +

-
=

+
= +

-
=

+

= æ
èç

ö
ø÷

= ×

,
( )

/

/ / 33

2

2 3

1 3 2 3

1 2

3

3 1

3

2

3

,

( )
,

/

/ /G a
b
a

a b

H
ab

b a b
ab

a b
H

ab

= æ
èç

ö
ø÷

= ×

=
+ -

=
+

=
33 2

3

2b a b
ab

a b+ -
=

+( )

Therefore

G G
H H

ab a b a b
a b

a b a b
ab

A A
H H

a

1 2

1 2

2 2

1 2

1 2

2 2

9

2 2

9

2

=
+ +

=
+ +

+
+

=
+

( )( ) ( )( )

bb a b ab
a b

ab
a b

a b a b
ab

3

2

3

3

2

3

2

2 2

9

1

+
+æ

èç
ö
ø÷ +

+
+

æ
èç

ö
ø÷

=
+ +

-

( )( )

 Answers: (A), (C)

19.  Let sn  be the sum to n terms of the series

3

1

5

1 2

7

1 2 3

9

1 2 3 42 2 2 2 2 2 2 2 2 2
+

+
+

+ +
+

+ + +
+ 	

Then

(A) s n nn = +/ 1 (B) s n nn = +6 1/

(C) s¥ = 1  (D) s¥ = 6

Solution: Let 

u
K

K K K K KK =
+

+ + +
=

+
= -

+
æ
èç

ö
ø÷

2 1

1 2

6

1
6

1 1

12 2 2	 ( )

Therefore sum of n terms is

s u u u
n

n
nn n= + + + = -

+
æ
èç

ö
ø÷

=
+1 2 6 1

1

1

6

1
	

and sum to infinity is

s s
nn n n¥ ®¥ ®¥

= =
+

æ
èç

ö
ø÷

=lim lim
( / )

6

1 1
6

 Answers: (B), (D)

20.  Let a a a a1 2 3 4, , , ,… be in GP. If the HM of a a1 2and  is 
12 and that of a a2 3and  is 36, then

(A) a1 8=   (B) a2 24=
(C) a3 72=   (D) a4 216=

Solution: Let a a r a a r a a r2 1 3 1

2

4 1

3= = =, , , .…  Then

 12
2 2

1

2

1
1 2

1 2

1

2

1

1=
+

=
+

=
+

a a
a a

a r
a r

ra
r( )

 (5.44)

 36
2 2 2

1
2 3

2 3

1

2 3

1

2

2

1=
+

=
+

=
+

a a

a a
a r

a r r
r a

r( )
 (5.45)

From Eqs. (5.44) and (5.45), we get

12

2

36

21

2

1ra r a
=

and hence r = 3.

From Eq. (5.44), 

12
6

1 3

3

2
1

1=
+

=
a

a

and hence a1 8= . Therefore

a a r a a r a a r2 1 3 1

2

4 1

324 72 216= = = = = =, ,

 Answers: (A), (B), (C), (D)

21.  Let A A G G H H1 2 1 2 1 2, ; , ,  and  be two AMs, GMs and 
HMs, respectively, between two positive real numbers 
a and b. Then

(A) A H ab1 2 =  (B) G G ab1 2 =
(C) A H a b1 2

2 2=  (D) A H ab2 1 =

Solution: By Problem 18 (solution)

A
a b

A
a b

G a b G a b

H
ab

a b
H

ab

1 2

1

2 3 1 3

2

1 3 2 3

1 2

2

3

2

3

3

2

3

2

=
+

=
+

= =

=
+

=

,

,

,

/ / / /

aa b+
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Therefore

A H
a b ab

a b
ab

G G a b a b ab

A H
a b

1 2

1 2

2 3 1 3 1 3 2 3

2 1

2

3

3

2

2

3

3

=
+

×
+

=

= × =

=
+

×

/ / / /

aab
a b

ab
+

=
2

 Answers: (A), (B), (D)

22.  Consider four non-zero real numbers a, b, c, d (in this 
order). If a, b, c are in AP and b, c, d are in HP, then

(A) ac bd=  (B) a b c d/ /=
(C) a c b d/ /=  (D) a b a b c d c d+ - = + -/ /

Solution: Since a, b, c are in AP, 

2b = a + c

Since b, c, d are in HP, 

c
bd

b d

c b d bd a c d

=
+

+ = = +

2

2( ) ( )

therefore

cb ad
a
c

b
d

a b
a b

c d
c d

= = +
-

= +
-

and ,

 Answers: (B), (C), (D)

23.  Let a a a an1 2 3, , , ,…  be in AP and h h h hn1 2 3, , , ,…  be in HP. 
If a1 = h1 and an = hn, then

(A) a h a ar n r n- + =1 1  (B) a h a an r r n- + =1 1

(C) a hr n r- +1 is independent of r (D) a h a ar r n= 1

Solution: We have

 

a a r
a a

n

a n a r a a r a

n

a n r

r
n

n

= + -
-
-

æ
èç

ö
ø÷

=
- + - - +

-

=
-

1
1

1 1 1 1

1

1
1

1

1

( )

( )

( ) ++ -
-

a r

n
n ( )1

1

 (5.46)

 h
a a n

a n n r a a

a a n

a r a n

n r
n

n n

n

n

- + =
-

- + - -

=
-

- +

1
1

1

1

1

1

1

1

1

( )

( ) ( )( )

( )

( ) ( -- r)

 (5.47)

From Eqs. (5.46) and (5.47), we get

a h a a a hr n r n n r r- + - += =1 1 1

 Answers: (A), (B), (C)

24.  If a, b, c are in HP, then

(A) a/(b + c), b/(c + a), c/(a + b) are in AP

(B) a/(b + c), b/(c + a), c/(a + b) are in HP

(C) a/(b + c - a), b/(c + a - b), c/(a + b - c) are in HP

(D) a/(a + b + c), b/(a + b + c), c/(a + b + c) are in HP

Solution: Given that 1/a, 1/b, 1/c are in AP. Therefore

a b c
a

a b c
b

a b c
c

+ + + + + +
, ,  are in AP

Þ
+ +

-
+ +

-
+ +

-
a b c

a
a b c

b
a b c

c
1 1 1, ,  are in AP

Þ
+ + +b c
a

c a
b

a b
c

, ,  are in AP

Þ a
b c

b
c a

c
a b+ + +

, ,  are in HP

Therefore (B) is true. Also, 

b c
a

c a
b

a b
c

+
-

+
-

+
-1 1 1, , are in AP

Þ
+ - + - + -

a
b c a

b
c a b

c
a b c

, , are in HP

Therefore (C) is true. Also,

a
a b c

b
a b c

c
a b c+ + + + + +

, , are in HP

Therefore (D) is true.

  Answers: (B), (C), (D)

25.  If a, b, c are in AP; b, c, d are in GP and c, d, e are in 
HP, then

(A) a, c, e are in GP (B) e b a a= -( ) /2 2

(C) a, c, e are in HP (D) e ab a b= -2 22/( )

Solution: By hypothesis,

2
22b a c c bd d

ce
c e

= + = =
+

, and

Therefore

c bd
a c ce

c e
2

2

2= = + ×
+

and also 

c(e + c) = e(a + e)

This gives c ae2 =  and hence (A) is true. Also, 

e
c
a

b a
a

= =
-2 22( )

and hence (B) is true.

 Answers: (A), (B)



Matrix-Match Type Questions

1.  Match the items in Column I with those in Column II.

Column I Column II

(A)  If the sum of n terms of the series

5 1 2 6 3 4 8( / ), ( / ), ,…

is 238, then n is

(p) 5

(q) -2(1/2)

(r) 2(2/3)

(B)  The first term of an AP is 5, the last 
term is 45 and the sum of the terms 
is 400. The number of terms and the 
common difference are, respectively,

(C)  The sum of three numbers which are 
in AP is 27 and sum of their squares is 
293. Then the common difference is (s) 16

(t) -5

(D)  The fourth and 54th terms of an AP 
are, respectively, 64 and -61. The 
common difference is

Solution:

(A) We have a = 11/2, d = 5/4. Therefore

n
n

2
2

11

2
1

5

4
238

æ
èç

ö
ø÷

+ -é
ëê

ù
ûú

=( )

n n

n n

n n n

2

44 5 1

4
238

5 39 8 238 0

5 80 119 8 238 0

5

2

2

+ -é
ëê

ù
ûú

=

+ - ´ =

- + - ´ =

( )

nn n n

n

( ) ( )- + - =

=

16 119 16 0

16

 Answer: (A) Æ (s)
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26.  In Problem 25, if a = 2 and e = 18, then the possible 
values of b, c, d are respectively,

(A) 4, 6, 9  (B) -2, -6, -18

(C) 6, 4, 9  (D) 2, 6, 18

Solution: By Problem 25, c2 = ae = 2 ´ 18 and hence c = ± 6. 
Now, 2b = a + c = 2 ± 6 = 8 or −4 (b = 4 or −2). Therefore

d
c
b

= =
-

= -
2 36

4

36

2
9 18or or

Hence

or 

b c d

b c d

= = =

= - = - = -

4 6 9

2 6 18

, ,

, ,

 

 Answers: (A), (B)

27.  Which of the following statement(s) is (are) true?

(A)  If a b cx y z= =  and a, b, c are in GP, then x, y, z are 
in HP.

(B)  If a b cx y z1 1 1/ / /= =  and a, b, c are in GP, then x, y, z 
are in AP.

(C)  If a, b, c are positive, each of them not equal 
to 1, and are in GP, then, for any positive 
u u u ua b c¹ 1, log , , loglog  are in HP.

(D)  If a, b, c are in AP and b, c, a are in HP, then c, 
a, b are in GP.

Solution: (A) a b b b acy x y z= = =/ /, c  and 2  imply that 

b b y x y z2 = +( / ) ( / )

and hence 

2
1 1

= +æ
èç

ö
ø÷

y
x z

Therefore x, y, z are in HP.  Thus (A) is true.

(B) a b c b b acx y z y= = =/ /, and 2  imply that

b b x z y2 = +( ) /

and hence 

2y x z= +

Thus (B) is true.

(C) We have

b ac
u

a
u

b
u

c
a

u
b

u
c

u
2 1 1 1
= = = =,

log
log ,

log
log ,

log
log

Now 2 log log logu u ub a c= + . Therefore

2 1 1

log log logb a cu u u
= +

Thus (C) is true.

(D) We have 2b a c= + . Therefore

c
ba

a b

c
a c a
a b

bc ca a ac

a bc

=
+

=
+
+

+ = +

=

2

2

2

( )

 

 

Thus (D) is true.

 Answers: (A), (B), (C), (D)
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(B) We have a = 5, d = common difference. Now

 a n d n d+ - = Þ - =( ) ( )1 45 1 40  (5.48)

n
n d

n

n

2
10 1 400

2
10 40 400

800

50
16

[ ( ) ]

( )

+ - =

+ =

= =

Substituting this value of n in Eq. (5.48) we get

d =
40

15

Finally, 

n d= =16 2
2

3
,

 Answer: (B) Æ (r), (s)
(C)  Let the three numbers be (a - d), a, (a + d). Then by 

hypothesis

( ) ( )a d a a d

a

a

- + + + =

=

=

27

3 27

9

Again by hypothesis, since sum of their squares is 
293 we have

( ) ( )9 9 9 293

243 2 293

25

5

2 2 2

2

2

- + + + =

+ =

=

= ±

d d

d

d

d

 Answer: (C) Æ (p), (t)

(D) Since the fourth term is 64 we get

a d+ =3 64

Since the 54th term is -61 we get

a d+ = -53 61

Solving the two equations we get

- =

= -

50 125

2
1

2

d

d

 Answer: (D) Æ (q)

2.  Match the items in Column I with those in Column II.

Column I Column II

(A)  If the pth, qth and rth terms of an 
AP are a, b, c respectively, then the 
value of a (q - r) + b (r - p) +
c( p - q) is

(p) 15

(q) 27

(r) -(m + n)

(s) 2(m + n)

(t) 0

(B)  The sum of m terms of an AP is n 
and the sum of n terms is m,
then the [sum of (m + n) 
terms] + (m + n) is

(C)  If five arithmetic means are 
inserted between 2 and 4, then the 
sum of the five means are

(D)  In an AP, if the sum of n terms is 
3n2 and the sum of m terms is 3m2 
(m ¹ n) then, the sum of the first 
three terms is

Solution:

(A)  Since a, b, c are pth, qth and rth terms of an AP, let

 a p d= + -a ( )1  (5.49)

 b q d= + -a ( )1  (5.50)

 c r d= + -a ( )1  (5.51)

Solving Eqs. (5.49) and (5.50) we get

d p q a b

d
a b
p q

( )- = -

=
-
-

Therefore

c p q
a b c

d
( )

( )
- =

-

Similarly,

b r p
c a b

d

a q r
a b c

d

( )
( )

( )
( )

- =
-

- =
-

Therefore

å - = å - = =a q r
d

a b c
d

( ) ( ) ( )
1 1

0 0

 Answer: (A) Æ (t)
(B) By hypothesis we get

 
m

a m d n
2

2 1[ ( ) ]+ - =  (5.52)

 
n

a n d m
2

2 1[ ( ) ]+ - =  (5.53)



Subtracting Eq. (5.53) from Eq. (5.52) and solving 
we get

2 2

2 1 2

2 2a m n d m n d m n n m

a m n d

( ) ( ) ( ) ( )

( )

- + - - - = -

+ + - = -

Therefore sum of the first (m + n) terms is

m n
a m n d m n

+
+ + - = - +

2
2 1[ ( ) ] ( )

 Answer: (B) Æ (r)
(C) Sum of the n AM’s between x and y is

n
x y+æ

èç
ö
ø÷2

Therefore sum of the five AM’s between 2 and 4 is

5
2 4

2
15

+æ
èç

ö
ø÷

=

 Answer: (C) Æ (p)

(D) By hypothesis we have

 

n
a n d n

a n d n

2
2 1 3

2 1 6

2[ ( ) ]

( )

+ - =

+ - =
 (5.54)

Similarly,

 2a + (m - 1) d = 6m (5.55)

Solving Eqs. (5.54) and (5.55) we get

d = 6, a = 3

Therefore, the sum of the first 3 terms is

3

2
6 2 6 27( )+ ´ =

 Answer: (D) Æ (q)

3.  Match the items in Column I with those in Column II.

Column I Column II

(A)  The sum of three numbers which 
are in AP is 12 and the sum of their 
cubes is 288. The greater of the three 
numbers is

(p) 25

(q) 26

(r) 6

(s) 7

(t) 8

(B)  Let sn denote the sum of the first n 
terms of an AP. If s2n = 3sn, then s3n/sn 
equals

(C)  4n2 is the sum of the first n terms of 
an AP whose common difference is

(D)  The least value of n for which the 
sum 3 + 6 + 9 + 	 + n is greater than 
1000 is

Solution:

(A)  Let the three numbers be a - d, a, a + d. By hypothesis

( ) ( )a d a a d

a

a

- + + + =

=

=

12

3 12

4

Also it is given that the sum of their cubes is 288; 
therefore

( ) ( )a d a a d

a ad

a ad

d

d

- + + + =

+ =

+ =

+ =

= ±

3 3 3

3 2

3 2

2

288

3 6 288

2 96

64 8 96

2

Therefore the numbers are 2, 4, 6.

 Answer: (A) Æ (r)
(B) We have

 

2

2
2 2 1 3

2
2 1

2 1

n
a n d

n
a n d

a n d

[ ( ) ] [ ( ) ]

( )

+ - = æ
èç

ö
ø÷

+ -

= +

Therefore

S

s
a n d
a n d

n d n d
n d n

n

n

3 3 2 3 1

2 1

3 1 3 1

1 1

=
+ -
+ -

=
+ + -
+ + -

[ ( ) ]

( )

[( ) ( ) ]

( ) ( )dd

n
n

= æ
èç

ö
ø÷

=3
4

2
6

 

 Answer: (B) Æ (r)

(C) The nth term is

4 1 4 2 12 2[ ( ) ] ( )n n n- - = -

Substituting n = 1, 2, 3, …, we get the series 4, 12, 20, …  .

 Answer: (C) Æ (t)
(D) By hypothesis

n
n

n n

n

2
6 1 3 1000

3 3 2000

1

2

2000

3

1

4

2

[ ( ) ]

( )

+ - >

+ >

+æ
èç

ö
ø÷

> +
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n

n

+ >

=

1

2
25 8

26

.  

 

 Answer: (D) Æ (q)

4.  Match the items in Column I with those in Column II.

Column I Column II

(A)  If four GMs are inserted between 
160 and 5, then the second mean is

(p) 7

(q) 20

(r) 40

(s) 10

(t) 2

(B) Sum to infinity of the series 

1
1

2

1

22
+ + + 	

(C)  If 5 5 5 5 0 042 4 6 2 28× × = -	 n ( . ) ,  then the 
value of the n is

(D)  If y > 0 and y2 = (0.2)x where

x = + + + + ¥æ
èç

ö
ø÷

log
5

1

4

1

8

1

16
	

then the value of y is

Solution:

(A)  Let g g g g1 2 3 4, , ,  be the four GMs between 160 and 5. 
Then g r i ri

i= £ £ =160 1 4 5 160 5, and, . Therefore

r5

5
5

160

1

32

1

2
= = = æ

èç
ö
ø÷

and hence r = 1/2. Hence

g2

2

160
1

2
40= æ

èç
ö
ø÷

=

 Answer: (A) Æ (r)

(B) 1
1

2

1

2

1

2

1

1 1 2
2

2 3
+ + + + + ¥ =

-
=	

( / )

 Answer: (B) Æ (t)
(C) We have

 
5 0 04

5
1

25
5

2 4 6 2 28

2 1 2

28

56

+ + + + -

+
-

=

= æ
èç

ö
ø÷

=

	 n

n n

( . )

[( )/ ]

 
n n

n

( )+ =

=

1 56

7

 Answer: (C) Æ (p)

(D) We have

y2 = (0.2)x

where

 
x = + + + +æ

èç
ö
ø÷

log
5

1

4

1

8

1

16
	 ¥

Now

x = æ
èç

ö
ø÷

= -

log

log

5

5

1

2

2 2

Therefore

y2 = (0.2)x

 = =(5 )1 2log5- - 2 4
Hence y = 2.

 Answer: (D) Æ (t)

5.  Match the items in Column I with those in Column II.

Column I Column II

(A)  A GP contains even number of 
terms. The sum of all terms is 
equal to five times the sum of all 
odd terms. Then the common 
ratio is

(p) 1

(q) -2

(r) 2

(s) 4

(t) 2/3

(B)  In a GP, the terms are alternately 
positive and negative, beginning 
with a positive term. Any term 
is the AM of the next immediate 
two terms. Then the common 
ratio is  

(C)  If y c x x x e= + + + +(sin sin sin )log2 4 6 2	 ¥  
( / )0 2< <x p  satisfies the equation 
x2 - 17x + 16 = 0, then the value of 
sin /( cos )2 1 2x x+  is 

(D)   If the same y in (C) satisfies the same 
equation x2 - 17x + 16 = 0, then the 
value of 6 sin /(sin cos )x x x+  is 
equal to

Solution:

(A)  Let a ar ar ar n, , , ,2 2 1… -  be the 2n terms of the GP. It 
is given that 

a ar ar ar a ar ar arn n+ + + + = + + + +- -2 2 1 2 4 2 25	 	( )

Therefore

a r
r

a r
r

a r
r r

n n n( ) [( ) ] ( )

( )( )

2 2

2

21

1
5

1

1
5

1

1 1

-
-

=
-

-
=

-
- +

Solving this we get r r+ = =1 5 4or .

 Answer: (A) Æ (s)

(B)  Let the numbers be a a r a r a r, ( ), ( ) ( ) ,- - -2 3, … where 
a > 0 and r > 0. Since any term is the AM of the imme-
diate next two terms, therefore



a r ar a

r r

r r

( )

( )( )

- + =

- - =

- + =

2

2

2

2 0

2 1 0

which gives r = 2.

 Answer: (B) Æ (r)
For parts (C) and (D)

0
2

0 1< < Þ < <x x
p

sin

Therefore,

sin sin sin
sin

sin
tan

(sin sin )lo

2 4 6
2

2

2

1

2 4

x x x
x

x
x

e x x

+ + + ¥ =
-

=

+ + ¥

	

	 gg tan log tane ee x x2 22 2

2= =×

The roots of x2 - 17x + 16 = 0 are 1 and 16. Then

(i)  2 1 0
2tan tan ,x x= Þ =  which is false since 0 < x < p / 2

(ii)  2 16 4 2
2 2tan tan tanx x x= Þ = =or

(C) 
sin

cos

sin cos

cos

tan

sec

tan2

1

2

1

2

1

2

2 4

4

6

2

32 2 2

x
x

x x
x

x
x

x
+

=
+

=
+

=
+

= =

 Answer: (C) Æ (t)

(D) 
6 6

1

6 2

2 1
4

sin

sin cos

tan

tan

( )x
x x

x
x+

=
+

=
+

=

 Answer: (D) Æ (s)

6.  Let S1, S2, S3,  … be squares such that the length of the 
side of Sn is equal to the length of the diagonal of Sn+1. 
Match the items in Column I with those in Column II, 
if the length of the side of S1 is equal to 10 units.

Column I Column II

(A) Length of the side of S3  is (p) 7

(q) 5

(r) 6

(s) 200

(t) 10 2 2 1/( )-

(B ) Length of the diagonal of S4

(C )  The area of Sn  is less than 1 if 
n is greater than

(D)  Sum of the areas of the squares is

Solution: Let an be the length of the side of Sn. It is 
given that 

a a a an n n n= =+ +2
1

2
1 1or

(A) Let a1 = 10. Then

a a a2 3 2

1

2
10

1

2

1

2
10 5= = = =and

 Answer: (A) Æ (q)

(B) Length of the diagonal of 

S a a4 4 32 2
1

2
5= = × =

 Answer: (B) Æ (q)

(C)  a1, a2, a3,  … are in GP with  a1 = 10 and common ratio 

r = 1 2/ . Therefore

an

n

= æ
èç

ö
ø÷

-

10
1

2

1

The area of Sn is

an

n
2

1

100
1

2
= æ

èç
ö
ø÷

-

and a nn n
n2

1

11
100

2
1 100 2 7< Û < Û < Û <-

-

 Answer: (C) Æ (p)

(D) Sum of the areas of the squares is

an
n

n
n

2

1
1

1

2

100

2

100 1
1

2

1

2

100 2

200

=

¥

-
=

¥

å å=

= + + +æ
èç

ö
ø÷

=

=

	

( )

sq. unitts

 Answer: (D) Æ (s)

7.  Match the items in Column I with those in Column II.

Column I Column II

(A)  If n = 3, then the numbers 2n, 
n(n - 1) and n(n - 1)(n - 2) are in

(p) GP

(q) HP

(r) AGP

(s) AP

(B)  If a, b, c are in AP, then 
a bc b ac c ab+ + +1 1 1/ , / /and  are in

(C)  If x > 1, y > 1 and z > 1are three 
numbers in GP, then the numbers 

1

1

1

1

1

1+ + +log
,

log
,

logx y z
 are in

(D)  If a, b, c are in HP, then the 

numbers a
b b

c
b

- -
2 2 2

, ,  are in

Solution:

(A)  If n = 3, the three numbers are 6, 6, 6, which are in 
AP, GP, HP and AGP.

 Answer: (A) Æ (p), (q), (r), (s)
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(B) Let a, b, c be in AP.  Then b - a = c - b. Therefore

b
ca

a
bc

b a
b a
abc

c b
c b
abc

c
ab

+æ
èç

ö
ø÷

- +æ
èç

ö
ø÷

= - +
-

= - +
-

= +æ
èç

1 1

1

( )

( )

öö
ø÷

- +æ
èç

ö
ø÷

b
ca
1

 Answer: (B) Æ (s)
(C)  Let x, y, z be in GP; x > 1, y > 1 and z > 1.Then

1 + log x, 1 + log y, 1 + log z are in AP

and so

1

1

1

1

1

1+ + +log
,

log
,

logx y z
are in HP

 Answer: (C) Æ (q)

(D) Let a, b, c be in HP.  Then 

b
ac

a c
=

+
2

Now

a
b

c
b

ac
b

a c
b

ac
ac

a c
a c

b

b

-æ
èç

ö
ø÷

-æ
èç

ö
ø÷

= - + +

= -
+

+ +

=

2 2 2 4

4

4

2

2

2

( )

( )

 Answer: (D) Æ (p)

8.  Match the items in Column I with those in Column II.

Column I Column II

(A)  a, b, c and d are positive, each 
is not equal to 1 and K ¹ 1. If 
a bK
a bK

b cK
b cK

c dK
c dK

+
-

=
+
-

=
+
-

 then a, b, 

c, and d are in

(p) AP

(q) HP

(r) AGP

(s) GP

(B)   If a1, a2, a3, and a4 are four numbers 

such that 
a a

a a

a a

a a

a a

a a
2 3

1 4

2 3

1 4

2 3

1 4

3=
+
+

=
-
-

æ
èç

ö
ø÷

 

then a1, a2, a3, and a4 are in

(C)  If a1, a2, a3 are in AP; a2, a3, a4 are in GP 
and a3, a4, a5 are in HP, then a1, a3, a5  
are in

(D)  If the sum to n terms of a series is 
pn2, then the series is in 

Solution:

(A) We have

a bK
a bK

b cK
b cK

c dK
c dK

a
a bK

b
b cK

c
c dK

a bK
a

b cK
b

c d

+
-

=
+
-

=
+
-

-
=

-
=

-

-
=

-
=

- KK
c

b
a

c
b

d
c

= =  

This implies that a, b, c, d are in GP.

 Answer: (A) Æ (s)

(B) We have

 

a a
a a

a a

a a

a a a a

a a a a

1 4

1 4

2 3

2 3

1 4 2 3

2 1 4 3

1 1 1 1

1 1 1 1

+
=

+

+ = +

- = -  (5.56)

Also, 

 

3

3
1 1 1 1

2 3

1 4

2 3

1 4

3 2 4 1

a a

a a

a a

a a

a a a a

-
-

æ
èç

ö
ø÷

=

-
æ
èç

ö
ø÷

= -  (5.57)

From Eqs. (5.56) and (5.57), we get that 

1 1 1 1

1 2 3 4a a a a
, , and

are in AP.  Therefore a1, a2, a3, a4 are in HP.

 Answer: (B) Æ (q)
(C) We have

2 2 1 3

3

2

2 4

a a a

a a a

= +

=

a
a a

a a4
3 5

3 5

2
=

+

Therefore

a
a a a a

a a

a a a a a a

3

2 1 3 3 5

3 5

3 3 5 5 1 3

2

2
=

+æ
èç

ö
ø÷ +

æ
èç

ö
ø÷

+ = +( ) ( )



a a a3

2

1 5=

Therefore a1, a2, a3 are in GP.

 Answer: (C) Æ (s)

(D) The nth term is given by

u s s p n p n p nn n n= - = - - = --1

2 21 2 1( ) ( ) ( )

The series is p, 3p, 5p, 7p,  … which is an AP.

 Answer: (D) Æ (p)

Comprehension-Type Questions

1.  Passage: Let a be the first term and d the common 
difference of an AP. Then sum of the first n terms is

n
a n d

2
2 1[ ( ) ]+ -

If n AMs are inserted between a and b, then the kth 
AM is

a k
b a
n

k n+ -
+

=( )
( , , , , )

1
1 2 3 …

Now, answer the following questions.

 (i)  If the sum of the first m terms of an AP is same as 
the sum of the first n terms, then sum of the first 
(m + n) terms is equal to

(A) mn (m + n) (B) (mn + 1)(m + n)

(C) (mn - 1)(m + n) (D) 0

 (ii)  S1, S2, S3 are sums of first n terms of three APs 
whose first terms are unity and the common 
difference are respectively 1, 2, 3. Then S1 + S3 is 
equal to

(A) S2 (B) 3S2 (C) 2S2 (D) S2

2

 (iii)  Let N be the natural number set and f N: ® �  
be a function defined by f n n( ) .= -3 1  If 

f k
k

n

( ) =
=

å 155
1

then

(A) n = 8 (B) n = 10 (C) n = 11 (D) n = 9

Solution:

(i) We have

m
a m d s s

n
a n dm n

2
2 1

2
2 1[ ( ) ] [ ( ) ]+ - = = = + -

Therefore

2

2 1 1

2 1 0

2 2a m n d n m m n

a d m n d m n

a d m n

( ) [ ]

[ ( ) ] ( )

( )

- = - + -

= - + + = - + -

+ + - =

So, the sum of the first (m + n) terms is

m n
a m n d

+
+ + - =

2
2 1 0[ ( ) ]

 Answer: (D)

 (ii) We have

S n
n n

S
n

n n

S
n

n
n n

1

2

2

3

1 2 3
1

2

2
2 1 2

2
2 1 3

3

= + + + + =
+

= + - =

= + - =

	
( )

[ ( ) ]

[ ( ) ]
( -- 1

2

)

Now

S S
n

n n n S1 3

2

2
2

1 3 1 2 2+ = + + - = =[ ]

 Answer: (C)

(iii)  We have f (n) = 3n - 1 which implies that f (1), f (2), 
f (3),  … are in AP with first term 2 and common 
difference 3.  Therefore

155
2

4 1 3
2

3 1

3 310 0

10 3 31 0

10

2

= + - = +

+ - =

- + =

=

n
n

n
n

n n

n n

n

[ ( ) ] [ ]

( )( )

 Answer: (B)

2.  Passage: Let  p < q < r < s and p, q, r, s be in AP.  Further, 
let p and q be the roots of the equation x2 - 2x + A = 0 
while r and s be the roots of x2 - 18x + B = 0. Answer 
the following questions.

(i) | |A B+  is equal to

(A) 80 (B) 74 (C) 84 (D) 77
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 (ii)  If an AP is formed with A as first term and 8 as 
common difference then B appears at

(A) 11th place (B) 12th place

(C) 10th place (D) no place

 (iii)  In the above question, the sum of the nine AMs 
inserted between A and B is

(A) 233  (B) 323

(C) 333  (D) 222

Solution:

(i)  Let p = a - 3d, q = a - d, r = a + d and s = a + 3d. Now 
p < q < r < s Þ d > 0 Since p and q are the roots of the 
equation x2 - 2x + A = 0 we have

 

p q

a d a d

a d

a d

+ =

- + - =

- =

- =

2

3 2

2 4 2

2 1

 (5.58)

Since r and s are the roots of x2 - 18x + B = 0 we have

 

r s

a d a d

a d

a d

+ =

+ + + =

+ =

+ =

18

3 18

2 4 18

2 9

 (5.59)

Solving Eqs. (5.58) and (5.59) we get a = 5. Substitu-
ting the value of a in Eq. (5.58) we get

a d

d

d

d

- =

- =

=

=

2 1

5 2 1

4 2

2

Now

A pq

B rs

= = - - = -

= = + + =

( )( )

( )( )

5 6 5 2 3

5 2 5 6 77

Therefore

| |A B+ = 74

 Answer: (B)

(ii) We have

77 3 8 1

11

= - + -

=

( )n

n

 Answer: (A)

(iii) Sum of the nine means is

9

2
3 77 37 9 333( )- + = ´ =

 Answer: (C)

3.  Passage: Let  a, b, c be in GP. Answer the following 
three questions.

 (i) 
a ab b
ab bc ca

2 2+ +
+ +

 is equal to

(A) ( )/( )a b b c+ +  (B) ( )/( )b c c a+ +

(C) ( )/( )c a a b+ +  (D) ( )/ ( )a b b c+ +2

 (ii)  If ab + bc + ca = 156 and abc = 216 and the num-
bers are in the descending order, then the 
common ratio is

(A) 1/2 (B) 2 (C) 3 (D) 1/3

(iii)  If a + b + c = 14 and a + 1, b + 1 and c - 1 are in AP, 
then the sum to infinity of the GP whose first three 
terms are a, b and c (in the descending order) is

(A) 8 (B) 16 (C) 4 (D) 2

Solution:

  (i) Let b = ar and c = ar2. Then 

a ab b
ab bc ca

a r r
a r a r a r

a r r
a r r

2 2 2 2

2 2 3 2 2

2 2

2

1

1

1

+ +
+ +

=
+ +

+ +

=
+ +
+

( )

( )

( ++
=

=
+

+
=

+
+

=
+
+

r r

a r
r r a

ar a
ar ar

a b
b c

2

2

1

1

1

)

( )

( )

 Answer: (A)

(ii)  Let the numbers a, b and c be x/r, x and xr, respec-
tively. Then 

x
r

x xr

x

x

× × =

=

=

216

216

6

3

Also,

x
r

x x xr xr
x
r

x
r

r

r r
r

æ
èç

ö
ø÷

+ + æ
èç

ö
ø÷

=

+ +æ
èç

ö
ø÷

=

+ +
=

( ) ( ) 156

1
1 156

1

2

2 1156 156

36

13

3

3 10 3 0

2

2

x

r r

= =

- + =



( )( )3 1 3 0

1
3

r r

r

- - =

=
3

or

The numbers are in descending order. Therefore 
r = 1/3.

 Answer: (D)

(iii) Let a = x/r, b = x and c = xr. Then 

 x
r

r
1

1 14+ +æ
èç

ö
ø÷

=  (5.60)

Also, given that (x/r) + 1, x + 1 and xr - 1 are in AP.  
Therefore

 

x
r

xr x

x
r

r

+æ
èç

ö
ø÷

+ - = +

+
-

æ
èç

ö
ø÷

=

1 1 2 1

1
2 2

2

( ) ( )

 (5.61)

From Eqs. (5.60) and (5.61),

r r
r r

r r

r r

r r

r

2

2

2

2

1

2 1

14

2
7

6 15 6 0

2 5 2 0

2 1 2 0

1

2

+ +
- +

= =

- + =

- + =

- - =

=

( )( )

orr 2

Then

r x

a b c

= =

= = =

1

2
4

8 4 2

and

, ,

The sum to infinity is

s¥ =
-

=
8

1 1 2
16

( / )

 Answer: (B)

4.  Passage: Let x and y be real numbers such that x, 
x + 2y and 2x + y are in AP and ( y + 1)2, xy + 5 and 

( x + 1)2 are in GP. With this information, answer the 

following three questions.

 (i) The common difference of the AP is

(A) 2 (B) 3 (C) 4 (D) 3/2

 (ii) The common ratio of the GP is

(A) 2 (B) 1/2 (C) 3 (D) 1/3

 (iii)  The sum of four AM’s between x and y and 
product of four GMs between x and y is

(A) 4 4 3+

(B) 4 2 3( )+

(C) 8 1 3( )+

(D) 17

Solution:

(i) Since x, x + 2y and 2x + y are in AP, we have

x x y x y

x y

+ + = +

=

( ) ( )2 2 2

3

Again, since ( y + 1)2,  xy + 5 and (x + 1)2 are in GP, 
we have

( ) ( ) ( )x y xy+ + = +1 1 52 2 2

By substituting x = 3y in this, we get that

( ) ( ) ( ) ( )

( )[ (

3 5 3 1 1 3 4 1

3 5 3 4 1 3 5

2 2 2 2 2 2

2 2 2

y y y y y

y y y y

+ = + + = + +

+ + + + + - 33 4 1 0

6 4 6 4 4 0

3 2 3 1 0

2

2

2

y y

y y y

y y y

+ + =

+ + - + =

+ + - =

)]

( )( )

( )( )

Now 3y2 + 2y + 3 = 0 has no real roots and hence 

y = 1 and x = 3y = 3. Therefore, the AP is 3, 5 

and 7.  The common difference is 2.

 Answer: (A)

(ii) We have

( )

( )

y

xy

x

+ =

+ = + =

+ = =

1 2

5 3 5 8

1 4 16

2 2

2 2

 

Therefore the common ratio is 2.

 Answer: (A)

(iii)  We have x = 3 and y = 1. The sum of four AM’s 
between 3 and 1 is

4
3 1

2
8

( )+
=

The product of four GMs between 3 and 1 is 

( ) .3 94 =  Therefore the required sum is 8 + 9 = 17.

 Answer: (D)
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In each of the following, two statements, I and II, are 
given and one of the following four alternatives has to 
be chosen.

(A)  Both I and II are correct and II is a correct  reasoning 
for I.

(B)  Both I and II are correct but II is not a correct 
 reasoning for I.

(C) I is true, but II is not true.

(D) I is not true, but II is true.

1.  Statement I: If log a, log b, log c are in AP and log a - 
log , log log , log log2 2 3 3b b c c a- -  are also in AP, then 
a, b, c form the sides of a triangle.

   Statement II: Three positive real numbers form the 
sides of a triangle, if the sum of any two of them is 
greater than the third. 

Solution: Clearly a, b, c are positive and 

 log log loga c b b ac+ = Þ =2 2  (5.62)

Also

(log log ) (log log ) (log log )

log log (log

a b c a b c

c b

- + - = -

- =

2 3 2 2 3

3 2 2 2bb c

c b

b c

-

- =

=

log )

(log log )

3

3 3 2 0

2 3 (5.63)

From Eqs. (5.62) and (5.63) we get

a
c

b
c

= =
9

4

3

2
,

Now

a b
c

c

b c
c

c
c a

a

c a c
c c c

b

+ = >

+ = + = = æ
èç

ö
ø÷

>

+ = + = > =

15

4

3

2

5

2

5

2

4

9

9

4

13

4

3

2

Therefore a, b, c form the sides of a triangle. In other words, 
Statements I and II are true and II is a correct reason for I.

 Answer: (A)

2.  Statement I: Let a a a a1 2 3 24, , , ,…  be in AP. If a1 + a5 + 
a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + 	 + a24 is 
equal to 800.

   Statement II: a a a a a a5 20 10 15 1 24+ = + = + .

Solution: Let d be the common difference. Then

a a a d a d a d a a

a a a d a d

5 20 1 24

10 15

4 19 2 23

9 14

+ = + + + = + = +

+ = + + + =

( ) ( )

( ) ( ) 22 23 1 24a d a a+ = +

Therefore Statement II is true. Also

225 3

75

1 5 10 15 20 24 1 24

1 24

= + + + + + = +

+ =

a a a a a a a a

a a

( )

Hence

a a ak
k=
å = + = ´ =

1

24

1 24

24

2
12 75 900( )

Therefore Statement I is false.

 Answer: (D)

3.  Statement I: If a, b, c, are real numbers satisfying the 
relation 25(9a2 + b2) + 9c2 - 15(5ab + bc + 3ca) = 0, then 
a, b, c are in AP.

   Statement II: If x, y, z are any real numbers such that 
x y z xy yz zx2 2 2 0+ + - - - = , then x = y = z.

Solution: We have

x y z xy yz zx

x y y z z x

x y z

2 2 2

2 2 2

0

1

2
0

+ + - - - =

Û - + - + - =

Û = =

[( ) ( ) ( ) ]

Therefore, Statement II is true. For Statement I, take 
x = 15a, y = 5b and z = 3c so that

x y z xy yz zx

x y z

a b c

b a c a

2 2 2 0

15 5 3

3 5

+ + - - - =

Þ = =

Þ = =

Þ = =and

Therefore, a, b, c are in AP.

 Answer: (A)

4.  Statement I: A ball is dropped from a height of 8 feet. 
Each time the ball hits the ground, it rebounds half 
the height. The total distance travelled by the ball 
when it comes to rest is 16 feet.

    Statement II: Sum to infinity of GP with common 
ratio r r| | <( )1  and first term a is a /(1 – r).

Solution: Statement II is clearly true. But the distance 
travelled by the ball follows an infinite GP after hitting the 
ground. Therefore, distance travelled by the ball equals

Assertion–Reasoning Type Questions



8 2 4 2 1
1

2

1

4
8 2

4

1 1 2

8 16 24

+ + + + + +é
ëê

ù
ûú

= +
-

æ
èç

ö
ø÷

= + =

	
( / )

feet

I is false and II is correct.

 Answer: (D)

5.  Statement I: The sum to infinity of the series  1(0.1) + 
3(0.01) + 5(0.001) + 	 29/81.

    Statement II: Sum to infinity of AGP a + (a + d)r + 
(a + 2d)r2 + 	  is

a
r

dr
r

r
1 1

1
2-

+
-

<
( )

| |when  

Solution: The series given in Statement I is an AGP 
with a d r= = =1 10 2 1 10/ , / .and  Therefore the sum to 
infinity is given by

a
r

dr
r1 1 2-

+
-( )

Substituting the values we get

1 10

1 1 10

2 1 10

1 1 10

1

9

20

81

29

812

/

( / )

( / )

[ ( / )]-
+

-
= + =

Statements I and II are both correct and II is the correct 
explanation for I.

 Answer: (A)

6.  Statement I: In a GP, if the common ratio is positive 
and less than 1/2 and the first term is positive, then 
each term of the GP is greater than sum to infinity of 
all the terms of the GP that follow it.

   Statement II: If the common ratio r of a GP is such 
that -1 1< <r  and the first term is a, then the sum to 
infinity of the GP is

a
r1 -

Solution: Statement II is clearly correct. Let the GP be 

a ar ar ar r, , , , / .2 3 0 1 2… and < <  The nth term is arn-1 (= tn, 
say). Now,

ar ar ar ar r r
ar

r
n n n n

n

+ + + = + + + =
-

+ +1 2 21
1

	 	( )

Therefore

t t t ar
ar

r

ar r ar

n n n
n

n

n n

> + + ¥ Û >
-

Û - >

+ +
-

+

- +

1 2

1
1

1 1

1

1

	

( )

Û1-r > r2 

which is true because 0 < r < 1/2. Therefore both 
Statements I and II are true and II is a correct explana-
tion of I.

 Answer: (A)

7.  Statement I: In a GP, the sum of the first n terms is 
255, the nth term is 128 and the common ratio is 2. 
Then the value of n is 8.

   Statement II: The sum of the first n terms of a GP 
whose first term is a and common ratio r is 

a r
r

n( )1

1

-
-

Solution: The nth term is ar rn- = =1 128 2and . Therefore

a n× =-2 1281

Now

255
1

1 1

256

1 2

1

=
-
-

=
-
-

=
-
-

=

a r
r

a ar
r

a

a

n n( )

Also, 

ar

n n

n

n

-

-

=

=

- = =

1

1

128

2 128

1 7 8or

 Answer: (A)

8.  Statement I: ABC is an equilateral triangle with side 24. 
D A1B1C1 is formed from D ABC joining the midpoints 
of its sides. Again D A2B2C2  is formed by joining the 
midpoints of the sides of D A1B1C1. The process is con-
tinued infinitely. Then the sum of the perimeters of all 
the triangles including D ABC is 144.

   Statement II: The area of an equilateral triangle of 
side ‘a’ units is ( / )3 4 2a  square units.

Solution: Sum to infinity of the perimeters is given by

3 3
2

3
22

a
a a

+ æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

+ 	  

Substituting a = 24 we get

3 1
1

2

1

2
3 24

1

1 1 2
144

2
a + + +æ

èç
ö
ø÷

= ´ ´
-

=	
( / )

Therefore Statements I and II are correct. However, 
Statement II is not the correct explanation for I.

 Answer: (B)
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9.  Statement I: If a, b, c and x are real and (a2  + b2) x2 -
2 02 2b a c x b c( ) ( ) ,+ + + =  then a, b, c are in GP with x 
as common ratio.

   Statement II: For any real numbers p and q, p2 + q2  = 0
Û = =p q0 .

Solution: The given equation can be written as

( ) ( )

( ) ( )

a x abx b b x bcx c

ax b bx c

ax b b

2 2 2 2 2 2

2 2

2 2 0

0

0

- + + - + =

- + - =

- = and xx c- = 0

Solving for x we get

x
b
a

c
b

= =

Therefore a, b, c are in GP with common ratio x.

 Answer: (A)

10.  Statement I: If a, b, c are, respectively, the pth, qth, rth 
terms of an HP, then (q - r)bc + (r - p)ca + (p - q) ab =
( p + q + r)abc.

Statement II: The nth term of an HP is of the form

1

1a n d+ -( )

Solution: Since a is the pth term of an HP, let 

a
a p d

=
+ -

1

11 ( )

Therefore

1
11a

a p d= + -( )

Similarly,

1
11b

a q d= + -( )

1
11c

a r d= + -( )

Now

1 1

c b
r q d- = -( )

Therefore

b c q r bcd- = - -( )

Similarly,

c a r p cad- = - -( )

a b p q abd- = - -( )

Hence

- å - = å - =

å - =

d bc q r b c

bc q r

( ) ( )

( )

0

0

Statement II is correct and I is false.

 Answer: (D)

11.  Statement I: If 

H
nn = + + + +1

1

2

1

3

1
	

then

H n
n

nn = - + + + +
-æ

èç
ö
ø÷

1

2

2

3

3

4

1
	

Statement II: If K > 1 is an integer, then 

1 1
1

K
K

K
+

-
=

Solution: Hn can be written as

H
n

n

n

n = + -æ
èç

ö
ø÷

+ -æ
èç

ö
ø÷

+ -æ
èç

ö
ø÷

+ + -
-æ

èç
ö
ø÷

= - +

1 1
1

2
1

2

3
1

3

4
1

1

1

2

	

22

3

3

4

1
+ + +

-æ
èç

ö
ø÷

	
n

n

Both Statements I and II are correct and II is a correct 
explanation of I.

 Answer: (A)

12.  Statement I: If a, b, c are in AP and b, c, d are in HP, 
then a : b = c : d.

Statement II: AM of x and y is ( )/x y+ 2  and HM of 
x and y is 2xy/(x  +  y).

Solution: We have

2
2

b a c c
bd

b d
= + =

+
and

Therefore

c
a c d
b d

bc cd ad cd

bc ad a b c d

=
+
+

+ = +

= =

( )

: :or

Both Statements I and II are correct and II is a correct 
explanation of I.

 Answer: (A)

13.  Statement I: If a, b and c are positive real numbers, then

( )a b c
a b c

+ + + +æ
èç

ö
ø÷

³
1 1 1

9



Statement II: AM of three positive real numbers ≥ 
their GM.

Solution: We have

a b c
abc

a b c
a b c

a b c
a b c

+ +
³

+ +
³ × ×æ

èç
ö
ø÷

+ + + +æ

3

1 1 1

3

1 1 1

1 1 1

1 3

1 3

( )

( )

/

/

èèç
ö
ø÷

³ æ
èç

ö
ø÷

× =( ) /

/

abc
abc

1 3

1 3
1

9 9

Statements I and II are both correct and II is a correct 
explanation for I.

 Answer: (A)

14.  Statement I: If

1 1 1

1 2a a an

, , , ,… …

are in HP, then 

a a a a a a
K

K
a aK K K1

2

2

2

3

2

4

2

2 1

2

2

2

1

2

2

2

2 1
- + - + + - =

-
--	 ( )

Statement II: If x x xn1 2, , , ,… …  are in AP, then x2 -
x1 = x3 - x x x2 4 3= - = 	

Solution: Let 

1 1

1 2a a
, ,…

be in HP.  Then a a1 2, ,…  are in AP, with common differ-
ence, say d. Now, 

d a a a a a a= - = - = - =2 1 3 2 4 3 	

Therefore

a a a a a a d a a

a a d a a

a aK

1

2

2

2

1 2 1 2 1 2

3

2

4

2

3 4

2 1

2

2

- = - + = - +

- = - +

--

( )( ) ( )

( )

KK K Kd a a2

2 1 2= - +-( )

Adding we get

a a a a a a d a a a

d
K

a a

K K K1

2

2

2

3

2

4

2

2 1

2

2

2

1 2 2

1 2

2

2

- + - + + - = - + + +

= - × +

-	 	( )

[ KK

KdK a a

]

( )= - +1 2

Now, a a K dK2 1 2 1= + -( ) . Therefore

d
a a

K
K=

-
-

2 1

2 1

and hence the sum equals

-
-
-

× × + =
-

-
( )

( ) ( )
a a

K
K a a

K
K

a aK
K K

2 1
1 2 1

2

2

2

2 1 2 1

Statements I and II are both correct and II is a correct 
explanation of I.

 Answer: (A)

15.  Statement I: Sum to infinity of the series

3

1

5

2

9

3

15

4

23

5! ! ! ! !
+ + + + + 	

is 4e.

Statement II:  The nth term of the series in Statement I is

n n
n

e
2 3

1
1

1

1

2

1

3

- +
= + + + + ¥

! ! ! !
and 	

Solution: The nth term is

u
n n

n
n n

n n n
nn =

- +
=

- +
=

-
+ ³

2 3 1 3 1

2

3
2

!

( )

! ( )! !
for all  

Therefore

u

e e

n
n=

¥

å = + + + +æ
èç

ö
ø÷

+ + + +æ
èç

ö
ø÷

= + -
2

1
1

1

1

2

1

3
3

1

2

1

3

1

4

3 2

! ! ! ! ! !

(

	 	

)) = -4 6e

The required sum is 3 4 6 4 3.+ =( )e e- -  Statement II is 
correct and I is not correct.

 Answer: (D)

16.  Statement I: 
K

K KK
4 2

1 1

1

2+ +
=

=

¥

å

Statement II: 
K

K K

K K K K

4 2

2 2

1

1
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1

1

1

1

+ +

=
- +

-
+ +

æ
èç

ö
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Solution: Statement II is correct and

K
K K K K K K

s
K K

n n4 2
1 1

2 21

1

2

1

1

1

1+ +
=

- +
-

+ +
é

ë
ê
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û
ú =

=

¥

=

¥

®¥å å lim

where

s
K

K K

n n

n
K

n

=
+ +

= -
+ +

æ
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ö
ø÷

=
å 4 2

1

2

1

1

2
1

1

1

Therefore
lim
n ns®¥

=
1

2
 Answer: (A)
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   SUMMARY

 5.1 Sequence: Let �+ be the set of all positive integers 
and X any set. Then a mapping a : �+ ® X is called 
a sequence in x. For any n Î�+, we prefer to write 
an for the imag a(n) and the sequence is denoted by 
{an}.

 5.2 Finite and infinite sequences: A sequence is said 
to be finite if its range is finite. A sequence which is 
not finite is said to be infinite sequence.

 5.3 Constant and ultimately constant sequences: A sequ-
ence {an} is called a constant sequence if an = am 
for all positive integers n and m. Sequence {an} 
in called ultimately constant, if there is a positive 
integer m such that an is constant for n > m, that is 
am+1 = am+2 = am+3 = 	

 5.4 Series:  If {an} is a sequence of real or complex numbers, 
then an expression of the form a1 + a2 + a3 + 	 is 
called series. If sn is the sum of the first n terms of the 
sequence {an}, then again {sn} is a sequence called nth 
partial sum of the series or simply the sequence of 
partial sums of the series.

 5.5 Limit of a sequence: Let {an} be a sequence of real 
numbers and l a real number. Then l is said to be 
limit of the sequence {an} if, for each positive real 
number Î (epsilon) there exists a positive integer n0 
(depending on Î) such that | an - l | < Î for all n ³ n0.

 5.6  Uniqueness of a limit: If a sequence has a limit, 
then the limit is unique.

 5.7 Notation: If l is the limit of a sequence {an}, then 
we write lim ( )

n n
n

na l a l
®¥ ®¥

= =or lt  and some times we 

write an ® l.

 5.8 Sum of an infinite series: Let {an} be a sequence of real 
numbers and sn = a1 + a2 + 	 + an. If the sequence {sn} 

of partial sums has limit s, then we write a snn
=

=

¥å .
1

 

If {sn} has no finite limit, then the series is said to be 
divergent.

 5.9 Arithmetic progression (AP): A sequence {an} 
of real numbers is called an arithmetic progres-
sion (AP) if an+1 - an is constant for all positive inte-
gers n ³ 1, and this constant number is called the 
common difference of the AP.

5.10 General form of AP: The terms of an AP with first 
term ‘a’ and common difference d are a, a + d, a + 2d, 
a + 3d,  …, and the nth term being a + (n - 1)d.

QUICK LOOK

1.  If {an} is an AP and K is any real number, then 
{an + K} is also an AP with same common difference.

2.  {Kan} is also an AP.

3.  If {an} and {bn} are arithmetic progressions, then 
{an + bn} is also an AP.

5.11 Product of two AP’s: Product of two arithmetic 
progressions is also an AP if and only if one of 
them must be a constant sequence.

5.12 Arithmetic mean (AM): If three real numbers 
a, b, c are in AP, then b is called AM between a 
and c and in this case 2b = a + c.

5.13 Arithmetic means (AM’s): If a, A1, A2, … An and b 
are in AP, the A1, A2, … An are called n AM’s 
between a and b.

5.14 Formula for n AM’s between a and b: If A1, 
A2,  … An are n AM’s between a and b, then the Kth 
mean AK is given by

A a K
b a
n

K nK = + -
+

( )

1
for 1, 2, ,= …

5.15 Sum to first n terms of an AP: Let sn be the sum 
to first n terms of an AP with first term ‘a’ and 
common difference ‘d’.  Then

s
n

a n d s
n

nn n= + - =
2

2 1
2

[ ( ) ] [ ]or first term + th term

QUICK LOOK

If A1, A2, …, An are n AM’s between a and b then

A A A
n a b

n1 2
2

+ + + = +
	

( )

5.16 Ratio of nth terms of two AP’s: Let tn be the nth term 
of an AP whose first term is a and common differ-
ence d and sn is its sum to first n terms. Let tn¢ be the 
nth term of another AP with first term b and common 
difference e whose sum to first n terms is sn¢ . Then

t

t

s

s
n

n

n

n¢
=

¢
-

-

2 1

2 1

5.17 Characterization of an AP: A sequence of real 
numbers is an arithmetic progression if and only if 
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its sum of the first n terms is a quadratic expression 
in n with constant term zero.

5.18 Helping points:

(1)  Three numbers in AP can be taken as a - d, a, 
a + d.

(2)  Four numbers in AP can be taken as a - 3d, 
a - d, a + d, a + 3d.

(3)  Five numbers in AP can be taken as a - 2d, 
a - d, a, a + d, a + 2d.

5.19 Geometric progression (GP): A sequence {an} of 
non-zero real numbers is called GP if an/an-1 = an+1/
an for n ³ 2. That is the ratio an+1/an is constant for 
n ³ 1 and this constant ratio is called the common 
ratio of the GP and is generally denoted by r.

5.20 General form: GP with first term a and common 
ratio r can be expressed as a, ar, ar2, … whose nth 
term is arn-1.

QUICK LOOK

1.  If three numbers are in GP, then they can be taken 
as a/r, a, ar.

2.  If four numbers are in GP, then they can be taken 
as a/r2, a/r, ar, ar2.

5.21 Sum to first n-terms of a GP: The sum of the first 
n-terms of a GP with first term ‘a’ and common 
ratio r ¹ 1 is

a r
r

n( )1

1

-
-

5.22 Sum to infinity of a GP: If -1 < r < l is the common 
ratio of a GP whose first term is a, then a/1 - r is 
called sum to infinity of the GP.

5.23 Geometric mean and geometric means: If three 
numbers a, b and c are in GP, then b is called 
the Geometric mean (GM) between a and c and 
b2 = ac. If x and y are positive real numbers, then x, 

xy , y are in GP.
 If a, g1, g2, … gn, b are in GP, then g1, g2, …, gn are 
called n geometric means between a and b.

5.24 Formula for GM’s: If g1, g2, g3, …, gn are n GM’s 
between a and b, then kth GM gk is given by 
gk = a(b/a)k/n+1 for k = 1, 2, …, n.

5.25 Product of n GM’s: The product of n GM’s between 
a and b is ( ) .ab n

5.26 Arithmetic geometric progression (AGP):  Sequence 
of numbers of the form a, (a + d)r, (a + 2d)r2, + 	 is 
called AGP and sum to n terms of an AGP is

a
r

dr r
r

a n d r
r

n n

1

1

1

1

1

1

2-
+ -

-
- + -

-

-( )

( )

( ( ) )

and 
a

r
dr

r1 1 2-
+

-( )
 

 is the sum to infinity.

5.27 AM–GM inequality: Let a1, a2, …, an be positive 
reals. Then

a a a
n

n1 2+ + +	

 is called AM of a1, a2, …, an  and (a1 a2 	 an)
1/n

  is 
called their GM. Further

a a a

n
a a an

n
n1 2

1 2

1+ + +
³

	
( ) /	

 and equality holds if and only if a1 = a2 = a3 = 	 = an.

5.28 Harmonic progression (HP): A sequence of non-zero 
reals is said to be in HP, if their reciprocals are in AP.

5.29 General form of an HP: Sequence of real numbers 

1 1 1

2

1

1a a d a d a n d
, , ,

( )
,

+ + +
	 	

-

 can be taken as general form of an HP.

5.30 Harmonic mean and Harmonic means:

(1)  If a, b, c are in HP, then b is called the Harmonic 
mean (HM) between a and c and in this case 
b = 2ac/a + c.

(2)  If a, h1, h2, …, hn, b are in HP then h1, h2, …, hn 
are called n HM’s between a and b and further

h
ab n

b n K a b
K nK = +

+ + -
( )

( ) ( )

1

1
for 1, 2, ,= …

5.31 Theorem: Let a1, a2, …, an be positive reals and A, G 
be AM and GM of the given numbers. Let

H
n

a a an

=
+ + +1 1 11 2/ / /	

 which is called harmonic mean of a1, a2, …, an. 
Then A ³ G ³ H and equality holds if and only if 
a1 = a2 = a3 = 	 = an.
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1.  If a, b and c are in AP, then ( )a c- 2  is equal to

(A) 2 2( )b ac-   (B) 4 2b ac-
(C) b ac2 4-   (D) 4 2( )b ac-

2.  Let a a a1 2 3, , ,… be an AP. If a a a3 7 37 3 2= = +and ,  
then the common difference is

(A) 1 (B) 4 (C) –1 (D) – 4

3.  Let a and b be positive real numbers. Then the sum of 
the first 10 terms of the series

log log log loga
a
b

a
b

a
b

+
æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

+
2 3

2

4

3
	

is

(A) 5 11 9( log log )a b-  (B) 5 10 9( log log )a b-

(C) 10 11 9( log log )a b-  (D) 50 log
a
b

æ
èç

ö
ø÷

4.  The fourth power of the common difference of an 
 arithmetic progression with integer entries is added to 
the product of any four consecutive terms of it. Then 
the resultant is

(A) (perfect square of an integer) + 1
(B) cube of an integer

(C) perfect square of an integer

(D) (cube of an integer) + 1

5.  If 

log , log ( ), log3 3 32 2 5 2
7

2

x x- -æ
èç

ö
ø÷

 are AP , then the value of x is

(A) 2 (B) 3 (C) 4 (D) 2 or 3

6.  Let a and b be two positive integers and 

a b
x ab y x y

+
= = + =

2
2 272, and

Then the numbers a and b are

(A) 6, 3 (B) 5, 10 (C) 6, 10 (D) 6, 12

7.  Let a1, a2, a3,  … be an arithmetic progression of 
 positive real numbers. Then

1 1 1

1 2 2 3 1a a a a a an n+
+

+
+ +

+
=

-

	

(A) 
n

a an

+
+

1

1

 (B) 
n

a an

-
+

1

1

(C) 
n

a an1 +
 (D) 

n

a an - 1

 8.  Let a and b be positive real numbers such that a > b 

and a b ab+ = 4 . Then a :  b is equal to

(A) 2 3 2 3+ -:  (B) 3 2 3 2+ -:

(C) 4 3 4 3+ -:  (D) 3 : 2

 9.  The sum of the first n terms of two sequences in AP 
are in the ratio (3n – 13) : (5n + 21). Then the ratio of 
their 24th terms is

(A) 2 : 3 (B) 3 : 2 (C) 1 : 2 (D) 3   : 4

10.  In an AP , the first term, the (n - 1)th term and the 
nth term are a, b and c, respectively. Then the sum of 
the first n terms is

(A) 
( )( )

( )

a b c a b
b c

+ + +
-

2

2
 (B) 

( )( )

( )

a b c a b
b c

+ - +
-

2

2

(C) 
( )( )

( )

a b c a c
c b

+ + +
-

2

2
 (D) 

( )( )

( )

2

2

c a b a c
c b

- - +
-

11.  In an AP , if the mth term is 1/n and the nth term is 
1/m, then the (mn)th term is

(A) 
mn mn

mn
( )+

-
1

1  (B) 
mn mn

mn
( )-

+
1

1

(C) 
mn m n

m n
( )+

-  (D)  independent of m 
and n

12.  The sums of the first n, 2n and 3n terms of an AP are 
s1, s2 and s3, respectively. Then s3 is equal to

(A) 2(s2 - s1)  (B) 3(s2 - s1)

(C) 4(s2 - s1)  (D) 2s1s2

13.  The ages of boys in a certain class of a school follow 
an AP with the common difference 4 months. If the 
youngest boy is of 8 years and the sum of the ages of 
all the boys in the class is 168 years, then the number 
of boys in the class is

(A) 16 (B) 17 (C) 18 (D) 19

14.  Let sn be the first n terms of an AP with first term a 
and common difference d. If skn/sn is independent of n, 
then

(A) Kn = 6 (B) d = 2a

(C) a = 2d (D) Kn = 8

15.  If the sum of the first m terms of an AP is equal to 
the sum of either the next n terms or to the next p 
terms, then

(A) ( ) ( )m n
m p

m p
m n

+ -
æ
èç

ö
ø÷

= + -æ
èç

ö
ø÷

1 1 1 1

   EXERCISES

Single Correct Choice Type Questions
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(B) ( ) ( )m n
m p

m p
m n

+ +
æ
èç

ö
ø÷

= + +æ
èç

ö
ø÷

1 1 1 1

(C) ( ) ( )m n
m p

m p
m n

- -
æ
èç

ö
ø÷

= - -æ
èç

ö
ø÷

1 1 1 1

(D) ( ) ( )m n
m p

m p
m n

- +
æ
èç

ö
ø÷

= - +æ
èç

ö
ø÷

1 1 1 1

16.  Suppose a, b, c are in AP and a2, b2, c2 are in GP. If 
a < b < c  and a + b + c = 3/2, then the value of a is

(A) 1 2 2/   (B) 1 2 3/

(C) ( / ) ( / )1 2 1 3-  (D) ( / ) ( / )1 2 1 2-

17.  The sum of an infinite geometric series is 162 and 
the sum of its first n terms is 160. The inverse of the 
common ratio is a positive integer. Then a possible 
value of the common ratio is

(A) -1/3 (B) 1/3 (C) 1/2 (D) -1/2

18.  Suppose that a, b, c are in GP and a x = b y = c z. Then

(A) x, y, z are in GP (B) x, y, z are in AP

(C) x, y, z are in HP (D) xy, yz, zx are in HP

19.  The distances passed over by a pendulum bob in 
 successive swings are 16, 12, 9, 6.75, …  . Then the 
total distance traversed by the bob before it comes 
to rest is

(A) 60 (B) 64 (C) 65 (D) 67

20.   x1, x2, x3,  … is an infinite sequence of positive inte-
gers in the ascending order are in GP such that 
x1×x2×x3×x4 = 64. Then x5 is equal to

(A) 4 (B) 64 (C) 128 (D) 16

21.  If sn = 1 + 2 + 3 + 	 + n and Sn = 13 + 23 + 33 + 	 + n3, 
then 

(A) Sn = 2sn  (B) Sn = s2
n

(C) 2Sn = 3s2
n  (D) 2Sn = s2

n

22.  If x = 1 + 3a + 6a2 + 10a3 + 	 ¥ and y = 1 + 4b + 
10b2 + 20b3 + 	 ¥ where -1 < a, b < 1, then 1 + 3ab +  
5(ab)2 + 	 + ¥ is ( )/( ) ,1 1 2+ -ab ab  where

(A) a
x

x
b

y
y

=
-

=
-1 3

1 3

1 4

1 4

1 1/

/

/

/
,

(B) a
x

x
b

y
y

= + = +1 3

1 3

1 3

1 3

1 1/

/

/

/
,

(C) a
x

x
b

y
y

=
+

=
+1 3

1 3

1 4

1 4

1 1/

/

/

/
,

(D) a
xy

xy
=

-( )

( )

/

/

1 12

1 12

1

23.  Let a and b be distinct positive real numbers. If a, 
A1, A2, … A bn2 1- ,  are in AP; a G G G bn, , , , ,1 2 2 1… -  are 
in GP and a H H H bn, , , , ,1 2 2 1… -  are in HP, then the 

roots of the equation A x G x Hn n n
2 0- + =  are

(A) real and unequal (B) real and equal

(C) imaginary (D) rational

24.  If Sr denotes the sum of the first r terms of a GP, then 
Sn,  S2n - Sn and S3n - S2n are in

(A) AP (B) GP (C) HP (D) AGP

25.  Let a be the first term and r the common ratio of a 
GP. If A and H are the AM and HM of the first n 
terms of the GP, then the product A × H  is equal to

(A) a2r n-1 (B) ar n (C) a2r n (D) a2r 2n

26.  In a GP of alternately positive and negative terms, 
any term is the AM of the next two terms. Then the 
common ratio (¹ -1) is
(A) -1/3 (B) -3 (C) -2 (D) -1/2

27.  If x, y and z are positive real numbers, then

x
y

y
z

z
x

+ +

belongs to the interval

(A) [2, +¥)  (B) [3, +¥)
(C) (3, +¥)  (D) (-¥, 3)

28.  a, b, c be positive numbers in AP. Let A1 and G1 be 
AM and GM, respectively, between a and b, while 
A2 and G2 are AM and GM, respectively, between b 
and c. Then

(A) A A G G1

2

2

2

1

2

2

2+ = +  (B) A A G G1 2 1 2=
(C) A A G G1

2

2

2

1

2

2

2- = -  (D) A G A G1 2 2 1=

29.  Let a, b, c be positive and

P a b ab ac a c= + - -2 2 2 2

Q b c bc a b ab= + - -2 2 2 2

and R c a ca b c bc= + - -2 2 2 2

If the quadratic equation Px Qx R2 0+ + =  has equal 
roots, then a, b and c are in

(A) AP (B) GP (C) HP (D) AGP

30.  If a a an1 2, , ,…  are in HP and 

a1a2 + a2a3 + a3a4 + 	 + an–1 an  = Ka1an

 then K is equal to

(A) n (B) n – 1 (C) n + 1 (D) n + 2
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31.  If H H Hn1 2, , ,…  are n HMs between a and b, then

H a
H a

H b

H b
n

n

1

1

+
-

+
+
-

 is equal to

(A) n/2 (B) n (C) 3n (D) 2n

32.  If S1, S2, S3 are sums of the first n terms of three APs 
whose first terms are unity and their common differ-
ences are in HP, then

2

2
3 1 1 2 2 3

1 2 3

S S S S S S

S S S

-
- +

=
-

( )

(A) n (B) 2n (C) 2(n - 1) (D) 3n

33.  If H1, H2, ¼, Hn are n HMs between a and b and n is a 
root of the equation (1 - ab) x2 - (a2 + b2) x - (1 + ab) = 
0, then H1 - Hn is equal to

(A) ab(a - b)  (B) ab(a + b) 

(C) ab(a + b)2
  (D) a2b2(a + b) 

34.  Sum to first n terms of the series

1 2 1
1

3 1
1

4 1
1

2 3

+ +æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

+ +æ
èç

ö
ø÷

+
n n n

	
is

(A) n2 + 1 (B) (n - 1)2 (C) n2 (D) (n + 1)2

35.  If a, b, c and d are positive such that a b c d+ + + = 2, 
then M a b c d= + +( )( )satisfies

(A) 0 1< £M  (B) 1 2£ £M

(C) 2 3£ £M  (D) 3 4£ £M

36.  Sum to first n terms of the series 1(1!) + 2(2!) + 3(3!) + 
4(4!)  + 	 is

(A) n! + 1  (B) ( )!n + +1 1

(C) ( )!n + 1   (D) ( )!n + -1 1

37.  Sum to infinity of the series

1

1 1 2

1

1 2 1 3

1

1 3 1 4

( )( ) ( )( )

( )( )

+ +
+

+ +

+
+ +

+ ¥

x x x x

x x
	

where x ¹ 0 is

(A) 1/x  (B) 1/x + 1
(C) 1/x(1 + x)  (D) 1/(x + 1)2

38.  Sum to n terms of the series 8 + 4 + 2 + 8 + 28 + 68 +
154 + 	 is

(A) 
n

n n n
12

3 14 3 1003 2[ ]- - +

(B) 
n

n n n
12

3 14 3 1103 2[ ]- - +

(C) 
n

n n
2

2

12
3 14 110[ ]- +

(D) 
n

n n n
12

3 14 3 1003 2[ ]+ - +

39.  Sum to n terms of the series 6 3 2 3 6 11+ + + + + + 	 
is

(A) 
n

n n
6

2 15 492( )- +  (B) 
n

n n
6

15 492( )+ +

(C) 
n

n n
6

2 10 492( )- +  (D) 
n

n n
6

2 10 492( )+ +

40.  Sum to n terms of the series 7 + 10 + 14 + 20 + 30 + 
48 + 82  +  	 is

(A) 2 51 2n n n- + +  (B) 2 5 12n n n+ + -
(C) 2 5 11 2n n n- + + -  (D) 2 5 12n n n+ + +

41.  Given that a b, , ,a b  are in AP; a b, , ,c d  are in GP 
and a b, , ,e f  are in HP. If b d f, ,  are in GP, then

 
b a

ab b a

6 6

4 4

-
-

=
( )

(A) 2/3 (B) 3/2 (C) 4/3 (D) 3/4

42.  The sum of first 10 terms of an AP is 155, and the 
sum of the first 2 terms of a GP is 9. If the first term 
of the AP is equal to the common ratio of GP and 
the first term of the GP is equal to the common dif-
ference of AP, then the sum of the common differ-
ence of AP and the common ratio of GP maybe

(A) 8 (B) 5 (C) 4 (D) 16

43.  The sum of an infinite GP is 2 and the sum of their 
cubes is 24. Then, values of the first term and the 
common ratio are, respectively,

(A) 3, -1/2  (B) -3, -1/2
(C) 2, -1/3  (D) -2, 1/3 

44.  Let sn represent the sum of the first n terms of a 
GP with first term a and common ratio r. Then 
s1 + s2 + s3 + 	 + sn  is equal to

(A) 
na

r
ar r

r

n

1

1

1 2-
-

-
-

( )

( )
 (B) 

na
r

ar r
r

n

1

1

1 2-
-

-
-

( )

(C) 
na

r
ar r

r

n

1

1

1 2-
+

-
-

( )

( )
 (D) 

na
r

ar r
r

n

1

1

1 2-
+

-
-

( )

45.  In a GP, the (m + n)th term is p and (m - n)th term 
(m > n) is q. Then the mth term is

(A) pq  (B) ( ) /pq n m

(C) pq   (D) ( )( )/( )pq m n m n+ -

46.  The sides of a right-angled triangle are in GP. If A 
and C are acute angles of the given triangle, then the 
values of  tan A and  tan C are
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(A) 
5 1

2

5 1

2

+ -
,  (B) 

5 1

2

5 1

2

+ -
,

(C) 5
1

5
,  (D) 

3 1

2

3 1

2

+ -
,

47.  The length of the side of a square is ‘a’ units. A second 
square is formed by joining the midpoints of the sides. 

A third square is formed by joining the midpoints of 
the sides of the second square and this process is con-
tinued so on. Then the sum of the areas of all these 
squares is

(A) a2 2  (B) 2 2a  (C) 3/2a2 (D) 4a2

Multiple Correct Choice Type Questions

1.  Let sn and sn¢ be sums of first n terms of two AP’s with 
first terms a and b and common differences d and e 
respectively. If 

s
s

a n d
b

b n e
a

n

n¢
= + - = + - =2

1 1
4and

( ) ( )

then

(A) 
d
e

= 26   (B) 
a n d
b n e

+ -
+ -

=( )

( )

1

1

7

2

(C) 
d
e

= 2

7
  (D) 

a n d
b n e

+ -
+ -

=( )

( )

1

1
2

2.  The ratio of sums to first n terms of two AP’s is (7n + 1) : 
(4n + 27). Then

(A) the ratio of their nth terms is (14n - 6) : (8n + 23)

(B) the ratio of their mth terms is (14m + 6) : (8m + 23) 

(C) the ratio of their first terms is 8 : 31

(D) the ratio of the first terms is 20 : 31

3.  If the mth term of an AP is 1/n and the nth term is 1/m, 
then

(A) the first term is 1/mn

(B) common differences 1/mn

(C) (mn)th term is 1

(D) sum to mn terms is (mn + 1)/2

4.  Three numbers form an AP. The sum of the three 
terms is 3 and the sum of their cubes is 4. Then

(A) common difference is ±1 6/

(B) common difference is 1/6

(C) product of the numbers is 5/6

(D) product of the numbers is 6

5.  Let 1, a1, a2, a3, a4, a5 and 0.3 be in AP.  Then

(A) the common difference is 7/60

(B) a3 = 13/20

(C) a1 + a2 + a3 + a4 + a5 = 0.65

(D) a1 = 53/60

 6.  If a, b are the roots of the equation x2 - 4x + g  = 0 
and g, d are the roots of the equation x2 - 64x + m = 0 
and a < b < g < d are n GPs, then

(A) l = 64/25 (B) m = 47/25

(C) l = 8/5  (D) m = 64/25

 7.  The sum of three numbers in GP is 70; if the two 
extreme terms be multiplied each with 4 and the 
middle by 5, the products are in AP. Then possible 
values of the common ratio are

(A) 2 (B) 3 (C) 1/2 (D) 1/3

 8.  The first term of an infinite GP is unity and any term 
is equal to the sum of all the succeeding terms. If the 
common ratio is r, then

(A) r = 1/2

(B) r = 1/3

(C) 1 + r + r2 + 	 + ¥ is 2

(D) 1 + 3r + 5r2 + 7r3 + 	 + ¥ is 6

 9.  If 1 + (x - 1) + (x - 1)2 + (x - 1)3 + 	 + ¥ exists, thus 
x may lie in the interval

(A) 0 < x < 2  (B) 0 < x < 1

(C) -1 < x < 0  (D) -1 < x < -1/2

10.  Let n be a positive integer. If k k
k

n

k

n

= =å å1

2

1
10 3, /  

and k
k

n 3

1=å  are in GP, then

(A) n = 4

(B) n = 5

(C) The sum of the given terms is 10

(D) The common ratio of the GP is 10

11.  If a1, a2, a3,  … are in GP such that

a4 : a6 = 1 : 4 and a2 + a5 = 216

then

(A) common ratio is ± 2
(B) a1 = 12 or 108/7

(C) sum of the first five terms is 200

(D) common ratio is ± 1/2  and a1 = 6 or 7/108



Chapter 5  Progressions, Sequences and Series270

12.  For 0 2 1 6 1< < + +x x x xp /2, if sin and, (sin ) (sin ) 
are in GP, then

(A) common ratio is 1/2 (B) first term is 1/2

(C) common ratio is 3 2  (D) fifth term is 162

13.  For 0 < q < p/2, let

x y zn

n

n

n

n

n

n= = =
=

¥

=

¥

=

¥

å å åcos sin and cos sin2

0

2

0

2

0

2q q q q,

then

(A) xyz = xz + y (B) xyz = xy + y

(C) xyz = x + y + z (D) xyz = yz + x 

14.  x, y, z are greater than 1 and are in GP. Let

a
x

b
y

c
z

=
+

=
+

=
+

1

1

1

1

1

1log
,

log log
and

Then

(A) (1 - a)/a, (1 - b)/b, (1 - c)/c are in AP

(B) a, b, c are in GP

(C) 1/a, 1/b, 1/c are in AP

(D) b = (2ac)/(a + c)

15.  Let a, x, b be in AP; a, y, b in GP and a, z, b in HP 
where a and b are distinct positive real numbers. If 
x = y + 2 and a = 5z, then

(A) y2 = zx  (B) x > y > z

(C) a = 9, b = 1 (D) a = 1/4, b - 9/4 

16.  Let a, b, c, be three real numbers. Then

(A) a, b, c are in AP if (a - b)/(b - c) = 1

(B) a, b, c are in GP if (a - b)/(b - c) = a/b

(C) a, b, c are in HP if (a - b)/(b - c) = a/c

(D) a, b, c are in HP if (a - b)/(b - c) = c/a

17.  Let a1, a2, a3 and a4 be four positive real numbers. 
Then

(A) a2a3 - a1a4 > 0 if a1, a2, a3, a4 are in AP

(B) a2a3 - a1a4 = 0 if a1, a2, a3, a4 are in GP

(C) a2a3 - a1a4 < 0 if a1, a2, a3, a4 are in HP

(D)  a1, a2, a3 and a4 are positive numbers not all equal, 
then

1

4

4

1 1 1 1

1 2 3 4 1 2 3 4

1 4

1 2 3 4

( ) ( )

( / ) ( / ) ( / ) ( / )

/a a a a a a a a

a a a a

+ + + >

>
+ + +

18.  If a, x, y, z, b are in AP, then the value of x + y + z is 
15, when a, x, y, z, b are in HP, then

1 1 1 5

3x y z
+ + =

In such case

(A) a = 1, b = 9 (B) a = 2, b = 3

(C) a = 9, b = 1 (D) a = 3, b = 2 

19.  If a, b, c are in AP and a2, b2, c2 are in HP, then which 
of the following is true?

(A) a = b = c  (B) -a/2, b, c are in GP

(C) a, b, -c/2 are in GP (D) a/2, b, c are in HP

20.  Assume d is the GM between ca and ab, e is the GM 
between ab and bc and f is the GM between bc and 
ca. If a, b, c are in AP, then

(A) d2, e2, f  2 are in AP

(B) d2, e2, f  2 are in GP

(C) e + f, f + d, d + e are in GP

(D) e + f, f + d, d + e are in HP

21.  If a, b, c are in HP; b, c, d are in GP and c, d, e are in 
AP, then

(A) a, c, e are in GP (B) a, d, e are in GP

(C) b, c, e are in GP (D) e = (ab2)/(2a - b)2

22.  If a, b, c and d are distinct positive real numbers and 
are in HP, then

(A) ad < bc  (B) ad > bd

(C) (a + d) > (b + c) (D) (a + d) < (b + c) 

23.  Let sn and s¥ be, respectively, sum to n terms and sum 
to infinity of the series

1 2

3

2 2

4

3 2

5

4 2

6

2 3 4×
+

×
+

×
+

×
+

! ! ! !
	

Then

(A) the nth term is n × 2n/(n + 2)!

(B) sn = 1 - 2n+1/(n + 2)!

(C) sn = 1/2 - 2n/(n + 1)!

(D) s¥ = 1

24.  Let sn be the sum to n terms of the series

3

1 2

1

2

4

2 3

1

2

5

3 4

1

2

2 3

×
æ
èç

ö
ø÷

+
×

æ
èç

ö
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+
×

æ
èç

ö
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+ 	

then

(A) sn = 1 - 1/(n + 1)2n (B) sn = 1/2 - 1/n· 2n

(C) lim
n ns®¥

= 1

2
  (D) lim

n ns®¥
= 1
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Matrix-Match Type Questions
In each of the following questions, statements are given in 
two columns, which have to be matched. The statements in 
Column I are labeled as (A), (B), (C) and (D), while those 
in Column II are labeled as (p), (q), (r), (s) and (t). Any 
given statement in Column I can have correct matching 
with one or more statements in Column II. The appropriate 
bubbles corresponding to the answers to these questions 
have to be darkened as illustrated in the following example.

Example: If the correct matches are (A) ® (p), (s); 
(B) ® (q), (s), (t); (C) ® (r); (D) ® (r), (t); that is if the 
matches are (A) ® (p) and (s); (B) ® (q), (s) and (t); 
(C) ® (r); and (D) ® (r), (t); then the correct darkening 
of bubbles will look as follows:

A

B

C

D

p q r s t

1.  Match the items in Column I with those in Column II.

Column I Column II

(A)  The sum of all integers between 250 
and 1000 which are divisible by 3 is

(p) 3050

(q) 156375

(r) 3550

(s) 83667

(t) 83666

(B)  The sum of all odd numbers 
between 1 and 1000 that are 
divisible by 3 is

(C)  The sum of all integers  
from 1 to 100 which are divisible by 
exactly one of 2 and 5 is

(D)  If 7100 AMs are inserted between 
sin2 q and cos2 q, then their sum is

2.  Match the items of Column I with those of Column II.

Column I Column II

(A)

   
100

1

1 2

1

2 3

1

3 4

1

99 100×
+

×
+

×
+ +

×
æ
èç

ö
ø÷

=	
(p) 7

(q) 9

(r) 99

(s) 100

(t) 2

(B)   If x is the AM between two real 
numbers a and b, y a b= ×2 3 1 3/ /  and 
z a b= ×1 3 2 3/ / ,  then 

y3 + z3/xyz =

(C)   If 198 AMs are inserted between 1/4 
and 3/4, then the sum of these AM’s is

(D)   If n is  a positive integer such that
n n n n n n, [ ( )]/ [ ( )( )]/- - -1 2 1 2 6and

are in AP, then the value of n is

3.  Match the items of Column I with those of Column II.

Column I Column II

(A)  If 1/a(b + c), 1/b(c + a), 1/c(a + b) are 
in HP, then a, b and c are in (p) AP

(q) GP

(r) HP

(s) Not in 
AP/GP/
HP

(B)   If b + c, c + a, a + b are in HP, then 
a / (b + c), b/(c + a), c/(a + b) are in

(C)  If a, b, c are in HP, then (1/a) + (1/bc),
(1/b) + (1/ca), (1/c) + (1/ab) are in

(D)   If a, b, c are in AP, then (bc)/a(b + c), 
(ca)/b(c + a), (ab)/c(a + b)

4.  In Column I some series are given and in Column II 
their nth terms are given. Match them.

Column I Column II

(A)  3/4 + 5/36 + 7/144 + 9/400
 + 	

(p)  3n-1 + n

(B)  2 + 5 + 12 + 31 + 86 + 
249 + 	 

(q)   1/6(n3 + 6n2 + 
11n + 6)

(C)   4 + 10 + 20 + 35 + 56 + 84 + 
120 + 	  

(r)  1/2(n2 - n + 2)

(D)  1 + 2 + 4 + 7 + 11 + 	  (s)  (2n + 1)/n2(n + 1)2 

5.  Match the items of Column I to those of Column II.

Column I Column II

(A)   If a, b, c are positive real numbers 
such that sum of any two is greater 
than the third, then

 
a

b c a+ -å  

is greater than or equal to

(p) 8

(B)   If a, b, c are positive and  a + b + c = 1, 
then the minimum value of (1 + a) 
(1 + b) (1 + c)/(1 - a) (1 - b) (1 - c) = 

(q) 2

(C)   If a, b, c are positive reals then 
the minimum value of  (a + b + c)
(1/a) + (1/b) + (1/c) is K2 where K is (r) 3

(D)   P is a point interior to the DABC. 
The lines AP, BP and CP meet 
the opposite sides in D, E and F, 
respectively. Then, the minimum 
value of

AP/PD + BP/PE + CP/PF = (s) 6
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Comprehension-Type Questions

1.  Passage: The terms 1 15, log , log logy
x

z
y

x
zand -  are in AP. 

Based on this information, answer the following three 
questions.

 (i) The common difference of the AP is

(A) 2 (B) -2 (C) 1/2 (D) -1/2

 (ii) The value of xy is 

(A) 1 (B) -1 (C) z2 (D) z3

 (iii) yz is equal to

(A) x (B) x2 (C) z-2 (D) z-3

2.  Passage: a1, a2, a3,  …, an,  … are in AP with common dif-
ference d. Further sin (A - B) = sin A cos B -  cos A sin B. 
Based on its information, answer the following questions.

 (i)  sec a1 sec a2 + sec a2 sec a3 + 	 + sec an-1 sec an is equal 
to

(A) tan (an+1) - tan a1/sin d

(B) cot (an+1) - cot a1/sin d

(C) tan (an+1) + tan a1/sin d

(D) cot (an+1) + cot a1/sin d

 (ii)  coseca1 coseca2 + coseca2 coseca3 + 	 +  cosecan-1 
cosecan is

(A) cot (an+1) + cot a1/sin d

(B) cot (an+1) - cot a1/sin d 

(C) cot a1 - cot (an+1)/sin d 

(D) tan (an+1) - cot an/sin d

 (iii) If a1 = 0, then

a
a

a
a

a
a

a
a

a
a a a

n

n n

3

2

4

3

5

4 1

2

2 3 2

1 1 1+ + + +
æ
èç

ö
ø÷

- + + +
æ
èç

ö
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=
- -

	 	

(A) an-1/a2 + a2/an-1 (B) an/a2 + a2/an 

(C) a2/an-1 - an-1/a2 (D) a2/an - an/ a2 

3.  Passage: Let vr denote the sum of the first r terms of 
an AP whose first term is r and the common differ-
ence (2r - 1). Let Tr = vr+1 - vr - 2 and Qr = Tr+1 - Tr for 
r = 1, 2, 3,  …  . Then answer the following questions:

 (i) The sum v1 + v2 + 	 + vn is equal to

(A) 1/12n(n + 1)(3n2 - n + 1)

(B) 1/12n(n + 1)(3n2 + n + 2) 

(C) n/2(2n2 - n + 1)

(D) 1/3(2n3 - 2n + 3)

 (ii) Tr is always

(A) an odd number

(B) an even number

(C) a prime number

(D) a composite number

 (iii) Which of the following is a correct statement?

(A)  Q1, Q2, Q3, … are in AP with common 
 difference 5

(B)  Q1, Q2, Q3, … are in AP with common 
 difference 6

(C)  Q1, Q2, Q3, … are in AP with common 
 difference 11

(D)  Q1 = Q2 = Q3 = 	

4.  Passage: Let A1, G1, H1 denote the AM, GM, and HM, 
respectively, of two distinct positive reals. For n ³ 2, let 
An-1 and Hn-1 have AM, GM and HM as An, Gn and Hn, 
respectively. Answer the following questions:

 (i) Which one of the following statement is correct?

(A) G1 > G2 > G3 > 	
(B) G1 < G2 < G3 < 	
(C) G1 = G2 = G3 = 	
(D) G1 < G3 < G5 < 	 and G2 > G4 > G6 > 	

 (ii) Which of the following statements is correct?

(A) A1 < A2 < A3 < 	
(B) A1 > A2 > A3 > 	
(C) A1 > A3 > A5 > 	
(D) A1 < A3 < A5 < 	 and A2 > A4 > A6 > 	

 (iii) Which of the following statements is correct?

(A) H1 > H2 > H3 > 	
(B) H1 > H3 > H5 > 	 and H2 < H4 < H6 < 	
(C) H1 < H2 < H3 < 	
(D) H1 < H3 < H5 < 	 and H2 > H4 > H6 > 	 

5.  Passage: Let a and b distinct positive real numbers and

A
a b

G ab H
ab

a b
= + = =

+2

2
, and

Answer the following questions:

 (i)  If a, b are roots of the equation x2 - lx + m = 0, 
then

(A) l = 2A, m = G2 (B) l = A, m = G

(C) l = -2A, m = G2 (D) l = -A, m = G

 (ii)  If a(b - c)x2 + b(c - a)x + c(a - b) = 0 has equal 
roots, then a, b, c are in

(A) AP  (B) GP

(C) HP  (D) Not in AP/GP/HP

 (iii) A relation between A, G, H is

(A) 2H = A + G (B) 2G = A + H 
(C) G2 = A + H (D) G2 = AH
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Assertion–Reasoning Type Questions

In each of the following, two statements, I and II, are 
given and one of the following four alternatives has to 
be chosen.

(A)  Both I and II are correct and II is a correct  reasoning 
for I.

(B)  Both I and II are correct but II is not a correct 
 reasoning for I.

(C) I is true, but II is not true.

(D) I is not true, but II is true.

1.  Statement I: x, y, z are positive and each is different 
from 1. If 2x4 = y4 + z4, xyz = 8 and logyx, logzy and 
logxz and log , logy zx y and logxz are in GP, then x = 
y = z = 2.

     Statement II: If a, b are positive and each is different 
from 1, then 

log
log

log
b
a a

b
=

2.  Statement I: 
1

1 2 3

1

2 3 4

1

3 4 5

1

2 1× ×
+

× ×
+

× ×
+ +

- -
	

( )( )n n n
 is equal 

to 
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2

1

2

1

1
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-
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û
ú ³

( )n n
nfor .

Statement II: If K is a positive integer, then
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1 2

1
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1

1

1
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3.  Statement I:  

1
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	 n  is equal 

to 
3

2
1

1

32 1
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èç
ö
ø÷+n

     Statement II: ( )( )a b a b a b- + = -2 2

4.  Statement I: If the third term of a GP is 4, then the 
product of its first 5 terms is 44.

     Statement II: In a GP with first term a and common 
ratio r, the product of the first five terms is the fifth 
power of the third term.

5.  Statement I: If non-zero numbers a, b, c, d are in AP, 
then the numbers abc, abd, acd, bcd are in HP.

     Statement II: If a a a an1 2 3, , , ,… … are in AP and k ¹ 0, 
then 

a
K

a
K

a

K

a

K
n1 2 3, , , , ,… …

are also in AP.

 6.  Statement I: In DABC, if 

tan A tan B + tan B tan C+ tan C tan A = 9 

then the triangle is equilateral.

Statement II: The arithmetic mean of finite set of 
positive real numbers is greater than or equal to 
their geometric (equality occurs if and only if all the 
numbers are equal). 

  7.  Statement I: One can eliminate some terms of an 
AP of positive integers in such a way that the remain-
ing terms form a GP.

Statement II: If “a” is the first term and d be the 
common difference where both a and d are posi-
tive integer of an AP, then a + ad, a + (2a + ad)d, …, 
a(1 + d)n, n ³ 1 belong to the AP.

   8.  Statement I: The sum to n terms of the series

3

12

5

1 2

7

1 2 3

9

1 2 3 4

6

12 2 2 2 2 2 2 2 2
+

+
+

+ +
+

+ + +
+
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n
n

Statement II: The nth term of the series

1
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   9.  Statement I: If d, e, f are in GP and the quadratic 
 equations ax bx c dx ex f2 22 0 2 0+ + = + + =and  and 

dx ex f2 0+ + =  have a common root, then d/a, e/b, f/c 

are in HP.

Statement II: If a is a common root of the quadratic 
 equations a x b x c a x b x c1

2

1 1 2

2

2 20 0+ + = + + =and , 
then

a =
-
-

c a c a
a b a b

1 2 2 1

1 2 2 1

10.  Statement I: If log ( . ), log ( )2 4

15 2 1 2 1x x+ +-  and 1 are 
in AP, then the value of x is log ( . ).2 0 4

  Statement II: If a, b are positive and equal to 1, then 

log
log

log
b
a a

b

=
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   ANSWERS

Single Correct Choice Type Questions

1.  (D)
2.  (B)
3.  (A)
4.  (C)
5.  (B)
6.  (A)
7.  (B)
8.  (A)

 9.  (C)
10.  (D)
11.  (D)
12.  (B)
13.  (A)
14.  (B)
15.  (A)
16.  (D)

Integer Answer Type Questions
The answer to each of the questions in this section is a 
 non-negative integer. The appropriate bubbles below the 
respective question numbers have to be darkened. For 
example, as shown in the figure, if the correct answer to 
the question number Y is 246, then the bubbles under 
Y labeled as 2, 4, 6 are to be darkened.

X Y Z

0 0 0 0

1 1 1 1

2 2 2

3 3 3 3

9 9 9 9

8 8 8 8

7 7 7 7

6 6 6

5 5 5 5

4 4 4

W

1.  Sum of one hundred AM’s inserted between the 
 numbers log10 2 and log10 5 is .

2.  f : � �®  is a function satisfying the relation f (x + y) =
f (x) + f( y) for all rational numbers x and y and f (1) = 1. 

If f K
K

n
( ) ,

=å =
1

45  then n value is .

3.  For positive integer n, if f (x) = (2 - x n)1/n and g (x) =
f ( f (x)), then g(1), g(2), g(3), … form and AP with 
common differences .

4.  Consider the equation

x x y y x y
2

2

3 4

4

5

7

6
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= +

where  0 < x, y < 30 and [ ]×  denotes the integer part of 
a real number.  (x1, y1), (x2, y2), (x3, y3) 	 are solutions 

of the above equation and  x1 < x2 < x3< 	 are in AP 
whose common difference is .

 5.  x, y, z are real such that x y z x y z+ + = + + =3, 2 2 2 5 
and x y z3 3 3 7+ + = .  If xy + yz + zx, x3 + y3 + z3 - 
3xyz and x4 + y4 + z K4 +  are in AP (K > 0), then the 
values of K is .

 6.  If a, b, c are positive reals, then the maximum value of 
K such that ( )( )( ) ( ) /1 1 1 4 7+ + + >a b c K abc  is .

 7.  If x, y are positive real numbers and 3 4 5x y+ = , 
then the greatest value of 16 2 3x y  is .

 8.  If a, b, c are positive and a b c 1.+ + =  Then the mini-
mum value of 

1
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is .

 9.  If x, y, z are positive real numbers such that x y z3 2 4 7= ,

then 

2 5 3 9
525

2

1 9

x y z K+ + ³ æ
èç

ö
ø÷

/

 

where K is equal to .

10.  Three HMs are inserted between 1 and 3. Then  

5[(first mean)/(third mean)] is equal to .

11.  a > b are positive real numbers and A, G are, respec-
tively, their AM and GM. If A = 2G, then the ratio 
a b K/ = + 4 3  where K is .

12.   The second term of an infinite GP is 2 and its sum to 
 infinity is 8. The first term is .
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Multiple Correct Choice Type Questions

 1.  (A), (B)
 2.  (A), (C)
 3.  (A), (B), (C), (D)
 4.  (A), (C)
 5.  (B), (D)
 6.  (A), (B)
 7.  (A), (C)
 8.  (A), (C), (D)
 9.  (A), (B)
10.  (A), (D)
11.  (A), (B)
12.  (B), (C), (D)
13.  (B), (C)

14.  (A), (C), (D)
15.  (A), (B)
16.  (A), (B), (C)
17.  (A), (B), (C), (D)
18.  (A), (C)
19.  (A), (B), (C)
20.  (A), (D)
21.  (A), (D)
22.  (B), (C)
23.  (A), (B), (D)
24.  (A), (D)

Matrix-Match Type Questions

1.    (A) ® (q), (B) ® (s), (C) ® (p), (D) ® (r)
2.  (A) ® (r), (B) ® (t), (C) ® (r), (D) ® (p), (t)
3.  (A) ® (r), (B) ® (p), (C) ® (r), (D) ® (r)

 4.  (A) ® (s),  (B) ® (p),  
(C) ® (q),  (D) ® (r)

 5.  (A) ® (q), (r) (B) ® (p),  
(C) ® (r),  (D) ® (s)

17.  (B)
18.  (C)
19.  (B)
20.  (D)
21.  (B)
22.  (A)
23.  (C)
24.  (B)
25.  (A)
26.  (C)
27.  (B)
28.  (C)
29.  (C)
30.  (B)
31.  (D)
32.  (A)

33.  (A)
34.  (C)
35.  (A)
36.  (D)
37.  (C)
38.  (B)
39.  (A)
40.  (B)
41.  (B)
42.  (B)
43.  (A)
44.  (A)
45.  (C)
46.  (B)
47.  (B)

Comprehension-Type Questions

1.   (i) (B) (ii) (A) (iii) (C)
2.  (i) (A) (ii) (C) (iii) (A)
3.  (i) (B) (ii) (D) (iii) (B)

 4.  (i) (C) (ii) (B) (iii) (C)
 5.  (i) (A) (ii) (C) (iii) (D)

Assertion–Reasoning Type Questions

1.   (A)
2.  (A)
3.  (A)
4.  (D)
5.  (A)

 6.  (A)
 7.  (A)
 8.  (A)
 9.  (B)
10.  (A)
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Integer Answer Type Questions
1.   50
2.  9
3.  1
4.  6
5.  7
6.  7

 7.  3
 8.  8
 9.  7
10.  3
11.  7
12.  4



Permutation: A  permutation 
of a set of values is an arrange-
ment of those values into a 
particular order. The arrange-
ment can be linear or circular.

Combination: A  combination 
is selection of objects from 
a set.
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Johann Peter Gustav Lejeune Dirichlet was a German
mathematician credited with the modern formal definition

of a function. Dirichlet’s brain is preserved in the anatomical
collection of the University of Göttingen
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The concepts of permutations and combinations are important in view of several applications in day-to-day life and 
in the theory of probability (Probability is covered in Vol. II). A combination is only a selection while permutation is 
selection as well as arrangement.

Forming a four-letter word using the letters of the word 
CHAPTER is a permutation, since it involves two steps, 
namely selection of four letters from among C, H,  A, P,  T, 
E and R and arrangement of these four letters. Suppose 
we select C, H, A and T. We can arrange them to form a 
four-letter word such as CHAT, CAHT, TCHA, so on. 
Forming a set with four letters is a combination which 
involves only one step, namely selection of four letters, say 
A, C, H, T. Then the four-element set formed is {A, C, H, T} 
which is same as {C, H, A, T}, {C, A, H, T}, {T, C, H, A}, etc. 

In simpler terms, whenever there is importance to 
the arrangement or order in which the objects are placed, 
it is a permutation and, if there is no importance to the 
arrangement or order and only selection is required, it 
is a combination. One should be in a position to clearly 
see whether the concept of permutation or the concept 
of combination is applicable in a given situation. These 
concepts and methods we are going to develop in this 
chapter help us to determine the number of permutations 
or combinations without actually counting them.

Example

6.1 | Factorial Notation

First, we introduce the factorial notation which is crucial in determining the number of permutations or combinations. 
For any positive integer n, we define n! or n  (read as n factorial or factorial n) recursively as follows:

n
n

n n n
!

( )!
=

=
- >

ì
í
î

1 1

1 1

 if

 if×

(1)   1 1 2 1 2 2! , ! != = × = 

(2) 3 2 3 2 3 6! != × = × =
(3) 4 3 4 6 4 24! != = × =×

(4) 5 4 5 24 5 120! != × = × =
(5) Also, for convenience, we define 0 1! .=

Examples

6.2 | Permutations

Before going to formal definitions and derivations we introduce the “Fundamental Principle” which plays a major role 
in the theory of permutations and combinations.

FUNDAMENTAL PRINCIPLE  If a work W1 can be performed in m different ways and another work W2 in 
n  different ways, then the two works can be performed simultaneously in mn 
different ways.

Example     6.1   

A person has to travel from Chennai to Mumbai via 
Hyderabad. There are four different modes of travel from 
Chennai to Hyderabad, namely, car, bus, train and  aeroplane 
(we denote these by A1, A2, A3 and A4,  respectively) 
and that there are three different modes of travel from 
Hyderabad to Mumbai, namely bus, train and  aeroplane 
(we denote these by B1,  B2 and B3, respectively). Then how 
many  different modes of travel are available to that person 
to travel from Chennai to Mumbai via Hyderabad?

Solution: By the fundamental principle, there are 
4 ´ 3 = 12 different ways of travel from Chennai to 
Mumbai via Hyderabad. These are

 A1 B1 A1 B2 A1 B3

 A2 B1 A2 B2 A2 B3

 A3 B1 A3 B2 A3 B3

 A4 B1 A4 B2 A4 B3
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Here, A1 B1 means travelling from Chennai to 
Hyderabad by car and from Hyderabad to Mumbai by bus; 

A4 B2 means travelling from Chennai to Hyderabad by 
 aeroplane and from Hyderabad to Mumbai by train, etc.

The following is an abstraction of the fundamental principle.

THEOREM 6.1

PROOF

If A is a set with m elements and B is a set with n elements, then A B´  is a set with mn elements.

Let A a a am= { , , , }1 2 …  and B b b bn= { , , , }.1 2 …  Then

A B a b i m j ni j´ = £ £ £ £{( , ) | }1 1and

For each a Ai Î ,  there are n number of pairs whose first coordinate is ai. These are

( , ), ( , ), , ( , )a b a b a bi i i n1 2 …

The number of ai s is m. Therefore, the total number of elements in A B´  is

 
n n n m mn+ + + =	 ( ) times  ■

DEFINITION 6.1 For any finite set X, a bijection of X onto itself is called a permutation of X.

In other words, suppose X has n elements, say

X x x xn= { , , , }1 2 …

and suppose we have to keep elements of X in n different boxes, one in each box, as shown.

Xn Xn–1 Xn–2 X1 (n boxes)

An arrangement of this type is called a permutation. In the following, all permutations of a three-element set { , , }a a a1 2 3  
are given.

a1

a1

a1

a1

a1

a1

a2

a2

a2

a2

a2

a2

a3

a3

a3

a3

a3

a3

There are six permutations of a three-element set. If the number of elements of a given set X is large, it is not easy, 
as above, to enumerate the permutations of X. In the following, we develop a formula to find the number of such 
permutations.

Linear Permutations

In this section we would discuss linear permutations (i.e., arrangements of given objects in a line) with or without 
repetitions.

THEOREM 6.2

PROOF

The number of permutations of an n-element set, taken all at a time, is n!

We will use induction on n.
If n = 1, then clearly there is only one permutation of a one-element set and 1 1! .=
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Let n > 1 and suppose that the number of permutations of any ( )n - 1 -element set is ( )!.n - 1
Let X be an n-element set, say X x x xn= { , , , }.1 2 …  Note that a permutation is a way of filling n 

blanks using the n elements of X with one element in each blank. Consider n blanks as given below:

1 2 3 n –1 n

To fill the first blank, we can use any of the n elements x x x Xn1 2, , , .… in  After filling the first 
blank, we are left with n – 1 elements of X and these are to be used to fill up the remaining n – 1 
blanks. By induction hypothesis, the number of such permutations (filling the n – 1 blanks with 
n – 1 elements) is ( )!.n - 1

1

Now, we have two works W1 and W2. Work W1 is filling up the first blank and work W2 is fill-
ing up the remaining ( )n - 1  blanks. There are n ways of doing work W1 and ( )!n - 1  ways of doing 
work W2. Therefore, by the fundamental principle, the number of ways of doing works W1 and W2

simultaneously is n n n× - =( )! !.1  Thus there are n! number of permutations of X. ■

Try it out Consider a five-element set. Choose any three elements and arrange them in three blanks. How 
many such arrangements can be made? 

In the following we desire a formula for such a situation which generalizes the above theory.

THEOREM 6.3

PROOF

Let n and r be positive integers and r n£ . Then the number of permutations of n ( dissimilar) 
objects taken r at a time is equal to

n n n n r n s
s

r

( )( ) ( ) ( )- - - + = -
=

-

Õ1 2 1
0

1

	

Note that the number of required permutations is equal to the number of ways of filling r blanks 
using the given n objects with one object in each blank. Again, we will use induction on n.

If n = 1, then r = 1 and the theorem is trivial.
Let n > 1 and assume the theorem is true for n – 1; that is, for any k k n, ,1 1£ £ -  the number 

of permutations of n – 1 dissimilar objects taken k at a time is

[( ) ] ( )( ) [( ) ( )]

( )( ) ( )

n s n n n k

n n n k
s

k

- - = - - - - -

= - - -
=

-

Õ 1 1 2 1 1

1 2

0

1

	

	

Diagrammatically it can be represented as follows:

1 2 3 r –1 r

To fill the first blank, we can use any one of the given n objects. Therefore, the first blank can 
be filled in n different ways. After filling up the first blank, we are left with ( )n - 1  objects and the 
left over ( )r - 1  blanks can be filled up with these ( )n - 1  objects. The number of different ways of 
filling the ( )r - 1  blanks using ( )n - 1  objects is

[( ) ] ( )( ) ( )
( )

n s n n n r
s

r

- - = - - - +
=

- -

Õ 1 1 2 1
0

1 1

	

Thus, by the fundamental principle, the number of ways of filling up the r places using n dissimilar 
objects is

 n n n n r× - - - +( )( ) ( )1 2 1	  ■
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DEFINITION 6.2  The number of permutations of n dissimilar things taken r at a time is denoted by n
rP  or 

P(n,  r). However, n
rP  is more familiar and so we use this notation only. Therefore

n
r n n n n rP = - - - +( )( ) ( )1 2 1	

Note: As a convention, we define nP0 1= .

THEOREM 6.4

PROOF

The following hold good for any positive integers n and r such that r n£ .

1. n
r

n
n r

P =
-

!

( )!

2. n
r

n
rnP P= × -

-
( )

( )

1

1

3. n
r

n
r

n
rrP P P= + ×- -

-
( ) ( )

( )

1 1

1

1. We have
n

r n n n n r

n n n r n r n r
n

P = - - - +

=
- - + - - - × ×

( )( ) ( )

( ) ( )( )( )

(

1 2 1

1 1 1 3 2 1

	

	 	
-- - - × ×

=
-

r n r

n
n r

)( )

!

( )!

1 3 2 1	

2. We have

n
r

n
r

n
n r

n n
n r

nP P=
-

=
× -

- - -
= × -

-
!

( )!

( )!

[( ) ( )]!

( )

( )

1

1 1

1

1

3. We have

 

( ) ( ) ( )!

( )!

( )!

[( ) ( )]!

(

n
r

n
rr

n
n r

n r
n r

- -
-+ × =

-
- -

+
-

- - -

=

1 1

1

1

1

1

1 1
P P

nn
n r

n
n r

r

n
n r

r
n r

n

-
- -

+
-
-

=
-

- -
+

-
æ
èç

ö
ø÷

=

1

1

1

1

1
1

)!

( )!

( )!

( )!

( )!

( )!

( --
- -

- +
-

=
-

=

1

1

)!

( )! ( )

!

( )!

n r
n r r

n r

n
n r

n
rP

 

 
■

Example     6.2   

Find the number of permutations of four dissimilar things taken three at a time.

Solution: The number of permutations is

4

3

4

4 3

4

1
24P =

-
= =

!

( )!

!

Example     6.3   

Find the number of four-letter words that can be 
formed using the letters of the word CHEMISTRY 
such that

 (i)  each word begins with letter T
  (ii)  each word ends with letter Y
(iii)  each word begins with letter T and ends with letter Y
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Solution: There are nine letters in the word 
CHEMISTRY. The total number of four-letter words 
using these nine letters is 

9

4

9

9 4
9 8 7 6 3024P =

-
= × × × =

!

( )!

(i) If a four-letter word is to begin with T, the next three 
letters in the word can be chosen from the remaining 
9 1 8- =  letters. Therefore, the number of four-letter 
words each beginning with T is 

8

3

8

8 3
8 7 6 336P =

-
= × × =

!

( )!

   (ii)   A four-letter word is to end with Y means, we 
can choose the first three letters from among 
the remaining 9 - 1 = 8 letters. Therefore, the 
number of four-letter words each ending with Y is 
8

3 336P = .

(iii)   If a four-letter word is to begin with T and end with 
Y then the middle two letters can be chosen from 
among the remaining 9 2 7- =  s. Therefore, the 
number of such words of is 

7

2

7

7 2
42P =

-
=

!

( )!

Example     6.4   

Find the number of ways of arranging 5 boys and 4 girls 
in a line so that there will be a boy in the beginning and 
at the ending.

Solution: There are 9 (5 boys + 4 girls) persons alto-
gether. The first place and the last place are to be filled 
up by two boys from among 5 boys. The number of ways 
of doing is 5 2 20P = .

B B

All the 7 places in the middle are to be filled up by 
7 (9 – 2) persons (3 boys and 4 girls). The number of ways 
of doing this is 7!. Therefore, the total number of the 
required arrangements is 20 7 100800´ =! .

Example     6.5   

Find the number of four-letter words that can be formed 
using the letters of the word FRIENDS which contain 
the letter S and those which do not contain S.

Solution: There are 7 letters in the word FRIENDS. 
The total number of 4-letter words using these 7 letters 
is 7 4 840P = .

Consider the four blanks given above. If the first 
blank is filled with S, then the remaining 3 blanks are 

to be filled using the remaining 6 letters. This can be 
done in 6P3 ways. Similarly, the number of 4-letter 
words with S in the second place is 6P3 and so are the 
numbers of words with S in each of third and fourth 
places. Therefore, the total number of 4-letter words 
 containing S that can be formed with the letters in the 
word FRIENDS is

4 4 120 4806

3´ = ´ =P

The number of words not containing S is 840 - 480 = 
360. [Note that this is same as the number of 4-letter 
words using the 6 letters (other than S); that is 6

4P .]

Example     6.6   

Find the number of ways of arranging the letters of the 
word KRISHNA such that all the vowels come together.

Solution: The number of letters in KRISHNA is 7 and 
among them there are two vowels, I and A. The vowels 
coming together means we have to treat the two vowels 
as one single unit. 

Then we have 5 consonants +1 unit of vowels = 6 
objects. These can be arranged in 6! ways. 

The vowels can be permuted among themselves in 
2! ways. 

Therefore, the total number of arrangements in 
which the two vowels come together is 6 2 1440! ! .´ =

DEFINITION 6.3  If the words in a given set of words are arranged in the alphabetical order (as in a dictionary) and 
if a particular word is in the nth place in the list, then n is called the rank of that word.
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Example     6.7   

If the letters of the word PRISON are permuted in all 
possible ways and the words thus formed are arranged in 
dictionary order, then find the rank of the word SIPRON.

Solution: The sequence of the letters of the word 
PRISON in alphabetical order is INOPRS. In  dictionary 
the words starting with I come first and the number of 
these is 5 120! .=  Next come the words  starting with N 
and so on. The number of words starting with

 I is 5 120! =
 N is 5 120! =

 O is 5 120! =
 P is 5 120! =
 R is 5 120! =
 SIN is 3 6! =
 SIO is 3 6! =
 SIPN is 2 2! =
 SIPO is 2 2! =
 SIPRN is 1 1! =
 SIPRON is 0 1! =
Therefore, the rank of SIPRON is

( )5 120 6 6 2 2 1 1 618´ + + + + + + =

Now, we derive a formula for the number of permutations of n dissimilar things taken r at a time when each thing 
can be repeated any number of times. First, we have below a natural generalization of the fundamental principle.

THEOREM 6.5

PROOF

Let A A Ar1 2, , ,…  be finite sets with n n nr1 2, , ,…  elements, respectively. Then the number of 
 elements in A A Ar1 2´ ´ ´	  is the product n n nr1 2 	 .

We will use the fundamental principle and apply induction on r. If r = 1, the theorem is clean. 
Suppose that r > 1 and assume the theorem for r – 1. That is, the number of elements in A1 ´ A2 ´ 	 ´ 
Ar-1 is the product n n nr1 2 1	 - . Since A1 ´ A2 ´ 	 ´ Ar-1 ´ Ar and (A1 ´ A2 ´ 	 ´ Ar-1) ´ Ar  are 
bijective and are finite sets, they have the same number of elements. By the fundamental principle 
and the induction hypothesis, the number of elements in ( ) ( )A A A A n n n nr r r r1 2 1 1 2 1´ ´ ´ ´- -	 	is  
and hence the number of elements in A A A A n n n nr r r r1 2 1 1 2 1´ ´ ´ ´- -	 	is . ■

COROLLARY 6.1 Let W W Wr1 2, , ,…  be certain works. Suppose that Wi can be performed in ni number of ways. Then 
the number of ways in which W W Wr1 2, , ,…  can simultaneously be performed is n n nr1 2 	 .

COROLLARY 6.2

PROOF

Let n and r be positive integers such that r n£ . Then the number of permutations of n dissimilar 
things taken r at a time, when repetition of things is allowed any number of times, is nr.

The number of required permutations is equal to the number of ways of filling up r blanks using 
the given n dissimilar things. If Wi is the work of filling the i th blank using the n things, then Wi 
can be performed in n number of ways. Therefore, W W Wr1 2, , ,…  can be performed simultane-
ously in n n n r nr× =	 ( ) . times

 
1 2 3 r –1 r

 
■

COROLLARY 6.3

PROOF

The number of permutations of n dissimilar things taken r at a time, with atleast one repetition, is  nr - nPr .

The total number of permutations of n dissimilar things taken r at a time, without repetitions, is n rP .
Therefore, the number of required permutations, with atleast one repetition, is nr n

r- P . ■

Example     6.8   

A number lock has four rings and each ring has 10 digits, 
0 1 2 9, , , , .…  Find the maximum number of  unsuccessful 
attempts that can be made by a thief who tries to open 
the lock without knowing the key code.

Solution: Each ring can be rotated in 10 different ways 
to get a digit on the top. Therefore, the total number of 
ways in which the four rings can be rotated is 104. Out of 
these, only one is a successful attempt and all the others 
are unsuccessful. Therefore, the maximum number of 
unsuccessful attempts is 10 1 99994 - = .
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Circular Permutations

We now turn our attention on the arrangements of the given objects around a circle, that is, circular permutations. 
In this  context, we come across two types of circular permutations. One is clockwise arrangement and the other is 
 anticlockwise arrangement as shown in Figure 6.1. These two are same, but for the direction. In general, the direction 
is also important in circular permutations and hence we regard the two permutations shown in the figures below as 
two different circular permutations.

(a) (b)

a

b

c

d

e ab

c

d e

FIGURE 6.1 (a) Clockwise arrangement and (b) anticlockwise arrangement.

THEOREM 6.6

PROOF

The number of circular permutations of n dissimilar things taken all at a time is ( )!.n - 1

Let N be the number of circular permutation of n things taken all at a time. If we take one such 
permutation it looks like as in Figure 6.2.

Starting at some point and reading in either clockwise or anticlockwise direction, but not both, 
we get n linear permutations from each circular permutation as shown for the one given in Figure 6.2.

a a a a a a

a a a a a a

a a a a a a a

n n

n

n

2 3 4 1 1

3 4 5 1 2

4 5 6 1 2 3

    

    

     

	

	

	

-

� � �� � � � � � �

a a a a a

a a a a a

n n n

n n

   

   

1 2 2 1

1 2 3 1

	

	
- -

-

Thus, each circular permutation gives rise to n linear permutations. Therefore, N circular 
 permutations give rise to N n´  linear permutations. But, we know that the number of linear 
 permutations of n things, taken all at a time, is n!.  Therefore

N n n n n

N n

´ = = ´ -

= -

! ( )!

( )!

1

1

an a1

a4

a3

a2

an–2

an–1

FIGURE 6.2 Theorem 6.6.

 
■
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Example     6.9   

Find the number of ways of arranging 5 boys and 8 girls 
around a circular table.

Solution: Total number of persons = 5 + 8 = 13. The 
total number of circular permutations is 

( )! ( )!13 1 12- =

Example     6.10   

Suppose we are given 7 red roses and 4 yellow roses (no 
two of these are identical). Find the number of different 
ways of preparing a garland using all the given roses such 
that no two yellow roses come together.

Solution: First arrange the 7 red roses in a circular 
form in ( )! !7 1 6- =  ways. 

Now, imagine a gap between two successive red 
roses. There are 7 such gaps and 4 yellow roses can be 

arranged in these 7 gaps in 7P4 ways. Therefore, the total 
number of circular permutations is

6 7

4! ´ P

But, in the case of garlands, clockwise and anti-
clockwise arrangements look alike. Thus, the number of 
 possible distinct garlands is 

1

2
6 7

4( ! )´ P

Next we consider permutations of things in which some are alike and the rest are different. For example, we may 
want to find the number of ways of permuting the letters of the word MATHEMATICS, in which there are 2 Ms, 2 As, 
2 Ts and the rest are different. We derive formulae that can be used in such cases.

THEOREM 6.7

PROOF

The number of linear permutations of n things, in which p things are alike and the rest are  different, 
is n p!/ !.

Suppose that we are given n things in which p are alike and the remaining are different. Let N be 
the number of permutations of these n things.

When we take one such permutation, it contains p like things. If we replace these p like things 
by p dissimilar things, then we can arrange these p things among themselves (without disturbing the 
relative positions of other things) in p! ways. Therefore, each permutation when p things are alike 
gives rise to p! permutations when all are different. Therefore, from the N such permutations we get 
N p´ ! permutations. But we know that the number of permutations of n different things is n!. Thus

 

N p n

N
n
p

´ =

=

! !

!

!
 

■

We can extend, using induction, the above theorem for the case of having more than one set of like things in the 
given n things, by using Theorem 6.7 repeatedly.

COROLLARY 6.4 The number of linear permutations of n things, in which there are p alike things of one kind, q 
alike things of second kind and r alike things of third kind and the rest are different, is

n
p q r

!

! ! !

QUICK LOOK 1

Suppose we are to prepare a garland using n given 
flowers or a chain using n beeds. Any hanging type 
 circular permutation looks like clockwise arrangement 
from one side and anticlockwise arrangement from the 
opposite side (in the same order of things). Hence, we 

should treat them as identical. Therefore, in such cases, 
the number of circular permutations of n things is half 
of the actual number of circular permutations; that is, 

1

2
1( )!n -
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Example     6.11   

Find the number of ways of arranging the letters of the 
word ASSOCIATIONS. 

Solution: There are 12 letters in the given word, among 
which there are 2 As, 3 Ss, 2 Os, 2 Is and the others 

(C, T, N) are different. Therefore, the required number of 
permutations is

( )!

! ! ! !

( )!

( !) ( !)

12

2 3 2 2

12

2 33´ ´ ´
=

´

6.3 | Combinations

A combination is only a selection. There is no importance, as in the case of a permutation, to the order or arrangement 
of things in a combination. Thus, a combination of n things taken r at a time can be regarded as a subset with r elements 
of a set containing n elements.

QUICK LOOK 2

The number of combination of n dissimilar things taken r at a time is denoted by 

n
r

n
r

C or
æ
èç

ö
ø÷

 or C (n, r)

Note: n rC  is precisely the number of r-element subsets of an n-element set.

In the following theorem, we derive the formula for n
rC .

THEOREM 6.8

PROOF

The combination of n dissimilar things taken r at a time is given by

n
r

n
r

r
n

n r r
n n n n r

r r
C

P
= =

-
=

- - - +
× × -!

!

( )! !

( )( ) ( )

( )

1 2 1

1 2 3 1

	
	

That is, the number of combinations of n dissimilar things taken r at a time is 

n
n r r

!

( )! !-

Any combination of r elements from among n dissimilar things can be treated as an r-element 
subset of an n-element set. Let us select one such combination of r elements and these r elements 
can be arranged in a line in r! ways. Therefore, each combination of r elements gives rise to r! 
number of permutations of r elements. So, the total number of permutations of n dissimilar things, 
taken r at a time, is equal to n r rC ´ !. Therefore 

n
r

n
r rP C= ´ !

Thus

 

n
r

n
r

r
n

n r r

n n n r n r
n r n r

C
P

= =
-

=
- - + - × ×

- - -

!

!

( )! !

( ) ( )( )

( )( )

1 1 3 2 1

1

	 	
		 	

	
	

3 2 1 1 2

1 1

1 2 3 1

× × × -

=
- - +
× × -

r r

n n n r
r r

( )

( ) ( )

( )
 

■
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COROLLARY 6.5

PROOF

The number of r-element subsets of an n-element set is 

n
r

n
n r r

C =
-

!

( )! !

The r-element subsets of an n-element set are precisely combinations of n dissimilar things taken 
r at a time. ■

(1) The number of subsets with exactly 4 elements in a 
set of 6 elements is 

6

6 4 4

6 5

1 2
15

!

( )! !-
=

×
×

=

(2) The number of ways of constituting a committee of 
5 members from a group of 20 persons is 

20

20 5 5

20 19 18 17 16

1 2 3 4 5
15504

!

( )! !-
=

× × × ×
× × × ×

=

Examples

When we select r elements from n elements, we will be left with n – r elements. Therefore, the number of ways of 
selecting r elements from the given n elements is equal to the number of ways of leaving n – r elements. This is formally 
proved in the following theorem.

THEOREM 6.9

PROOF

For any positive integers n and r with r n£ ,

n
r

n
n rC C= -

We have

n
r

n
n r

n
n r r

n
r n r

n
n n r n r

C

C

=
-

=
-

=
- - -

= -

!

( )! !

!

! ( )!

!

[ ( )]! ( )!
 

■

COROLLARY 6.6 For any positive integer n n
n

n, .C C= =0 1

THEOREM 6.10

PROOF

Let m and n be distinct positive integers. Then the number of ways of dividing m + n things into 
two groups containing m things and n things is

( )!

! !

m n
m n

+

When we select m things out of the given (m + n) things, then n things will be left out. Therefore, 
the required number is precisely the number of ways of selecting m things from the m + n things,
( ) ,m n

m
+ C  equals

 
( )!

[( ) ]! !

( )!

! !

m n
m n m m

m n
n m

+
+ -

=
+

 
■

COROLLARY 6.7 Let m, n and k be distinct positive integers. Then the number of ways of dividing m + n + k things 
into three groups containing m things, n things and k things is

( )!

! ! !

m n k
m n k

+ +
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PROOF First we select m things from m + n + k things and then select n things from the remaining n + k 
things and finally k things will be left out and they form the third group. The number of ways of 
selecting m things from the given m + n + k is

( )!

[( ) ]! !

( )!

( )!

m n k
m n k m m

m n k
n k n

+ +
+ + -

=
+ +
+

The number of ways of selecting n things from n + k things is 

( )!

! !

n k
n k

+

By the fundamental principle, the number of ways of dividing m + n + k things into three 
groups of m things, n things and k things is

 ( )!

( )! !

( )!

! !

( )!

! ! !

m n k
n k m

n k
n k

m n k
m n k

+ +
+

´
+

=
+ +  

■

COROLLARY 6.8

PROOF

The number of ways of dividing 2n things into two equal groups of n things each is

( )!

! ! !

2

2

n
n n

By Theorem 6.10, we can divide 2n things into two groups in ( !)/ ! !2n n n  ways. Since the groups 
have equal number of elements, we can interchange them in 2! ways. They give rise to the same 
division. Therefore, 2n things can be divided into two equal groups of n things each in 

 
( )!

! ! !

2

2

n
n n

ways 
■

The above can be generalized for the division of mn things into equal m groups, as given in the following.

COROLLARY 6.9 Let m and n be positive integers. Then the number of ways of dividing mn things into m groups, 
each containing n things, is

( )!

! ( !)

mn
m n m

COROLLARY 6.10

PROOF

Let m and n be positive integers. The number of ways of distributing mn things equally among
m persons is 

( )!

( !)

mn
n m

By Corollary 6.9, we can divide mn things into m groups, each containing n things, in

( )!

! ( !)

mn
m n m ways

In each such division, there are m groups, which are not identical but only contain equal 
number of things. We have to distribute m groups to m persons in m! ways. Therefore, the total 
number of required distributions is

 
( )!

! ( !)
!

( )!

( !)

mn
m n

m
mn
nm m´ =  

■
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Example     6.12   

Find the number of ways of selecting 11 member cricket 
team from a group of players consisting 7 batsmen, 
5 bowlers and 3 wicket keepers such that there must be 
atleast 3 bowlers and 2 wicket keepers in the team.

Solution: The teams can be selected with the composi-
tions given in Table 6.1. The last column of the table gives 
the number of ways of selecting the team.

Therefore, the total number of ways of selecting the 
11-member cricket team is 35 + 105 + 175 + 315 + 210 + 
210 which is equal to 1050.

Table 6.1 Example 6.12

Bowlers
Wicket 
keepers Batsman

Number of ways of 
selecting the team

5 3 3 5

5

3

3

7

3 35C C C´ ´ =
5 2 4 5

5

3

2

7

4 105C C C´ ´ =

4 3 4 5

4

3

3

7

4 175C C C´ ´ =

4 2 5 5

4

3

2

7

5 315C C C´ ´ =

3 3 5 5

3

3

3

7

5 210C C C´ ´ =
3 2 6 5

3

3

2

7

6 210C C C´ ´ =

Example     6.13   

Suppose that a set of m parallel lines intersect another 
set of n parallel lines. Then, find the number of parallelo-
grams formed by these lines.

Solution: To form a parallelogram, we have to select 
two lines from the first set and two lines from the second 
set. The number of such selections is m nC C2 2´ .

We have proved earlier in Theorem 6.9 that, for any positive integers n and r such that r n n
r

n
n r£ = -, .C C  Converse of 

this is proved in the following.

THEOREM 6.11

PROOF

Let r, s and n be positive integers such that r n s n£ £ and .  Then n
r

n
sC C=  if and only if r = s or

r = n – s.

Suppose that n
r

n
s r sC C and = ¹ . We can assume that r < s. Then n – s < n – r. Consider

n
r

n
s

n
n r r

n
n s s

n r r n s s

n r n r

C C=

-
=

-

- = -

- - -

!

( )! !

!

( )! !

( )! ! ( )! !

( )( )1 	(( )( )! ! ( )! ( )( ) ( ) !n s n s r n s s s s r r n s < n- + - = - - - + - -1 1 2 1	 (since rr r < s

n r n r n s s s r

a a a

and )

( )( ) ( ) ( ) ( )

( )( ) (

- - - - + = - +

+ + +

1 1 1 1

1 2

	 	

	 KK r r r K) ( )( ) ( )= + + +1 2 	

where a = n – s and K = s – r. This gives a r n s r= - = and hence .  [Otherwise, if a < r, then
a + i < r + i for all 1 £ £i K  and hence ( )( ) ( ) ( )( ) ( ),a a a K r r r K+ + + < + + +1 2 1 2	 	  since all 
these are positive integers.] Thus, if n

r
n

sC C= ,  then r = s or r = n – s (i.e., r + s = n). ■

THEOREM 6.12

PROOF

Let r and n be positive integers such that r n£ . Then,

n
r

n
r

n
rC C C-

++ =1

1

We have

n
r

n
r

n
n r r

n
n r r

n
n r r n r

C C- + =
- - -

+
-

=
- - -

1
1 1

1

1

!

[ ( )]! ( )!

!

( )! !

!

( )! ( )! ++
+é

ëê
ù
ûú1

1

r
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=
- -

+
- +

é

ë
ê

ù

û
ú

=
+

+ -
= +

n
n r r

n
n r r

n
n r r

n

!

( )! ( )! ( )

( )!

[( ) ]! !

1

1

1

1

1

1

 
 Crr  

■

COROLLARY 6.11

PROOF

For 2 £ r £ n,

n
r

n
r

n
r

n
rC C C C- -

++ × + =2 1

22

We have

 

n
r

n
r

n
r

n
r

n
r

n
r

n
r

n
r

n
r

C C C C C C C

C C

- - - - -

+
-

+

+ × + = + + +

= + =

2 1 2 1 1

1

1

1

2 ( ) ( )

nn
r

+2C (from Theorem 6.12) ■

Example     6.14   

Find the value of  25

4

29

30

4
C C+ -

=å ( ) .r

r

Solution: We have

25

4

29

3

0

4
25

4

25

3

26

3

27

3

28

3

29

3C C C C C C C C+ = + + + + +-

=
å ( )r

r

= + + + +

= + + +

= + +

26

4

26

3

27

3

28

3

29

3

27

4

27

3

28

3

29

3

28

4

28

3

29

C C C C C

C C C C

C C CC

C C C

3

29

4

29

3

30

4= + =

Example     6.15   

If 12

1

12

2 5C Cs s+ -= , then find the value of s.

Solution:
12

1

12

2 5 1 2 5 1 12 2 5C C   ors s s s s s+ -= Þ + = - + = - -( )

Þ = = ors s6 3 16

We take s = 6 (since s is an integer).

THEOREM 6.13

PROOF

If p alike things are of one kind, q alike things are of second kind and r alike things are of third 
kind, then the number of ways of selecting any number of things (one or more) out of them is

( )( )( )p q r+ + + -1 1 1 1

From the first p things, we can select 0 or 1 or 2 or … or p things. Since all the p things are alike, 
we have to decide only the number of things to be selected. This can be done in p + 1 ways. 
Similarly, we can select any number of things from the second kind in q + 1 ways and from the 
third kind in r + 1 ways. Hence by the fundamental principle, we can select any number of things 
from the three groups in ( )( )( )p q r+ + +1 1 1  ways. But this includes the selection of 0 from each 
group. Since, we have to select one or more things, the number of required ways is

 ( )( )( )p q r+ + + -1 1 1 1 ■

COROLLARY 6.12

PROOF

If p p pr1 2, , ,…  are distinct primes and a a ar1 2, , ,…  are positive integers, then the number of posi-
tive integers that divide p p pa a

r
ar

1 2
1 2 	  is ( )( ) ( ).a a ar1 21 1 1+ + +	

Let n p p pa a
r
ar= 1 2

1 2 	 . Then any positive integer that divides n must be of the form p p pb b
r
br

1 2
1 2 	 , 

where 0 £ bi £ ai for all 1 £ £i r  and bis are integers. Now, each bi can take ai + 1 values that is 
0 1 2, , , , .… ai  Therefore, as in Theorem 6.13, the number of positive integral divisors of n is

 ( )( ) ( )a a ar1 21 1 1+ + +	  ■
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(1) If there are 6 red beads of same type, 8 blue beads 
of same type and 10 yellow beads of same type, then 
the number of ways of selecting any number of beads 
(one or more) is

( )( )( )6 1 8 1 10 1 1 693+ + + - =

(2) Any divisor of n other than 1 and n is called a proper 
divisor of n. The number of proper  positive integral 
divisors of 10800 2 3 54 3 2( )= ´ ´  is

( )( )( )4 1 3 1 2 1 2 58+ + + - =

Examples

THEOREM 6.14

PROOF

Let n be a positive integer. Then the number of ways in which n can be written as a sum of 
(atleast two) positive integers, considering the same set of integers in a different order as being 
different, is 2 11n- - .

Write n number of 1s on a line and put the symbol “(” on the left of the first 1 and the symbol “)” 
on the right of the last 1, as shown below:

( )1 1 1 1 1- - - - -	

Consider the n – 1 spaces between the two consecutive 1s. By filling each of these n – 1 spaces 
with one of the two symbols “+” and “) + (”, we get an expression of n as a sum of positive inte-
gers and vice versa. For example,

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1+ + + + + + + + +

corresponds 2 3 2 3 10+ + + =  and 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1+ + + + + + + + +

corresponds to 2 1 2 2 3+ + + + .
The number of ways of filling n – 1 spaces each with one of the two symbols is 2 1n- . Among 

these we have to exclude one expression, namely,

( )1 1 1 1+ + + + =	 n

Since, we are interested only in sums with atleast two summands, thus, the number of required 
ways in which n can be written as a sum of (atleast two) positive integers is

 2 11n- -  ■

The proofs of the following two results are similar to that of Theorem 6.14.

THEOREM 6.15

PROOF

Let m and n be positive integers such that m n£ . Then the number of m-tuples ( , , , )x x xm1 2 …  
of positive integers satisfying the equation x x x nm

n
m1 2

1

1+ + + = -
-	  is C .

As in the proof of Theorem 6.14, write n number of 1s on a line and put the symbol “(” on the 
left of the first 1 and the symbol “)” on the right of the last 1 as shown below:

( )1 1 1 1 1 1- - - - - -	

Consider the n – 1 gaps between the two consecutive 1s. Choose any m – 1 of these gaps and fill 
them with the symbol “) + (” and the remaining gaps be filled with the symbol +. Then, we get 
an m-tuple ( , , , )x x xm1 2 …  such that

x x x nm1 2+ + + =	

and vice-versa. For example, for n = 10 and m = 4

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1+ + + + + + + + +

gives a 4-tuple (3, 1, 2, 4) with 3 1 2 4 10+ + + =  and conversely the tuple (2, 2, 3, 3) is obtained 
by the expression

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1+ + + + + + + + +
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Therefore, each choice of m – 1 gaps from n – 1 gaps gives rise to an m-tuple ( , , , )x x xm1 2 …  of 
positive integers satisfying the equation

x x x nm1 2+ + + =	

and vice-versa. Thus the number of required m-tuples is n m
-

-
1

1C . ■

THEOREM 6.16

PROOF

Let m and n be positive integers. Then the number of m-tuples ( , , , )x x xm1 2 …  of non-negative 
integers satisfying the equation x x x nm1 2+ + + =	  is ( )

( ).
n m

m
+ -

-
1

1C

We will slightly modify the proof of Theorem 6.15. Here xi s can be 0 also. Consider n + m – 1 
boxes in a row as shown:

Let us choose any m – 1 of these and label these chosen boxes as b b bm1 2 1, , ,… - from left to right. 
For 1 1£ £ -i m ,  let xi+1  be the number of boxes that are not chosen between bi and bi+1.  Let x1 
be the number of boxes to the left of b1 and let xm be the number of boxes to the right of bm-1.  It 
can be easily seen that this is a one-to-one correspondence between the (m – 1)-element subsets 
of the (n + m – 1)-element set of boxes onto the m-tuples ( , , , )x x xm1 2 …  of non-negative inte-
gers satisfying the equation x x x nm1 2+ + + =	 .  For example, for n = 4 and m = 6, the 6-tuple 
(1, 0, 0, 1, 0, 2) corresponds to the choice of b1, b2, b3, b4, b5 given below.

b1 b2 b3 b4 b5

Thus, the number of required m-tuples is ( )

( ).
m n

m
+ -

-
1

1C  ■

(1) The number of 6-tuples ( , , , , , )x x x x x x1 2 3 4 5 6      
of positive integers satisfying the equation 
x x x x x x1 2 3 4 5 6 12+ + + + + =  is 

( )

( )

12 1

6 1

11

5 462-
- = =C C

(2) The number of 6-tuples (x1, x2, x3, x4, x5, x6) of non- 
negative integers satisfying the equation x1 + x2 + 
x3 + x4 + x5 + x6 = 12 is

( )

( )

12 6 1

6 1

17

5 6188+ -
- = =C C

Examples

THEOREM 6.17

PROOF

The maximum number of parts into which a plane is cut by n lines is 

n n2 2

2

+ +

Let y ( )n  denote the maximum number of parts into which a plane is cut by n lines. We shall 
prove that

y ( )n
n n

=
+ +2 2

2

by using induction on n. Clearly 

y ( )1 2
1 1 2

2

2

= =
+ +

Note that the number of parts cut by n lines is maximum only when any two of these lines 
intersect. We can see from the adjoining figure that

y ( )2 4
2 2 2

2

2

= =
+ +
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When we draw another line, intersecting these two, we get three more parts, as shown in Figure 6.3. 
In general, we can get n more parts by considering the nth line in addition to y ( ).n - 1  That is,

y y( ) ( )n n n= - +1

Figure 6.3 shows the same for n = 4. By induction, we have

y y( ) ( )

( ) ( )

n n n

n n
n

n n

= - +

=
- + - +

+

=
+ +

1

1 1 2

2

2

2

2

2

FIGURE 6.3 Theorem 6.17.

2

3

4

1
2

3

6 7

4

5

1
2

3
6 7

8

9

10

11

4

5

1

 ■

The maximum number of parts into which a plane is cut by 8 lines is 
8 8 2

2
37

2 + +
= .

Example

Note: The minimum number of parts into which a plane is cut by n lines is n + 1, since n parallel lines give us n + 1 parts. 
Figure 6.4 shows the same for 4 parallel lines. Any pair of intersecting lines gives us more number of parts.

1

2

3

4

5

FIGURE 6.4 A plane cut by 4 lines into 5 parts.

Now, we will turn our attention to the number of various types of functions from a finite set into another finite set. 
We first prove following simple theorem.

THEOREM 6.18

PROOF

Let X and Y be non-empty finite sets, | | | | .X m Y n= = and  Then

1. The number of functions from Y into X is mn.

2.  The number of injections (one-one functions) from Y into X is zero if m < n, and m
n nC × !

( ) .= ³m
n m nP  if 

3. The number of bijections of Y onto X is zero if m n¹ , and m! if m = n.

1.  With each function f Y X: ,®  each element of Y is to be mapped onto one element in 
the m-element set X. Since Y has n elements, by the fundamental principle, the number of 
 functions of Y into X is mn.

2.  If there is an injection of Y into X, then | | | |.Y X£  Therefore, if n > m, then there are no injec-
tions of Y into X. Suppose that n m£ . If f Y X: ®  is an injection, then | | | ( ) |,Y f Y=  that is,  f(Y  ) 
is an n-element subset of X. On the other hand, with each n-element subset Z of X, we can get
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n! number of bijections from Y onto Z, each of which can be treated as an injection of Y 
into X. Since | | ,X m=  the number of n-element subsets of X is m

nC . Thus, the number of 
injections of Y into X is

m
n

m
nn

m
m n n

nC P× =
-

=!
!

( )! !
!

3. We already have this (from part 2). ■

THEOREM 6.19

PROOF

For any positive integers m and r such that m ³ r, let am(r) be the number of surjections of an 
m-element set onto an r-element set. Then

r
s

s

r

m
ms rC

=
å =

1

a ( )

Let m r³ > 0, A be an m-element set and B be an r-element set. The total number of mappings 
of A into B is rm.  Each mapping f A B: ®  can be regarded as a surjection of A onto f(A); also 
1 £ £| ( ) | .f A r  On the other hand, with each s-element subset ( )1 £ £s r  C of B, any surjection 
of A onto C can be regarded as a mapping of A into B. Therefore, the total number of mappings 
of A into B is equal to the total number of surjections of A onto non-empty subsets of B. For
each 1 £ £s r, there are r sC  number of subsets of B and hence the number of mappings f A B: ®  
such that | ( ) |f A s=  is r s m sC a ( ). Therefore,

  r
s

s

r

m
ms rC

=
å =

1

a ( )  
■

COROLLARY 6.13 For any integers m r³ > 0, the number am r( ) of surjections of an m-element set onto an 
r- element set is given by a recursive formula

a am
m r

s
s

r

mr r s( ) ( )= -
=

-

å C
1

1

and am( )1 1=

Try it out Prove that am r( )  is also equal to

( ) ( )( )- -
=

-

-å 1
0

1
s

s

r
r

r s
mr sC

Example     6.16   

Let A be a 4-element set and B a 3-element set. Then 
evaluate the number a4 3( )  of surjection of A onto B. 

Solution: We have

a

a a
4

4

4 2

1 4

1 1

2 2 1 14

( )

( ) ( )

=

= - × =C

a a a4

4 3

1 4

3

2 43 3 1 2

81 3 1 3 14

36

( ) ( ) ( )= - -

= - × - ×

=

C C

Thus, there are 36 surjections of a 4-element set onto a 
3-element set.

DEFINITION 6.4  Let X be a non-empty set. A bijection of X onto itself is called a permutation on X. A permutation
 f on X is called a derangement of X if f x x( ) ¹  for all x XÎ .

We will derive a recursive formula for the number of derangements of a finite set.
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THEOREM 6.20

PROOF

For any positive integer r, let dr be the number of derangements of an r-element set. Then

1
1

+ =
=

å n
r

r

n

rd nC !

for any integer n > 0 or

n
r

r

n

rd n dC (where 
=
å = =

0

0 1! )

and  d n dn
n

r
r

n

r= -
=

-

å! C
0

1

Let X be an n-element set, n > 0, and P(X  ) be the set of all permutations on X. It is well-known 
that P(X  ) has n! elements. For any subset A of X, let

D A f X f a a a A f x x x X A( ) ( ) ( ) ; ( )= Î ¹ Î = Î -{ }P  for all  for all 

That is,

D A f X f x x x A( ) { ( ) | ( ) }= Î ¹ Û ÎP

Then, clearly D( )0  has only one element, namely the identity map and D(X  ) is precisely the set 
of all derangements of X. For any f XÎP( ),  we set that f D A A x X f x xÎ = Î ¹( ), { | ( ) }. where  
Therefore, we get that

P( ) ( )X D A
A X

=
Í
∪

It can be easily verified that

D A D B A B( ) ( )Ç = ¹0 whenever 

and hence P(X  ) is the disjoint union of D(A)s, A Í X. Since there are nCr number of subsets 
of X, each with r elements, it follows that

n X D A d D
A X

n
r

r

n

r! | ( ) | | ( ) | ( | ( ) | )= = = + =
Í =
å åP C since1 0 1

1

where dr is the number of derangements of an r-element set [since the members of D(A) are in 
 one-to-one correspondence with the derangements of A f f A; /�  is that one-to-one correspon-
dence]. Thus

n dn
r

r

n

r! = +
=

å1
1

C

This also can be expressed as

n dn
r

r

n

r! =
=
å C

0

where d0 = 1. Note that d1 0=  and hence

 d n dn
n

r
r

n

r= - -
=

-

å! 1
2

1

C  
■

Try it out Prove that the number of derangements of an n-element set is

n
k

k

k

n

!
( )

!

-
=

å 1

0
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Examples

We have 

(1) d0 = 1, by definition.

(2) d1 = 0,  since a singleton set cannot have derangement.

(3) d2 = 2! - 1 = 1

(4) d d3

3

2 23 1 6 1 3 1 2= - - = - - × =! C

(5) d d d4

4

2 2

4

3 34 1 24 1 6 1 4 2 9= - - - = - - × - × =! C C

(6) d d d d5

5

2 2

5

3 3

5

4 45 1

120 1 10 1 10 2 5 9 44

= - - - -
= - - × - × - × =

! C C C

Example     6.17   

List all the derangements of the 4-element set {1, 2, 3, 4}.

Solution: The derangements are as follows:

1 2 1 2 1 2

2 1 2 3 2 4

3 4 3 4 3 1

4 3 4 1 4 3

® ® ®
® ® ®
® ® ®
® ® ®

1 3 1 3 1 3

2 1 2 4 2 4

3 4 3 1 3 2

4 2 4 2 4 1

® ® ®
® ® ®
® ® ®
® ® ®

1 4 1 4 1 4

2 1 2 3 2 3

3 2 3 1 3 2

4 3 4 2 4 1

® ® ®
® ® ®
® ® ®
® ® ®

Try it out Show that there are 44 derangements of a 5-element set and there are 265 of a 6-element set.

THEOREM 6.21

PROOF

Let n be a positive integer and n p p pk
k= 1 2

1 2a a a	  be a prime decomposition of n. Then the 
number of distinct ordered pairs of positive integers (  p, q), such that the least common multiple 
of p and q is n, is

( )( ) ( )2 1 2 1 2 11 2a a a+ + +	 k

Since both p and q are factors n, we can suppose

p p p p q p p px x
k
x y y

k
yk k= =1 2 1 2

1 2 1 2	 	and

where xi and yi (i = 1, 2, …, k) are non-negative integers. As n is the least common multiple of
p and q, we have 

max{xi, yi} = ai

Hence, (xi, yi) can be equal to (0, ai), (1, ai), (2, ai), …, (aI, aI) and (aI, 0), (aI, 1), (aI, 2), …, (aI, aI−1) 
whose number is 2aI + 1. By multiplication principle, there are ( )( ) ( )2 1 2 1 2 11 2a a a+ + +	 k  
ordered pairs of positive integers (  p, q) whose least common multiple is

 n p p pk
k= 1 2

1 2a a a	  ■

Consider n = 23 ´ 52 ´ 75. Then the number of distinct 
ordered pairs of positive integers (  p, q), whose least 
common  multiple is n = 23 ´ 32 ´ 75, is

( )( )( )6 1 4 1 10 1 7 5 11

385

+ + + = ´ ´

=

Example
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1. If m and n are positive integers such that m + nP2 = 90 
and Pm n- =2 30, then the number of ordered pairs 
(m, n) of such integers is

(A) 4 (B) 3 (C) 2 (D) 1

Solution: Given that 

90 12= = + + -+m n m n m nP ( )( )

and 30 12= = - - --m n m n m nP ( )( )

Therefore

( ) ( )

( )( )

m n m n

m n m n

+ - + - =

+ - + + =

2 90 0

10 9 0

We take m + n = 10 (since m and n are positive). Similarly, 
m - n = 6 (we have to consider m > n only). Therefore 
m = 8 and n - 2 or

 ( , ) ( , )m n = 8 2

 Answer: (D)

2. If 2 1

1

2 1 3 5n
n

n
n

+
-

- =P P: : ,  then the value of n is

(A) 5 (B) 4 (C) 6 (D) 7

Solution: Given that 

5 3

5 2 1

2 1 1

3 2 1

2 1

2 1

1

2 1× = ×

× +
+ - -

=
× -

-

+
-

-n
n

n
n

n
n n

n
n

P P

( )!

[( ) ( )]!

( )!

( --

+
+

=
× -

-

+ ×
+ +

=

n

n
n

n
n

n n
n n n

)!

( )!

( )!

( )!

( )!

( )

( )( )

5 2 1

2

3 2 1

1

5 2 1 2

2 1
3

110 2 1 3 2 1

3 11 4 0

4 3 1 0

4

2

( ) ( )( )

( )( )

n n n

n n

n n

n

+ = + +

- - =

- + =

=
 Answer: (B)

3. If four times the number of permutations of n distinct 
objects taken three at a time is equal to five times the 
number of permutations of n - 1 distinct objects taken 
three at a time, then n is equal to

(A) 20 (B) 15 (C) 10 (D) 25

Solution: By hypothesis, 

4 nP3 = 5 n-1 P3

4

3

5 1

1 3

4

3
5

4 5 3

15

×
-

=
× -
- -

-
=

= -

=

n
n

n
n

n
n

n n

n

!

( )!

( )!

( )!

( )

 Answer: (B)

4.  If 56

6

54

3 30800 1P Pr r+ + =: : ,  then r is equal to 

(A) 41 (B) 31 (C) 21 (D) 39

Solution: By hypothesis 

( )!

( ( ))!

( )!

[ ( )]!

( )!

( )!

56

56 6
30800

54

54 3

56

50

30800

- +
= ×

- +

-
=

×

r r

r
(( )!

( )!

( )

54

51

56 55
30800

51

51
30800

56 55
10

41

-

× =
-

- =
×

=

=

r

r

r

r

 Answer: (A)

5.  If 9P5 + 5 × 9P4 = 10Pr, then r is equal to

(A) 6 (B) 5 (C) 4 (D) 3

Solution: By hypothesis, 

9

9 5

5 9

9 4

10

10

9
1

4

5

5

10

10

!

( )!

!

( )!

( )!

( )!

!
! !

( )!

(

-
+

×
-

=
-

+æ
èç

ö
ø÷

=
-

r

r))!

( )!

( )!

!

!

!

!

10

10
2

9

4

10

5

10 5

5

-
= × =

- =

=

r

r

r

  

      

 Answer: (B)

6.  There are finite number of distinct objects. If the 
arrangements of 4 objects (in a row) is 12 times the 
number of arrangements of 2 objects, then the number 
of objects is

(A) 10 (B) 8 (C) 4 (D) 6

   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions
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Solution: Let the number of objects be n. Then, by 
hypothesis, 

n n

n
n

n
n

n n

n n

n

P P

 

 

4 2

2

12

4
12

2

1
12

2 3

5 6 0

= ´

-
= ´

-

=
- -

- - =

-

!

( )!

!

( )!

( )( )

( 66 1 0)( )n + =

Now n ¹ -1, therefore  n = 6.

 Answer: (D)

7.  The value of K K
KK

×
=å P

1

20
 is

(A) 20 1! +   (B) 21 1! -
(C) 20 1! -   (D) 21 20! -

Solution: We have

K K
K

K K

K K

K
K

K K

K

K

× = ×

= + -

= + -

= =

=

=

å å

å

P
1

20

1

20

1

20

1

20

1

1 1

1

!

[( ) ] !

[( )! !]åå

= - + - + + -

= -

( ! !) ( ! !) [( )! ( )!]

( )! !

2 1 3 2 21 20

21 1

	

      

 Answer: (B)

8.  The number of 6-digit numbers that can be formed 
by using the numerals 0, 1, 2, 3, 4 and 5 (without 
 repetition of the digits) such that even numbers 
occupy odd places is

(A) 48 (B) 24 (C) 36 (D) 72

Solution: We can arrange 0, 2, 4 in the odd places 
in 3! ways. After filling the odd places, the remaining
3 places can be filled by the remaining numbers (1, 3 and 5) 
in 3! ways. But among these numbers, there are 2 3! !´  
numbers in which 0 occupies the first place from the left. 
Therefore, the required number is

3 3 2 3 36 12 24! ! ! !× - = - =
 Answer: (B)

9.  The first 7 letters of the English alphabet are arranged 
in a row. The number of arrangements in which A, B 
and C are never separated is

(A) 5! (B) 3 5´ ! (C) 4 5! !´  (D) 3 5! !´

Solution: Consider A, B, C as one single object so that 
including this, there are 5 objects which can be arranged in 
5! ways. In each of these A, B, C can be arranged among 
themselves in 3! ways. Therefore, the total number of 
required arrangements is 3 5! !´
 Answer: (D)

10.  A total of 6 boys and 5 girls are to be arranged in a 
row. The number of arrangements such that no two 
girls stand together is

(A) 11

5P   (B) 11

6

11

5P P+

(C) 
11

6

!

!
  (D) 

7

2
6

!

!
!´

Solution: Given that each girl should stand in between 
two boys (there are 5 such places since the number of 
boys is 6) or before the boys or after the boys. Therefore, 
there are 7 eligible places for the 5 girls and hence 
they can be arranged in 7P5 ways. But the 6 boys can be 
arranged among themselves in 6! ways. Therefore the 
required number of arrangements

7

5 6P ´ !

 Answer: (D)

11.  A total of 5 mathematics, 3 physics and 4  chemistry 
books are to be arranged in a shelf such that the 
books on the same subject are never separated. If one 
 particular mathematics book is to be in the middle 
of all the mathematics books, then the number of 
arrangements is 

(A) 3 5 4 3!( ! ! !)+ +  (B) 3 5 4 3!( ! ! !)´ ´
(C) 3 4 4 3!( ! ! !)´ ´  (D) 3 4 3 3!( ! ! !)´ ´

Solution: Consider the books on the same subject as 
a single bundle, so that 3 bundles can be arranged in 
3! ways. But mathematics books can be arranged among 
themselves in 4! ways (since one book is fixed in the 
middle) the physics books in 3! ways and chemistry 
books in 4! ways. Therefore, the required number is

3 4 4 3!( ! ! !)´ ´
 Answer: (C)

12.  The number of arrangement of the letters of the 
word BANANA in which two Ns do not appear 
adjacently is

(A) 40 (B) 60 (C) 80 (D) 100

Solution: Letters other than Ns are BAAA. There are 
4 ways of arranging these (B is the first place, B in the 
second place, etc.). Two Ns are to be arranged in between 
B, A, A, A. There are five places:

B
1st 2nd 3rd 4th 5th

A A A
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The insertion of Ns can be made in 5

2 1 2P ´ ( / !) ways. 
Therefore the total required number is 

5

3 2
4 40

!

! !
´ =

 Answer: (A)

13.  A five-letter word is to be formed by using the letters 
of the word MATHEMATICS such that

     (i)  odd places of the word are to be filled with 
unrepeated letters and

(ii)  even places are to be filled with repeated letters.

Then the number of words thus formed is

(A) 300 (B) 360 (C) 180 (D) 540

Solution: We have five places:

1 2 3 4 5

There are three odd places and two even places in a five-
letter word.

Unrepeated letters: H, E, I, C, S
Repeated letters: AA, MM, TT

The 3 odd places can be filled with the 5 unrepeated 
 letters in 

5

3 60P =  ways

The 2 even places can be filled with 2 different or 2 alike 
letters from the repeated letters in 

3

2 3 9P + =  ways

Therefore, the number of words thus formed is

60 9 540´ =
 Answer: (D)

14.  A five-digit number divisible by 3 is to be formed 
using the numerals 0, 1, 2, 3, 4 and 5 without repeti-
tion. The total number of ways this can be done is

(A) 216 (B) 240 (C) 600 (D) 3125

Solution: A number is divisible by 3 if and only if the 
sum of its digits is divisible by 3. Therefore the numerals 
to be used are 0, 1, 2, 4, 5 or 1, 2, 3, 4, 5. 

In the first case, the number is 5 4 96! ! .- =
In the second case this is 5 120! .=
Therefore, the required number is 96 120 216+ = .

 Answer: (A)

15.  An n-digit number means a positive integer having 
n digits. A total of 900 distinct n-digit numbers are 
to be formed using only the numerals 2, 5 and 7. 
The smallest value of n for which this is possible is

(A) 6 (B) 7 (C) 8 (D) 9

Solution: Each of the places can be filled in 3 ways 
(with 3, 5 or 7). The total number of ways 

3 3 3 3´ ´ ´ =	 (  times)n n 

Now, 

3 900 3 100 2 5 72n n n n³ Û ³ Û - ³ Û ³-

Therefore the smallest value of such n = 7.

 Answer: (B)

16.  The letters of the word MOTHER are arranged 
in all possible ways and the resulting words are 
 written as in a dictionary. Then the rank of the word 
“Mother” is

(A) 301 (B) 304 (C) 307 (D) 309

Solution:

No. of words beginning with E = =5 120!
No. of words beginning with H = =5 120!
No. of words beginning with ME = =4 24!
No. of words beginning with MH = =4 24!
No. of words beginning with MOE = =3 6!
No. of words beginning with MOH = =3 6!
No. of words beginning with MOR = =3 6!
No. of words beginning with MOTE = =2 2!
No. of words beginning with MOTHER = 1

Therefore, the rank of the word “Mother” is

120 + 120 + 24 + 24 + 6 + 6 + 6 + 2 + 1 = 309

 Answer: (D)

17.  There are 2 professors each of mathematics, physics 
and chemistry. The number of ways these 6 profes-
sors can be seated in a row so that professors of the 
same subject be seated together is

(A) 48 (B) 36 (C) 24 (D) 120

Solution: Treat professors of the same subject as a 
single object. Now 3 objects can be arranged in 3! ways. 
But, professors of the same subject can be interchanged 
among themselves in 2 2 2! ! !´ ´  ways. Therefore, the 
required number is 

3 2 2 2 48! ! ! !´ ´ ´ =
 Answer: (A)

18.  Suppose one has to form 7-digit numbers using the 
numerals 1, 2, 3, 4, 5, 6 and 7. If the extreme places are 
occupied by even numerals, then the number of such 
numbers is

(A) 720 (B) 360 (C) 5040 (D) 120

Solution: There are 3 even numbers (2, 4 and 6) and 
2 places (first and last) are to be filled by these. This can 
be done in 3

2P  ways. The remaining five places are to be 
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filled by the remaining five numerals. This can be done in 
5! ways. Therefore the required number is

3

2 5 720P ´ =!

 Answer: (A)

19.  The number of ways of arranging the digits 1, 1, 1, 1, 
1, 2, 2, 2, 3, 3, 3, 4, 5, 5, and 6 taken all at a time so that 
the 3s are separated is

(A) 95315040  (B) 95135040
(C) 95135400  (D) 95153040

Solution: Each 3 can be placed in between the other 
digits or before them or at the end in 

13

3

3

P

!
 ways

Remaining 12 can be arranged in 

12

5 3 2

!

! ! !
 ways

Therefore the required number is 

13

3

3

12

5 3 2
95135040

P

  !

!

! ! !
´ =

 Answer: (B)

20.  Five letters are to be inserted into five addressed 
envelopes. The number of ways of inserting the 
 letters so that no letter goes to its corresponding 
envelope is

(A) 120 (B) 44 (C) 31 (D) 41

Solution: The number of required ways is

5 1
1

1

1

2

1

3

1

4

1

5
120

1

2

1

6

1

24

1

120

60 2

!
! ! ! ! !

- + - + -æ
èç

ö
ø÷

= - + -æ
èç

ö
ø÷

= - 00 5 1 44+ - =

(Note: We have made use of the result in “Try it out” 
after Theorem 6.20.)

 Answer: (B)

21.  The number of 5-digit numbers by using 1, 1, 1, 2, 2 is

(A) 7 (B) 8 (C) 9 (D) 10

Solution: The required number is 

5

3 2
10

!

! ! 
=

 Answer: (D)

22.  The number of cyclic permutations of 5 distinct 
objects is

(A) 24 (B) 120 (C) 60 (D) 42

Solution: The required number is 4 24! .=
 Answer: (A)

23.  The total number of numbers that can be formed by 
using all the digits 1, 2, 3, 4, 3, 2, 1 so that odd digits 
always occupy odd places is

(A) 24 (B) 20 (C) 18 (D) 28

Solution: Among the given digits, there are four odd 
digits (1, 3, 3, 1) and there are four odd places (the first, 
third, fifth, seventh). These four odd places can be filled 
by 1, 3, 3, 1 in 

4

2 2
6

!

! ! 
=  ways

The remaining 3 places (second, fourth, sixth) can be 
filled with 3 digits (2, 4, 2) in 

3

2
3

!

!
=  ways

The total number of required arrangements is 6 3 18´ = .

 Answer: (C)

24.  Let there be four lines and four circles in a plane. Let 
A be the set of all points of intersections of the lines, 
B the set of all points of intersections of the circles 
and C the set of all points of intersections of the lines 
and circles. If n(S) denotes the number of elements 
in S, then the maximum value of n A B C( )È È  is

(A) 40 (B) 50 (C) 66 (D) 70

Solution: The maximum value of n(A) is 4

2 6C = .  
The maximum value of n B( ) .is C2 124

2´ =  Since any 
line cuts a circle at the most in 2 points, the maximum 
number of points in which the lines intersect the circles 
is 8 4 32´ = . Therefore the maximum value of 

n A B C( )È È = + + =6 12 32 50

 Answer: (B)

25.  The total number of mappings from a four element 
set to a three element set is

(A) 54 (B) 12 (C) 27 (D) 81

Solution: If A = {x1, x2, x3, x4} and B = {a1, a2, a3}, then any 
mapping of A into B should take x1 to any of a1, a2, a3 and 
likewise x2, x3 and x4. Therefore the number of mapping 
from A into B is 3 3 3 3 81´ ´ ´ = .

 Answer: (D)

26.  Let f x x x x x x x( ) , ,º - +2

1 2 3 43 3 and and  be solu-
tions of the equation f f x x( ( )) .=  Then the number 
of arrangements of x1, x2, x3 and x4, taken all at a 
time, is

(A) 24 (B) 4 (C) 6 (D) 1
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Solution: Note that every solution of f x x( ) =  is also a 
solution of f f x x( ( )) .=

f x x x x x( ) = Þ - + = Þ =2 4 3 0 3 1or

Therefore, 3 and 1 are roots of f x x( ) .=  Also,

f f x x x x x x x

x x x x

( ( )) ( ) ( )= Þ - + - - + + =

Þ - + - + =

2 2 2

4 3 2

3 3 3 3 3 3

6 12 10 3 0

Since 3 and 1 are roots of f x x( ) ,=  they are roots of 
f f x x( ( )) =  also and therefore

f f x x x x x x x x( ( )) ( )( )( ) ( )( )- = - - - + = - -3 1 2 1 3 12 3

Therefore, 3 1 1 1, , ,  are solutions of f f x x( ( )) .=  Hence 
the number of arrangements of the solutions is

4

3
4

!

!
=

 Answer: (B)

27.  Professors a, b, c and d are conducting an oral exami-
nation for a Ph.D. student x on combinatorics. The 
professors are to sit in chairs in a row. Professors 
a band  are to sit together. Professor c is the guide 
of x and he has to sit by the side of Professors a and 
b. The number of arrangements is

(A) 8 (B) 7 (C) 6 (D) 5

Solution: The arrangements of a, b, c must be abc, bac, 
cab, cba. In each of these arrangements, d can take his seat 
at either end. Therefore the number of  arrangements is

4 2 8´ =
 Answer: (A)

28.  There are 2 copies of each of 3 different books. The 
number of ways they can be arranged in a shelf is

(A) 12 (B) 60 (C) 120 (D) 90

Solution: Totally there are 3 sets of 2 alike books. The 
total number of books is 6. Therefore the number of 
arrangements is

6

2 2 2

720

8
90

!

! ! !
= =

 Answer: (D)

29.  The letters of the word COCHIN are permuted and 
all permutations are arranged in alphabetical order 
as in a dictionary. The number of words that appear 
before the word COCHIN is

(A) 360 (B) 192 (C) 96 (D) 48

Solution: The given word is COCHIN.

The no. of words beginning with CC is 4!
The no. of words beginning with CH is 4!

The no. of words beginning with CI is 4!
The no. of words beginning with CN is 4!
The next word is COCHIN

Therefore, the number of words before COCHIN is 
4 4 96´ =! .

 Answer: (C)

30.  The number of 7-digit numbers whose sum of the 
digits equals 10 and which is formed by using the 
digits 1, 2 and 3 only is

(A) 55 (B) 66 (C) 77 (D) 88

Solution: In a 7-digit number formed by using 1, 2 
and 3, suppose that 1 appears x times, 2 appears y times 
and 3 appears z times. Then by hypothesis

x y z x y z+ + = + + =2 3 10 7and

Solving these equations we get

y z+ =2 3

from which we get either

y = 1, z = 1 and x = 5

or y = 3, z = 0 and x = 4

Therefore, the total number is 

7

5

7

4 3
42 35 77

!

!

!

! !
+ = + =

 Answer: (C)

31.  Eight chairs are numbered 1 to 8. Two women and 
three men wish to occupy one chair each. First the 
women choose the chairs from among the chairs 
numbered 1 to 4 and then men select chairs from 
among the remaining. The number of possible 
arrangements is

(A) 120 (B) 1440 (C) 16 (D) 240

Solution: Two women can sit in 4 chairs in 4

2 12P =  
ways. After the women, the 3 men can sit in the  remaining 
6 chairs in 6

3 120P =  ways. Therefore the total number of 
arrangements 

12 120 1440´ =
 Answer: (B)

32.  Total number of ways in which six “+” signs and 
four “–”  signs can be arranged in a row so that no 
two  “–” signs occur together is

(A) 55 (B) 25 (C) 45 (D) 35

Solution: First arrange the six “+” signs. This can be 
done in only one way. In between the “+” signs, there  
are 7 gaps (including the left most and right most places) 
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The four signs can be arranged in these 7 gaps in 

7

4

4

7 6 5 4

24
35

P

!
=

× × ×
=

 Answer: (D)

33.  Six different coloured hats of the same size are 
to be arranged circularly. The number of arrange-
ments is

(A) 60 (B) 50 (C) 40 (D) 45

Solution: The required number of arrangements is

1

2
6 1 60( )!- =

 Answer: (A)

34.  If 15

3

15

3C Cr r= + , then the value of r is

(A) 5 (B) 4 (C) 6 (D) 3

Solution: If n
r

n
sC C= ,  then either r = s or r + s = n. 

Therefore

15

3

15

3 3 3 15 3 3

3

C C  since  r r r r r r r

r

= Þ + + = Î ¹ +

Þ =
+

+( , )�

 Answer: (D)

35.  If n nC C7 4= ,  then nC8 is equal to

(A) 156 (B) 165 (C) 265 (D) 256

Solution: We have 

n n nC C  since 7 4 7 4 7 4= Þ + = ¹( )

Therefore

nC C C8

11

8

11

3

11 10 9

1 2 3
165= = =

× ×
× ×

=

 Answer: (B)

36.  The value of 47

4

52

31

5
C C+ -

=å ( )r

r
 is

(A) 51

4C  (B) 53

3C  (C) 52

4C  (D) 53

4C

Solution: It is known that nCr + n Cr + 1 = (n + 1)Cr + 1. There-

fore

47

4

52

3

1

5
51

3

50

3

49

3

48

3

47

3

47

4

51

3

50

C C C C C C C C

C

+ = + + + + +

= +

-

=
å ( ) ( )r

r

CC C C C C

C C C C C

C

3

49

3

48

3

47

3

47

4

51

3

50

3

49

3

48

3

48

4

51

3

50

+ + + +

= + + + +

= +

( )

CC C C

C C C

C C C

3

49

3

49

4

51

3

50

3

50

4

51

3

51

4

52

4

+ +

= + +

= + =
 Answer: (C)

37.  If 8 7

3

7

2C C Cr - = ,  then r is equal to

(A) 3 or 5 (B) 5 or 4 (C) 4 or 6 (D) 6 or 5

Solution: We have

8 7

3

7

2

8 7

2

7

3

8

3

C C C  

C C C C

r

r

- =

= + =
This gives

 or   orr r r= + = Þ =3 3 8 3 5

 Answer: (A)

38.  If an n
rr

n

=
=
å 1

0 C

then 
r

n
rr

n

C=
å

0

is equal to

(A) ( )n an- 1   (B) nan

(C) 
nan

2
  (D) ( )n an+ 1

Solution: Let 

s
r n

n
rr

n

n n n
n

= = + + + +
=
å

C C C C0 1 2

0
1 2

	

Also

s
n n

n
n

n
n

n
r

n
n r= +

-
+ + =

-
-

C C
 C C

1
0

1

	 ( )∵

Therefore

2

1

1 2 0

0

s
n n n n

n na

n
n

n
n

n
n

n

n
rr

n

n

= + + + +

= =

- -

=
å

C C C C

C

	

 s
nan=

2

 Answer: (C)

39.  If 28

2

24

2 4 225 11C Cr r: : ,- =  then r is equal to

(A) 24 (B) 14 (C) 7 (D) 12

Solution: We have

28

2

24

2 4

225

11

C

C
r

r-

=

Therefore

28

2 28 2

2 4 28 2

24

225

11

28 27 26 25

2

!

( )!( )!

( )!( )!

( )!

( )

r r
r r

r

-
´

- -
=

× × ×
(( )( )( )2 1 2 2 2 3

225

11r r r- - -
=
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( )( )( )( )

( ) ( )

2 2 1 2 2 2 3
11 28 27 26 25

225

11 14 2 13 2

r r r r- - - =
× × × ×

= × × × × × 33

11 12 13 14= × × ×

From this we have

2 3 11

7

r

r

- =

=
 Answer: (C)

40.  The inequality ( ) ( )n n n n+ ++ > -1

6 4

2

5 5C C C C  holds for 
all n greater than

(A) 8 (B) 9 (C) 7 (D) 1

Solution: Consider

n n n n n n+ + + ++ + = + =1

6 4 5

1

6

1

5

2

6C C C C C C

The given inequality holds Û >+ + C Cn n2

6

2

5

Û
+
+ -

>
+
+ -

Û
-

>
-

Û

 

 

 

( )!

!( )!

( )!

!( )!

!( )! !( )!

n
n

n
n

n n

2

6 2 6

2

5 2 5

1

6 4

1

5 3

11

6

1

3

3 6

9

>
-

Û - >

Û >

n

n

n

 

 

 Answer: (B)

41.  If CK denotes 4CK , then the value of

2
41

4
2

K K

K KK

×
+

æ
èç

ö
ø÷-=

å C

C C

is

(A) 12 (B) 13 (C) 14 (D) 15

Solution: We have

K K KK

K K

K

K

×
+

=
×
×

=
-

C

C C

C

C4 2 2

Therefore

2 2
2

1

2
1 2 3 4 1

41

4
2

1

4 2

2 2 2 2K KK

K KK K

×
+

æ
èç

ö
ø÷

=
æ
èç

ö
ø÷

= + + + =
-= =

å åC

C C
( ) 55

 Answer: (D)

42.  If n
r

n
rK-

+= - ×1 2

13C C( )  and K is positive, then K 
belongs to the interval

(A) ( , )- 3 3  (B) ( , ]3 2

(C)  [ , ]0 3   (D) ( , )3 2

Solution: By hypothesis, 

n
r

n
r

K
-

+

= -
1

1

2 3
C

C

Therefore

r
n

K
+

= -
1

32

Since n r³ + 1,  we have

0
1

1<
+

£
r

n

Hence

0 3 1

3 4

3 2

2

2

< - £

Þ < £

Þ < £

K

K

K

 Answer: (B)

43.  Let Tn denote the number of triangles which can be 
formed using the vertices of a regular polygon of n 
sides. If T Tn n+ - =1 21,  then n is equal to

(A) 6 (B) 7 (C) 5 (D) 4

Solution: To form a triangle, we need three  non-collinear 
points. Therefore, Tn

n= C3. Now

T T

n n

n n

n n

n n

n n n

+

+

- =

- =

+ - =

-
=

- - =

1

1

3 3

3 2 3

2

21

21

21

1

2
21

42

 

C C

C C C

 

( )

( )

00

7 6 0

7 0

( )( )

( )

n n

n n

- + =

= >   since 

 Answer: (B)

44.  The number of selections of 5 distinct letters from 
the letters of the word INTERNATIONAL is

(A) 140 (B) 56 (C) 21 (D) 66

Solution: The distinct letters are I, N, A, T, E, O, L, R. 
Therefore the number of selections of 5 letters is

8

5 56C =
 Answer: (A)

45.  The sides AB, BC and CA of DABC have 3, 4 and 5 
 interior points respectively on them (Figure 6.5). The 
number of triangles that can be formed using these 
 interior points is

(A) 180 (B) 185 (C) 210 (D) 205
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A B

C

FIGURE 6.5 Single correct choice type question 45.

Solution: The number of ways of selecting 3 points 
from among 3 4 5 12+ + =( )  points is 12

3C .  But from 
among these, we have to discount collinear sets of points. 
Therefore the number of triangles is

12

3

3

3

4

3

5

3

12 11 10

3
1 4 10 205C C C C- - - =

× ×
- - - =

!

 Answer: (D)

46.  A box contains two white, three black and four red 
balls. The number of ways of selecting 3 balls from 
the box with atleast one black is

(A) 64 (B) 74 (C) 54 (D) 84

Solution: The number of ways is

9

3

6

3 84 20 64C C- = - =
 Answer: (A)

47.  Five balls of different colours are to be placed in 
three boxes of different sizes. Each box can hold 
all the five balls. The number of ways of placing the 
balls so that no box is empty is

(A) 140 (B) 150 (C) 240 (D) 250

Solution: The number of placings of five different balls 
in three boxes of different sizes is equal to the number of 
surjections of a five-element set onto a three-element set 
which is equal to

( ) ( )- - = × - × + ×

= - + =

-
=

å 1 3 3 2 1

243 96 3 150

3

3

5

0

2
3

3

5 3

2

5 3

1

5K
K

K

KC C C C

 (See Corollary 6.13 or “Try it out” following it.)

 Answer: (B)

48.  There are 10 points in a plane of which no three are 
 collinear and some four points are concyclic. The 
 maximum number of circles that can be drawn using 
these is

(A) 116 (B) 120 (C) 117 (D) 110

Solution: We can draw a circle passing through any 
three given non-collinear points. Therefore, maximum 
number of circles is 

( )10

3

4

3 1 117C C- + =
 Answer: (C)

49.  In a polygon (Figure 6.6), no three diagonals are 
 concurrent. If the total number of points of intersec-
tions of the diagonals interior to the polygon is 70, 
then the number of diagonals of the polygon is

(A) 30 (B) 20 (C) 28 (D) 8

FIGURE 6.6 Single correct choice type question 49.

Solution: To get a point of intersection of two 
 diagonals interior to the polygon, we need 4 vertices of 
the  polygon. It is given that nC4 70= . Therefore

 

 

n n n n

n

( )( )( ) !- - - = ´
= ´ ´ ´
=

1 2 3 70 4

8 7 6 5

8

The polygon has 8 vertices and hence 8 sides. Therefore 
the number of diagonals is 

8

2 8 20C - =
 Answer: (B)

50.  A total of 930 greeting cards are exchanged among the 
residents of flats. If every resident sends a card to every 
other resident of the same flats, then the number of resi-
dents is

(A) 30 (B) 29 (C) 32 (D) 31

Solution: Let n be the number of residents in the flats. 
Then 2 9302´ =nC . Therefore 

 n n

n n

( )

( )( )

- =
- + =

1 930

31 30 0

This gives n = 31 or –30. The second value is not possible 
and hence, n = 31.

 Answer: (D)

51.  From 5 vowels and 5 consonants, the number of 
 four-letter words (without repetition) having 2 
vowels and 2 consonants that can be formed is

(A) 100 (B) 2400 (C) 1600 (D) 24

Solution: Now 2 vowels and 2 consonants can be 
selected in

 5

2

5

2 10 10 100C C´ = ´ =  ways

After selection, the four letters can be permuted in 
4! ways. Therefore, the number of words is

100 4 2400´ =!

 Answer: (B)
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Multiple Correct Choice Type Questions

1.  Let n and r be positive integers such that 1 £ £r n.  
Which of the following is/are true?

(A) n n
n

nP P= -1 (B) n
n

n
nP P= ´ -2 2

(C) n
r

n
rnP P= ´ -

-
1

1  (D) n
r

n
rrP P= ´ -

-
1

1

Solution: We have

n
n

n
n

n
n n

n n
n n

P P=
-

= =
- -

= -
!

( )!

! !

[ ( )]!1 1
1

52.  A total of 6 boys and 6 girls are to sit in a row 
 alternatively and in a circle alternatively. Let m be 
the number of arrangements in a row and n the 
number of arrangements in a circle. If m Kn= , then 
the value of K is

(A) 10 (B) 11 (C) 12 (D) 13

Solution: Linear permutations with boy in the first 
place are of the form B G B G B G B G B G B G and the 
number of such is 6 6! !.´  The number of linear permu-
tations with girl in the first place is 6 6! !.´  Therefore the 
number of row arrangements is

2 6 6´ ´! !

Regarding circular permutation, start with a place which 
can filled by a boy or a girl and after that the arrange-
ment becomes linear. Placing the boys first and then 
arranging the girls in 6 gaps, the number of such circu-
lar arrangements is 5 6! !.´  Now, m = ´ ´2 6 6! ! and 
n = ´5 6! !.  Therefore

 m = Kn
 

2 6 6 5 6

12

´ ´ = ´ ´

=

! ! ! !K

K
 Answer: (C)

53.  From the vertices of a regular polygon of 10 sides, 
the number of ways of selecting three vertices such 
that no two vertices are consecutive is

(A) 10 (B) 30 (C) 50 (D) 40

Solution: Let A1, A2, …, A10 be vertices of a regular 
polygon of 10 sides. 

The number of ways of selecting 3 vertices is 10

3C .
The number of ways of selecting 3 consecutive vertices is 
( , , , , ) .i.e.  A A A A A A A A A1 2 3 2 3 4 10 1 2 10… =
The number of ways of selecting three vertices such that 
two vertices are consecutive = (First select 2 consecutive 
vertices, leave their neighboring two vertices and select 
one more from the remaining 6 vertices) is

10 606

1´ =C

The total number of required selections is

10

3 10 60 120 70 50C - - = - =
 Answer: (C)

54.  The number of proper divisors of 240 is

(A) 18 (B) 20 (C) 19 (D) 24

Solution: Proper divisors of a number are divisors 
other than unity and itself. We have

240 2 3 54 1 1= ´ ´

Any divisor of 240 is of the form 2 3 5 1a b c´ ´ ,  where 
0 4 0 1£ £ £ £a b,   and 0 1£ £c . Therefore the number 
of proper divisors is

5 2 2 2 20 2 18´ ´ - = - =
 Answer: (A)

55.  There are 7 distinguishable rings. The number of 
 possible five-ring arrangements on the four fingers 
(except the thumb) of one hand (the order of the 
rings on each finger is to be counted and it is not 
required that each finger has a ring) is

(A) 214110  (B) 211410
(C) 124110  (D) 141120

Solution: There are 7 5C  ways of selecting the rings to be 
worn. If a, b, c, d are the numbers of rings on the  fingers, 
we need to find the number of quadruples (a, b, c, d) of 
 non-negative integers such that a b c d+ + + = 5. The 
number of such quadruples is 

( )

( ) ( )5 4 1

4 1

8

3

+ -
- =C C

For each set of 5 rings, there are 5! assignments. Therefore, 
the total number of required arrangements is 

7

5

8

3 5 141120C C´ ´ =!

 Answer: (D)

56.  The number of ordered pairs of positive integers (a, b), 
such that their least common multiple is the given 
 positive integer 72 ´ 113 ´ 194, is

(A) 215 (B) 315 (C) 415 (D) 195

Solution: By Theorem 6.21, the required number 
of ordered pairs of positive integers (a, b), such that 
the least common multiple of a and b is the number 
72 ´ 113 ´ 194, is equal to

( )( )( )2 2 1 2 3 1 2 4 1 5 7 9 315´ + ´ + ´ + = ´ ´ =
 Answer: (B)



Chapter 6  Permutations and Combinations306

n
n

n
n

n
r

n n

n
n r

n
n

n r
n

P P

P

= = = ´

=
-

= ×
-

- - -
=

-
! !

!

!

( )!

( )!

[( ) ( )]!

1
2

2
2

1

1 1

2

××

´ = ´
-
-

¹

-
-

-
-

n
r

n
r

n
rr r

n
n r

P

1

1

1

1

1

P

    P
( )!

( )!

 Answers: (A), (B), (C)

2.  Given that nPr = n(n - 1)(n - 2) … (n - r + 1). Then 
which of the following are true?

(A) n nP   4 1680 8= Þ =  (B) 12 1320 3P   r r= Þ =
(C) 13 1220 4P   r r= Þ =  (D) n nP   3 1220 9= Þ =

Solution: (A) We have

n n n n n( )( )( )- - - = = ´ ´ ´ Þ =1 2 3 1680 8 7 6 5 8  

(B) We have

12 12 1 12 1 1320

11 10 13 110

3

( ) ( )

( )

- - + =

× - =

=

	

	

r

r

r

 

 

(C) It is not true, since 13 is not a factor of 1220.

(D) For the similar reason as (C), (D) is also not true.

 Answers: (A), (B)

3.  x is one among n distinct objects and 1 £ £r n  an 
 integer. Then which of the following are true?

(A)  The number of permutations of r objects that 
involve the object x is r n

r! .´ -
-

1

1P

(B)  The number of permutations of r-objects that do 
not involve the object x is n

r
-1P .

(C)  n r r
n

rn rP P P= - + ´ -( ) .1 1

(D)  The number of permutations of r-objects that 
involve x is r n

r´ -
-

1

1P .

Solution: A permutation involving x implies that x is 
in one of the r places. The remaining r – 1 places are to be 
filled with n – 1 objects. This can be done in n

r
-

-
1

1P  ways. 
Therefore, the total number of permutations of r objects 
involving x is r n

r´ -
-

1

1P .  Therefore (D) is correct and
(A) is not correct.

The permutations of r-objects not involving x is n r
-1P , 

since r places have to filled with objects of (n – 1)- element 
set. Therefore (B) is correct. Also,

n
r

n
r

n
rrP P P= + ´- -

-
1 1

1( )

and hence (C) is correct.

 Answers: (B), (C), (D)

4.  Consider the word ALLAHABAD. Which of the 
 following statements are true?

(A)  The total number of words that can be formed 
using all the letters of the word is 7560.

(B)  The number of words which begin with A and end 
with A is 1260.

(C)  The number of words in which vowels occupy the 
even places is 60.

(D)  The number of words in which all the four vowels 
occupy adjacent places is 360.

Solution: The word ALLAHABAD consists of 4 As,
2 Ls, 1 B, 1 D and 1 H.

(A)  Out of the total 9 objects, 4 are alike of one kind and 
2 are alike of another kind. Therefore, the number 
of words is

9

4 2

9 8 7 6 5

2
7560

!

! ! 
=

× × × ×
=

(B)  Put one A in the first place and another in the last 
place. In the remaining there are 2 As and 2 Ls. The 
number of such words is

7

2 2
1260

!

! ! 
=

(C)  There are four even places and 4 vowels A, A, A, A. 
These can be put in even places in only one way. The 
remaining 5 letters can be arranged in

5

2
60

!

!
= ways

(D)  Consider all the four as a single letter, so that among 
six objects, 2 are alike. Therefore, the number of such 
arrangements is

6

2
360

!

!
=

 Answers: (A), (B), (C), (D)

5.  Consider the letters of the word INTERMEDIATE. 
Which of the following is (are) true?

(A)  The number of words formed by using all the 
letters of the given word is ( !)/( ! !).12 3 2 

(B)  The number of words which begin with I and end 
with E is ( !)/( ! !).10 2 2 

(C)  The number of words in which all the vowels 
come together is ( ! !)/( ! ! !).7 6 3 2 2×   

(D)  The number of words in which no two vowels 
come together is 360 ´ 420.

Solution: The given word consists of 12 letters in which 
there are 3 Es, 2 Is and 2 Ts and the remaining 5 are distinct. 

(A)  The number of words using all the letters is

( )!

! ! !

12

3 2 2  

Therefore (A) is false.
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(B)  Put I in the first place and E in the last place. In 
the remaining 10 letters, there are 2 Es and 2 Ts. 
Therefore the number of such words is

( )!

! !

10

2 2 

Therefore (B) is true.

(C)  Treat all the vowels as a single object (letter). In 
the remaining six letters, there are 2 Ts. Now, the 
7 let ters can be arranged in 7 2!/ ! ways. But the 
vowels (3 Es, 2 Is and 1 A) can be arranged among 
themselves in 

6

3 2

!

! ! 
 ways

Therefore the number of such words is

7

2

6

3 2

!

!

!

! !
´

 

Therefore (C) is true.

(D)  Among the six consonants, there are seven gaps in 
which the vowels can be arranged in 

7

6

3 2

P

 ! !
 ways

The consonants can be arranged in 

6

2

!

!
 ways

Therefore the number of words in which no two 
vowels come together is

7

6

3 2

6

2
420 360

P

 ! !

!

!
´ = ´

 Answers: (B), (C), (D)

6.  The letters of the word ARTICLE are arranged in 
all possible ways. Then which of the following is 
(are) true?

(A)   Number of words formed by using all the letters 
is 5040.

(B)  The number of words with vowels in even places 
is 144.

(C)   The number of words with vowels in odd places 
is 576.

(D)  The number of words with I in the middle is 720.

Solution:

(A)  Seven different objects can be arranged in 7! =
5040 ways.

(B)  There are 3 even places and 3 vowels. Therefore the 
vowels can be arranged in even places in 3!, ways and 

after that the remaining 4 letters can be arranged in 4! 

ways. Therefore, the required number is 3 4 144! ! .´ =
(C)  As in (B), the required number is 4P3 ´ 4! = 4! ´ 

4! = 576.

(D)  With I in the middle, the remaining 6 letters can be 
arranged in 6 720! =  ways.

 Answers: (A), (B), (C) and (D)

7.  If n
r

n
rC  C- = =1 36 84,  and n

rC + =1 126, then

(A) n = 8 (B) r = 3 (C) n = 9 (D) r = 4

Solution: We have

n
r

n
r

n r
r

C

C -

=
- +

=
1

1 84

36

 n r
r

- +
=

1 7

3
 (6.1)

 3 10 3n r- = -

Again

 
n

r
n

r

n r
r

C

C
+ =

-
+

=1

1

126

84
 (6.2)

 

3

2 1
=

-
+

n r
r

 2 5 3n r- =

Solving Eqs. (6.1) and (6.2), we get n = 9 and r = 3.

 Answers: (B) and (C)

8.  If n
r

n
rP P= +1  and n

r
n

rC C= -1, then

(A) n = 3 (B) r = 1 (C) r = 2 (D) n = 4

Solution: We have

 

n
r

n
r

n
n r

n
n r

n r

P P=

-
=

- -

- =

+1

1

1

!

( )!

!

( )!

 (6.3)

 

n
r

n
r

n
r n r

n
r n r

r n r

r n

C C

 

2

=

´ -
=

- - +

=
- +

- =

-1

1 1

1 1

1

1

!

! ( )!

!

( )!( )!
 (6.4)

Solving Eqs. (6.3) and (6.4), we get r = 2 and n = 3.

 Answers: (A) and (C)
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1.  A total of 6 boys and 6 girls are to be arranged in a row. 
Certain stipulations on their arrangements are given 
in Column I and the number of such arrangements is 
given in Column II. Match the items in Column I with 
those in Column II.

Column I Column II

(A)  The number of arrangements in 
which all the girls are together is

(p) 7 6! !´

(B)  The number of arrangements in 
which no two girls are together is

(q) 6 6 7! !´ ´

(C)  The number of arrangements in which 
boys and girls come alternately is

(r) 2 6 6´ ´! !

(D)  The number of arrangements 
in which the first place is to be 
occupied by a specified girl and 
the last place by a specified boy is

(s) (10)!

Solution:
(A)  Consider all the 6 girls as a single block so that there are 

6 1 7+ =  objects which can be arranged in 7! ways. In 
the block of girls, 6 can be arranged among themselves 
in 6! ways. Therefore the required arrangements are 

7 6 6 6 7! ! ! !´ ´ ´or

 Answer: (A) Æ (p)

(B)  Since no two girls should come together, arrange the 6 
girls in 7 gaps (including before the boys and after the 
boys) which can be done in 7

6P  ways. After arranging 
the girls, the 6 boys can be arranged among themselves 
in6! ways. Therefore, the required arrangements are

7

6 6 7 6 6 6 7P ´ = ´ = ´ ´! ! ! ! !

 Answer: (B) Æ (p), (q)

(C)  Since the boys and girls come alternately, the  
arrangement may begin with a boy or a girl as BG 
BG BG BG BG BG or GB GB GB GB GB GB. 
Number of such arrangements is 2 6 6´ ´! !.

 Answer: (C) Æ (r)

(D)  Put the specified girl in the first place and the 
 specified boy in the last place. The remaining 
10(5 + 5) can be arranged in ( )!10  ways. 

 Answer: (D) Æ (s)

2.  Four-digit numbers, without repetition of digits, are 
formed using the digits 0, 3, 4, 5. Certain stipulations 
on arrangements are given in Column I and their 
 numbers are given in Column II. Match these.

Column I Column II

(A)  Total number of four-digit numbers 
that can be formed is

(p) 8

(B)  Total number of even numbers that 
can be formed is

(q) 10

(r) 13442

(s) 18

(t) 13440

(C)  Total number of odd numbers that 
can be formed is

(D)  The sum of all the four-digit  numbers is

Solution:

(A)  The total number of four-digit numbers that can be 
formed is given by
(No. of arrangements of 0, 3, 4 and 5) – (No. of 
arrangements with 0 in the left end)

4 3 18! !- =
 Answer: (A) Æ (s)

(B)  A number among these is even if 0 or 4 is in the units 
place. The number of even numbers 

(i)  with 0 in the units place = =3 6!
(ii)  with 4 in the units place = - =3 2 4! !

Therefore the total number of even numbers  
= 6 + 4 = 10.

 Answer: (B) Æ (q)

(C)  No. of odd numbers = Total No. – No. of even numbers

= - =18 10 8

 Answer: (C) Æ (p)

(D)  Contribution of 0 to the sum = + + =100 10 0 110

Contribution of 3 to the sum = + + + =3000 300 30 3 3333
Contribution of 4 to the sum = + + + =4000 400 40 4 4444
Contribution of 5 to the sum = + + + =5000 500 50 5 5555

The sum of all the numbers =

110 3333 4444 5555 110 1111 3 4 5

110 13332 13442

+ + + = + + +

= + =

( )

 Answer: (D) Æ (r)

3.  In Column I the types of distributions of playing cards 
and, in Column II, their corresponding number of 
 distributions is given. Match the items in Column I 
with those in Column II.

Column I Column II

(A)  52 playing cards are to be equally 
distributed among four players. The 
number of possible distributions is

(p) 
( )!

[( )!]

52

13 4

(q) 
( )!

![( )!)]

52

4 13 4

(r) 
( )!

![( )!]

52

3 17

(s) 
( )!

!(( )!)

52

2 26 2

(B)  52 cards are to be divided into 
four equal groups

(C)  52 cards are to be divided into 4 
sets, three of them having 17 cards 
each and the 4th has just one card

(D)  52 cards are to be divided equally 
into two sets

Matrix-Match Type Questions
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Solution:

(A) The required number of distributions is

52

13

39

13

26

13

13

13

52

13 52 13

39

13 39 1
C C C C´ ´ ´ =

-
´

-
( )!

( )!( )!

( )!

( )!( 33

26

13 26 13
1

52

13 4

)!

( )!

( )!( )!

( )!

[( )!]

´
-

´

=

 Answer: (A) Æ (p)

(B)  To be divided into 4 equal groups. Elements of one 
group can be exchanged with another. This is  possible 
in 4! ways. Therefore, the number of divisions is

 
( )!

![( )!]

52

4 13 4

 Answer: (B) Æ (q)

(C)  Three of them get 17 each. Again cards can be 
exchanged among these 3 in 3! ways. Therefore, the 
number of divisions is

( )!

![( )!]

52

3 17 3

 Answer: (C) Æ (r)

(D) The number of distributions is

52

26

26

26

22

52

2 26

C C×
=

!

( )!

![( )!]

 Answer: (D) Æ (s)

4.  A committee of 12 members is to be formed from
9 women and 8 men. Match the statements in Column I 
with the numbers in Column II.

Column I Column II

(A)  The number of ways of forming the 
committee with 6 men and 6 women

(p) 1008

(B)  The number of ways of forming the 
committee with atleast 5 women

(q) 2702

(C)  The number of ways of forming the 
committee with women in majority

(r) 6062

(D)  The number of ways of forming the 
committee with atleast 5 women and 
with men in majority

(s) 2352

Solution:

(A)  The number of ways of forming the committee with 
6 men and 6 women from 9 women and 8 men is

9

6

8

6

9 8 7

3

8 7

2
84 28 2352C C´ =

× ×
´

×
= ´ =

! !

 Answer: (A) Æ (s)

(B)  The number of ways of forming the committee with 
atleast 5 women is

( ) ( ) ( )

( ) ( )

9

5

8

7

9

6

8

6

9

7

8

5

9

8

8

4

9

9

8

3

C C C C C C

C C C C

´ + ´ + ´

+ ´ + ´

=
× × ×

´æ
èç

ö
ø÷

+
× ×

´
×æ

èç
ö
ø÷

+
×

´
× ×æ

èç
ö
ø÷

9 8 7 6

4
8

9 8 7

3

8 7

2

9 8

2

8 7 6

3! ! ! ! !

++ ´
× × ×æ

èç
ö
ø÷

+ ´
× ×æ

èç
ö
ø÷

= + + + + =

9
8 7 6 5

4
1

8 7 6

3

1008 2352 2016 630 56

! !

66062

 Answer: (B) Æ (r)

(C)  The number of ways of forming the committee with 
women in majority 

( ) ( ) ( )9

7

8

5

9

8

8

4

9

9

8

3C C C C C C´ + ´ + ´

=
×

´
× ×æ

èç
ö
ø÷

+ ´
× × ×æ

èç
ö
ø÷

+ ´
× ×æ

èç
ö
ø÷

=

9 8

2

8 7 6

3
9

8 7 6 5

4
1

8 7 6

3

201

! ! ! !

66 630 56 2702+ + =
 Answer: (C) Æ (q)

(D)  The number of ways of forming the committee with 
atleast 5 women and with men in majority 

9

5

8

7

9 8 7 6

4
8 1008C C´ =

× × ×
´ =

!

 Answer: (D) Æ (p)

5.  A total of 11 players are to be selected for a cricket 
match from a cricket squad consisting of 6  specialist 
batsmen, 3 all rounders, 6 specialist bowlers and 
2 wicketkeepers (who can also bat well). Match the 
items in Column I with those in Column II.

Column I Column II

(A)  The number of selections which 
contain 4 specialist batsmen, 3 all 
rounders, 3 specialist bowlers and a 
wicketkeeper

(p) 600

(B)  The number of selections which contain 
5 specialist batsman, 2 all rounders, 3 
specialist bowlers and a wicketkeeper

(q) 720

(C)  The number of selections which 
contain 4 specialist batsman, 1 all 
rounder, 4 specialist bowlers and 
2 wicketkeepers

(r) 675

(D)  The number of selections which 
contain 4 specialist batsmen, 2 all 
rounders, 3 specialist bowlers and 
2 wicketkeepers

(s) 900

Solution: Consider the table on the next page.
 Answer: (A) Æ (p); (B) Æ (q); (C) Æ (r); (D) Æ (s)
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6.  A 17 member hockey squad contains 4 peculiar 
players A, B, C and D. Players A and B wish to play 
together or be out of the team together. Players C 
and D are such that if one plays the other does not 
want to play. A team of 11 players is to be selected 
from the squad. Match the items in Column I with 
those in Column II.

Column I Column II

(A)  No. of selections including A and B 
and one of C, D is

(p) 13

9C

(B)  No. of selections including A and B 
and excluding both C and D is

(q) 13

11C

(C)  No. of selections excluding A and 
B and including one of C and D is

(r) 
13

8 2C ´

(D)  No. of selections excluding all of 
A, B, C and D is

(s) 2 13

10´ C

Solution:

(A)  In addition to A, B and C, 8 more are to be selected 
from out of 13 (other than A, B, C and D) in 
13

8C  ways. Similarly, in addition to A, B and D, 
another 13

8C  ways. Therefore, the required number 
is 2 13

8´ C .

 Answer: (A) Æ (r)

(B)  In addition to A and B, 9 more are to be selected 
from among of 13 (other than A, B, C and D) in 
13

9C  ways.

 Answer: (B) Æ (p)

(C)  10 players are to be selected, in addition to C, from 
among 13 (other than A, B, C and D). This can be 
done in 13

10C  ways. Similarly, selections including D 

can be made in 13

10C  ways. Therefore the required no. 
is 2 13

10´ C .

 Answer: (C) Æ (s)

(D)  The number of selections of 11 persons from among 
13 persons (other than A, B, C and D) is 13

11C .

 Answer: (D) Æ (q)

7.  Match the statements in Column I with the numbers 
given in Column II.

Column I Column II

(A)  There are 12 points in a plane out 
of which 5 are collinear and no 3 of 
the remaining are collinear. Then 
the number of lines that can be 
formed by joining pairs of these 
points is

(p) 1296

(B)  The number of triangles that can 
be formed by using the points 
mentioned above is

(q) 57

(C)  The number of rectangles that can 
be formed by using the squares in a 
chess board is

(r) 420

(D)  A set of 8 parallel lines are 
intersected by another set of 6 
parallel lines. Then the number of 
parallelograms thus formed is

(s) 210

Solution:

(A)  The five collinear points give us one straight line. 
Therefore the required number is

12

2

5

2 1
12 11

2

5 4

2
1 57C C- + =

×
-

×
+ =

 Answer: (A) Æ (q)

(B)  A triangle is formed with three non-collinear points. 
Therefore the number of triangle that can be formed is

12

3

5

3 210C C- =
 Answer: (B) Æ (s)

(C)  A chess board consists of 9 horizontal and 9 vertical 
lines. To form a rectangle (it may be a square) we need 
2 horizontal and 2 vertical lines. Therefore the 
number of rectangles is

9

2

9

2 36 36 1296C C´ = ´ =
 Answer: (C) Æ (p)

(D)  We select 2 from 8-lines set and 2 from 6-lines set. 
Therefore the number of parallelograms is

8

2

6

2 28 15 420C C´ = ´ =
 Answer: (D) Æ (r)

Item in 
column I

Specialist 
batsmen (6) All rounders (3)

Specialist 
bowlers (6) Wicketkeepers (2) Number of selections

(A) 4 3 3 1
6

4

3

3

6

3

2

1 600C C C C´ ´ ´ =  (p)

(B) 5 2 3 1
6

5

3

2

6

3

2

1 720C C C C´ ´ ´ =  (q)

(C) 4 1 4 2
6

4

3

1

6

4

2

2 675C C C C´ ´ ´ =  (r)

(D) 4 2 3 2
6

4

3

2

6

3

2

2 900C C C C´ ´ ´ =  (s)
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1.  Passage: 4 Indians, 3 Americans and 2 Britishers are 
to be arranged around a round table. Answer the 
 following questions.

 (i) The number of ways of arranging them is

(A) 9! (B) 
1

2
9! (C) 8! (D) 

1

2
8!

 (ii)  The number of ways arranging them so that the 
two Britishers should never come together is

(A) 7 2! !´  (B) 6 2! !´  (C) 7! (D) 6 6

2! P

 (iii)  The number of ways of arranging them so that 
the three Americans should sit together is

(A) 7 3! !´  (B) 6 3! !´  (C) 6 6

3! P  (D) 6 7

3! P

Solution:

 (i)  n distinct objects can be arranged around a circular 
table in ( )!n - 1  ways. Therefore the number of ways 
of arranging 4 3 2+ +  people = 8!.

 Answer: (C)

 (ii)  First arrange 4 Indians and 3 Americans around a 
round table in 6! ways. Among the six gaps, arrange 
the two Britishers in 6

2P  ways. Therefore the total 
number of arrangements in which Britishers are 
separated is 6 6

2! .´ P

 Answer: (D)

(iii)  Treating the 3 Americans as a single object, 7 (= 4 + 
1 + 2) objects can be arranged cyclically in 6! ways. 
In each of these, Americans can be arranged among 
 themselves in 3! ways. Therefore, the number of 
required  arrangements is 6 3! !.´

 Answer: (B)

2.  Passage: 4 prizes are to be distributed among 
6  students. Answer the following three questions.

 (i)  The number of ways of distributing the prizes, if 
a student can receive any number of prizes, is

(A) 1296 (B) 163 (C) 15 (D) 30

 (ii)  The number of ways of distributing the prizes, if 
a student cannot receive all the prizes, is

(A) 163 – 16 (B) 1290 (C) 11 (D) 26

 (iii)  If a particular student is to receive exactly 2 prizes, 
then the number of ways of distributing the prizes is

(A) 25 (B) 32 (C) 150 (D) 36

Solution:

(i)  Let the prizes be P1, P2, P3 and P4. P1 can be given 
to any one of the 6 students and so are P2, P3 and P4. 
Therefore the number of distributions is 6 12964 = .

 Answer: (A)

  (ii)  The number of ways in which all the four prizes can 
be given to any one of the 6 students = 6. Therefore 
the required number of ways is 6 6 12904 - = .

 Answer: (B)

(iii)  Give a set of two prizes to the particular student. 
Then the remaining 2 can be distributed among 
5  students in 52 ways. There are 4

2C  sets, each 
 containing 2 prizes. Therefore the required number 
of ways of distributing the prizes is

5 25 6 1502 4

2´ = ´ =C

 Answer: (C)

3.  Passage: A security of 12 persons is to form from a 
group of 20 persons. Answer the following questions.

 (i)  The number of times that two particular persons 
are together on duty is

(A) 
20

12 8

!

! !
 (B) 

18

10 8

!

! !
 (C) 

20

10 8

!

! !
 (D) 

20

10 10

!

! !

 (ii)  The number of times that three particular 
persons are together on duty is

(A) 
17

8 9

!

! !
 (B) 

17

8 8

!

! !
 (C) 

20

17 3

!

! !
 (D) 

20

9 8

!

! !

 (iii)  The number of ways of selecting 12 guards such 
that two particular guards are out of duty and 
three  particular guards are together on duty is

(A) 
( )!

( )! !

20

15 5
 (B) 

( )!

! !

18

9 3
 (C) 

( )!

! !

15

9 6
 (D) 

( )!

! ( )!

15

5 10

Solution:

 (i)  Let A and B two particular guards who want to be 
in duty together. We can select 10 more from the 
 remaining 18 persons in 18

10C  ways. Therefore the 
required number is 

( )!

( )! !

18

10 8

 Answer: (B)

 (ii)  In addition to the three particular persons who want 
to be in duty together, we can select 9 more from 
the remaining 17 persons in 17

9C  ways. Therefore, 
the required number is 

17

8 9

!

! !

 Answer: (A)

(iii)  Let A and B be out of duty and P, Q, R be 
 particular persons who want to be in duty together. 
Then, we can choose 9 more from among the 

Comprehension-Type Questions
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6.1  The symbol n! (Factorial n): 0! = 1. If n is a positive 
 integer, the n! means the number n(n - 1) (n - 2) 	 2·1. 
One can note that n! = n(n - 1)!

Permutations

6.2  Permutation: Arrangement of objects on a line is 
called linear permutation.

6.3  Circular permutation: Arrangement of objects in a 
circular form.

6.4  Permutation as a bijection: If X is a finite set, 
then any bijection from X onto X is a permuta-
tion. That is arrangement of n distinct objects 
taken all at a time.

6.5  Theorem: The number of arrangements of n distinct 
objects taken all at a time is n!.

6.6  Theorem: The number of permutations of n objects 
taken r at a time (0 ≤ r ≤ n) is

n(n - 1) (n - 2) 	 (n - r + 1) = 
n

n r
!

( )!-

6.7  Symbol nP r  : If n is a positive integer and 0 ≤ r ≤ n is 
an integer, then n

rP  denotes the number of permuta-
tions of n distinct objects taken r at a time without 
repetitions and this

nPr = n(n - 1) (n - 2) 	 (n - r + 1) = 
n

n r
!

( )!-

6.8  Useful formulae:

(1) n
rP

!

!
= ( )

n
n r-

(2) n
rP ( )

( )= ×n n
r

-
-

1

1P

(3) n
rP ( ) ( )= + ×n

r
n

rr- -
-

1 1

1P P

6.9  Permutations with repetitions:

(1)  The number of permutations of n dissimilar 
things taken r at time, when repetition of objects 
is allowed any number of times is nr.

(2)  Total number of permutations of n dissimilar objects 
taken r at a time with atleast one repetition is nr n

r- P .

6.10  Circular permutations: The number of  circular 
 permutations of n dissimilar things is (n - 1)!. This 
number includes both anticlockwise and clockwise 

   SUMMARY

remaining 15 persons (excluding A and B) in 15

9C  
ways. Therefore, the required number is 

( )!

! !

15

9 6

 Answer: (C)

4.  Passage: The letters of the word MULTIPLE are 
arranged in all possible ways. Answer the following 
three questions.

 (i)  The number of arrangements in which the order 
of the vowels does not change is

(A) 3330 (B) 3320 (C) 3340 (D) 3360

 (ii)  The number of arrangements in which the 
vowels’ positions are not disturbed is

(A) 60 (B) 260 (C) 160 (D) 320

 (iii)  The number of arrangements in which the relative 
order of vowels and consonants is not disturbed is

(A) 460 (B) 420 (C) 360 (D) 440

Solution:

(i)  The order of vowels does not change means, first u 
occurs, then i and then e must occur. The total number 
of arrangements is

8

2

!

!
 (since there are two l)

In each of these arrangements, vowels may occur in 
3! ways. Therefore the number of arrangements in 
which u, i, e occur in this order is

8

2

1

3
3360

!

! !
´ =

 Answer: (D)

 (ii)  Keeping u, i, e in their respective places, the number 
of arrangements is

5

2
60

!

!
=

 Answer: (A)

(iii)  Keeping the relative positions of vowels and 
 consonants means, the vowels can be interchanged 
among themselves and so can the consonants. 
Therefore the number of required arrangements is

5

2
3 60 6 360

!

!
!´ = ´ =

 Answer: (C)
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senses. If the sense is not considered, then the 
number is

n- 1

2

( )!

QUICK LOOK 

(1)  For live objects the sense will be considered.
(2)  For non-live objects the sense will not be considered.

6.11  Permutations with alike objects:

(1)  Out of n objects, suppose p objects are alike and 
the rest are distinct. Then, the number of permu-
tations of the n objects taken all at a time is n p!/ !.

(2)  Suppose n1, n2, …, nK are number of alike objects 
of different kinds. Then the number of permuta-
tions of all these objects is

n n n

n n n
K

K

1 2

1 2

+ + +( )	
	

!

! ! !

Combinations

6.12  Combination: Selection of objects.

6.13  Symbol n
r or

n
r

:C  
æ
èç

ö
ø÷

 The number of combinations 

of n distinct objects taken r(0 ≤ r ≤ n) at a time is 
denoted by n

rC .

6.14  Value of n
rC :

n
r

n
r

r

n n n n r

r
C

P
= =

-( ) -( ) - +( )
! !

1 2 1	

= ( )
n

r n r
!

! !-
n n

nC C0 1= =

QUICK LOOK 

n
r

n
n rC C= -

6.15  Useful tips:

(1) n
r

n
s r s r s nC Either or= Þ = + =C .

(2) n
r

n
r

n
rC C C+ =-

+
1

1( ) .

(3) r n
r

n n

r
´ ´C C= ( ) .-

-

1

1

6.16  Combinations with alike objects: If p1, p2, …,  pK are 
number of alike objects of different kinds, then 
the number of all selections (with one or more) is 
( p1 + 1) ( p2 + 1) … ( pK + 1) - 1.

6.17  Number of divisons: If 1 < =n p p pK
K

1 2
1 2a a a× 	  is 

a positive integer where p1, p2, …, pK are distinct 
prime numbers, then the number of positive divi-
sions of n is (a1 + 1) (a2 + 1) 	 (aK + 1).

Note that this number includes both 1 and n.

6.18  Writing a positive integer as a sum of (atleast 
two) positive integers considering the same set of 
integers in a different order being different is 2 11n- - .

6.19  Useful results (on integer solutions):

(1)  Let m and n be positive integers such that 
m ≤ n. Then the number of m-tuples (x1, x2, …, 
xm) of positive integers satisfying the equation 

x1 + x2 + 	 + xm = n is (n -1)C
(m-1)

.

(2)  The number of m-tuples (x1, x2, …, xm) of 
 non-negative integers satisfying the equation 
x1 + x2 + 	 + xm = n is ( )

( )
.n m

m

+ -
-

1

1
C

6.20  Plane divided by lines: The maximum number of 
parts into which a plane is divided by n lines is

n n2 2

2

+ +

6.21  Number of injections and bijections: Let X and Y 
be non-empty finite sets having m elements and n 
 elements, respectively. Then

(1)  The number of functions (mappings) from Y to 
X is mn.

(2)  The number of injections from Y to X is zero if 
m < n and m

nP  if m ≥ n.

(3)  The number of bijections from Y to X is zero if 
m < n and m! if m = n.

6.22  Number of surjections:

(1)  Recursive formula: For any positive integers 
m ≥ r > 0, the number am r( ) of surjections from 
an m-element set onto an r-element set is given 
by a recursive formula

a am
m r

s
s

r

mr r s( ) ( )=
=

-

å- C
1

1

(2) Direct formula:

am
s r

r s
s

r
mr r s( ) ( ) ( )( )= - -

=

-

å 1
0

1

C -

6.23  Derangement: Let X be a non-empty set and
f : X ® X is a bijection (also called permutation), 
such that f(x) ≠ x for all x Î x. Then f is called 
 derangement of X.
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   EXERCISES

Single Correct Choice Type Questions

1.  The number of different 6 letters words that can be 
formed by using 5 distinct consonants, 4 vowels and 3 
capital letters  (distinct) which begin with a capital letter, 
but consisting of 1 capital, 3 consonants and 2 vowels is

(A) 21500 (B) 21600 (C) 20600 (D) 20500

2.  The number of ways of arranging the letters of the 
word SINGLETON excluding the given word is

(A) 9!  (B) 9! – 1

(C) 
1

2
9 1( !) -   (D) 

1

2
9 1( ! )-

3.  Let A = {a | a is a prime number and a < 31}. The 
number of rational numbers of the form a b/ ,  where a 
and b AÎ  and a b¹ ,  is

(A) 180 (B) 92 (C) 91 (D) 90

4.  Let A be the set of all four-digit numbers of the form 
x x x x1 2 3 4  where x x x x1 2 3 4> > >  and each xi may 
take the values from 1 to 9. Then n(A) is

(A) 126 (B) 84 (C) 210 (D) 64

5.  The numerals 1 2 3 9, , , ,…  are arranged in all possible 
ways such that the digit in the middle is greater than 
all its preceding digits and less than all its succeeding 
digits. The number of such arrangements is

(A) 24 (B) 120 (C) 360 (D) 576

6.  There are three coplanar lines. On each of these lines,
p number of points are taken. The maximum number 
of  triangles that can be formed with vertices at these 
points is

(A) 3 12p p( )-  (B) 3 1 12p p( )- +
(C) p p2 4 3( )-  (D) 3 4 32p p( )-

 7.  The number of pairs of words (x, y), x containing 
4  letters and y containing 3 letters, from the letters of 
the word STATICS is

(A) 1260 (B) 396 (C) 829 (D) 796

 8.  Let n ³ 3 and A be a set of n elements. Let P = (x, y, 
z) where x, y, z Î A. Then the number of points P such 
that atleast two of x, y, z are equal is

(A) 3 2 12n n- +  (B) n3

(C) nP3   (D) n Pn3

3- ( )

 9.  Let A n= { , , , , }.1 2 3 …  The number of bijections f 
from A onto A for which f ( )1 1¹  is

(A) n! - n  (B) n! - (n-1)!

(C) n2 - n  (D) (n-1)!

10.  The number of triangles whose vertices are the 
 vertices of a polygon of n sides but whose sides are 
not the sides of the polygon is

(A) 
n

n n
6

4 5( )( )- -  (B) 
n

n n
6

3 4( )( )- -

(C) 
n

n n
6

1 2( )( )- -  (D) 
n

n n
6

2 3( )( )- -

11.  Ten lines are given in a plane such that no two are 
 parallel and no three are concurrent. Then the number 
of regions into which the plane is divided by these lines is

(A) 56 (B) 66 (C) 46 (D) 99

12.  The sum of all four-digit numbers (without repeti-
tion) that can be formed by using the numerals 2, 3, 
4 are 5 is

(A) 93234  (B) 49332
(C) 93324  (D) 94332

6.24  Number of derangements: 

(1)  Let n be a positive integer and 0 ≤ r ≤ n. Let 
dr denote the number of Derangements of an 
r-element set with d0 = 1. Then

n
r

r

n

r n
n

r
r

n

rd n d n dC and C
= =
å å= =

0 0

! !-

(2)  Direct formula: The number dn of the number of 
Derangements of an n-element set is given by

d n
Kn

K

K

n

=
( )

=
å( !)

!

-1

0

6.25  Set divided into groups: 

(1)  If a set contains m + n (m ≠ n) elements, then the 
number of ways the set can be divided into two 
groups containing m elements and n  elements 
respectably is 

m n

m n

+( )!
! !

(2)  If m = n, then the number of divisions into two 
equal groups is

2

2

n

n n
( )

( )
!

! ! !
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13.  The number of different nine-digit numbers that can 
be formed from the number 223355888 such that 
even digits occupy odd places is

(A) 16 (B) 36 (C) 60 (D) 180

14.  A, B are two speakers along with three more to 
address a public meeting. If B addresses immedi-
ately after A, the number of ways of arranging the 
list is

(A) 24 (B) 36 (C) 48 (D) 30

15.  If r, s, t are prime numbers and p, q are two positive 
 integers such that the LCM of p, q is r s t2 4 2, then the 
number of ordered pairs (  p, q) is 

(A) 225 (B) 224 (C) 248 (D) 255

16.  The number of derangements of a four element set is

(A) 8 (B) 9 (C) 10 (D) 12

17.  The number of surjections from a five-element set 
on to a four-element set is 

(A) 340 (B) 220 (C) 320 (D) 240

Multiple Correct Choice Type Questions

1.  Consider n points in a plane of which only p points are 
collinear. Then the number of straight lines that can be 
drawn by joining these points is

(A) ( ) ( )n p p n p- + - +C2 1 (B) nC2

(C) n pC C2 2 1- +  (D) n pC C2 2-

2.  Let f x x
x( ) .( )

( )= -
-

7

3P  Then

(A) The domain of f is { , , }3 4 5
(B) Range of f is {2, 3, 24}
(C) The domain of f is { , , , }3 4 5 6
(D) f x( )  is one-one

3.  Consider the letters of the word TATANAGAR. 
Which of the following is/are true?

(A) The number of arrangements of all the letters is 7560
(B) The number of words that begin with N is 840
(C)  The number of five letter words in which no letter 

is repeated is 120
(D)  The number of words that can be formed using all 

the letters without changing the position of N is 840

4.  Let n be a positive integer and r an integer such that 
0 £ £r n. Then

(A) n
r

n
rnP P= ´ -

-
( )

( )

1

1

(B) n
r

n
rrP C= ´!

(C) n
r

n
r

n
rrP P P= + ´- -

-
( ) ( )

( )

1 1

1

(D)  The number of permutations of n distinct objects 
taken r at a time with atleast one repetition is nr n

r- P

5.  Certain 5-digit numbers are formed by using the  numerals 
0 1 2 3 9, , , , , .…  Which of the following is/are true?

(A)  The total number of numbers without using 0 in 
the first place from left and using any numeral any 
number of times is 9 10 4´ ( )

(B)  Total number of numbers without repetitions is 10P5 - 9P4

(C)  Total number of numbers with atleast one repeated 
digit is 62784

(D)  If repetitions are allowed, the number of 5-digit 
 numbers not containing 0 is 95

 6.  A total of 5 mathematics books, 4 physics books and 
2  chemistry books are to be arranged in a row in a 
book shelf. Which of the following is/are true?

(A)  The number of arrangements that two chemistry 
books are separated is 9 ´ 10!

(B)  The number of arrangements in which four 
physics books are together is 8! 4!

(C)  The number of arrangements in which no two 
 mathematics books are together is (7·6) (6!)

(D)  The number of arrangements in which the books 
on the same subject are all together is 12 (4! 5!)

 7.  If 13

1

13

3 5C Cr r+ -= , then

(A) r = 4 (B) r = 3 (C) r = 9 (D) rC2 = 3

 8.  Let x = ×2 34 4.  Which of the following is/are true?

(A) The number of proper divisors of x is 23
(B) The sum of all positive divisors of x is 31 112´
(C) The sum of all divisors of x is 112

(D) 6 14 -  is divisible by 5

 9.  Consider the word VARANASI. Which of the 
following is/are true?

(A)  The number of words that can be formed using 
all the letters is 6720

(B)  The number of words without disturbing the three 
A’s is 120

(C)  The number of words such that all the three A’s 
together is 720

(D)  The number of words which begin with A and 
end with A is 720

10.  Which of the following is (are) correct?

(A) The number of diagonals of a 10-gon is 35
(B)  The number of points of intersection of the diago-

nals of an octagon which lie inside the octagon is 70
(C) If n

r
n

rP C= ,  then r = 1 0or
(D)  The maximum number of points in which 8 lines 

intersect 4 circles in the same plane is 64
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Matrix-Match Type Questions
In each of the following questions, statements are given 
in two columns, which have to be matched. The state-
ments in Column I are labeled as (A), (B), (C) and 
(D), while those in Column II are labeled as (p), (q), 
(r), (s) and (t). Any given statement in Column I can 
have  correct matching with one or more statements in 
Column II. The appropriate bubbles corresponding to 
the answers to these questions have to be darkened as 
illustrated in the following example.

Example: If the correct matches are (A) ® (p),(s); 
(B) ® (q),(s),(t); (C) ® (r); (D) ®(r),(t); that is if 
the matches are (A) ® (p) and (s); (B) ® (q),(s) and (t); 
(C) ® (r); and (D) ® (r),(t), then the correct darkening 
of bubbles will look as follows:

A

B

C

D

p q r s t

1.  In Column I, certain types of arrangements of the 
 letters of the word ORDINATE are given. Column II 
contains number of arrangements. Match the items in 
Column I with those in Column II.

Column I Column II

(A)  The number of words with I in the 
fourth place

(p) 576

(q) 676

(r) 5040

(s) 720

(t) 5050

(B)  The number of words with vowels 
occupying odd places

(C)  The number of words with 
consonants in the odd places

(D)  The number of words beginning with 
O and ending with E

2.  Match the items in Column I with those in Column II.

Column I Column II

(A)  Total number of arrangements of the 
letters a b c2 3 4  written in full length is

(p) 1120

(q) 120960

(r) 1260

(s) 1560

(B)  Six-digit numbers are to form using 
the numerals 1 2 3 4, , , . If all the 
numerals appear atleast once in the 
same number, then the number of 
such number is

(C)  The number of words that can be 
formed using all the letters of the 
word MISSISSIPI which begin with 
I and end with S is

(D)  The number of words that can 
be formed from the letters of the 
word MANESHPURI with vowels 
together is

(t) 120660

3.  Certain requirements of arranging the letters of 
word ARRANGE are given in Column I and their 
respective number of arrangements are given in 
Column II. Match the items in Column I with those in 
Column II.

Column I Column II

(A)  Two Rs are never together (p) 900

(B)     Two As are together, but Rs are 
separated

(q) 240

(C)    Neither two Rs nor two As are 
together

(r) 660

(D)  Rs in the first and last places, but A 
is in the middle place

(s) 24

4.  Match the items in Column I with those in Column II.

Column I Column II

(A)  Out of 8 sailors on a boat, 3 can 
work at row side only and 2 can 
work at bow side only.  The number 
of arrangements of the sailors, if 
each side accommodates 4  sailors 
only, is

(p) 
( )!

! !
( !)

11

5 6
9 2

(B)  18 guests have to be seated, half 
on each side of a long table. Four 
particular guests desire to sit on 
one particular side and three on 
the other side. The number of 
seating arrangements is

(q) 4356

(C)  ABCD is a parallelogram. Ten 
lines each are drawn parallel to 
AB and BC intersecting the sides. 
The number of parallelograms 
that are formed is

(r) 15

(D)  In a chess tournament, each 
player should play one game 
with each of the others. Two 
players left the tournament 
on personal reasons having 
played 3 games each. If the total 
number of games played is 84, 
the number of participants in the 
beginning of the tournament is

(s) 1728
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1.  Passage: Consider the digits 1, 2, 3, 4, 5 and 6. Answer 
the following three questions.

 (i)  The number of four-digit numbers, allowing 
repetition of digits any number of times, is

(A) 1296 (B) 4096 (C) 3096 (D) 2096

 (ii)  When repetitions are allowed, the number of 
four-digit even numbers is

(A) 448 (B) 216 (C) 1296 (D) 648

(iii)  When repetitions are allowed, the number of 
four-digit numbers, that are divisible by 3, is

(A) 632 (B) 532 (C) 432 (D) 332

2.  Passage: The letters of the word EAMCET are 
arranged in all possible ways. Answer the following 
three questions.

 (i)  The number of words that can be formed, without 
 disturbing the places of E, is

(A) 120 (B) 24 (C) 48 (D) 720

 (ii)  The number of words that can be formed without 
separating the two Es is

(A) 120 (B) 240 (C) 24 (D) 360

 (iii)  If all possible words are written as in the 
dictionary, the rank of the word EAMCET is

(A) 134 (B) 135 (C) 132 (D) 133

Comprehension-Type Questions

Statement I and Statement II are given in each of the 
questions in this section. Your answers should be as per 
the following pattern:

(A)  If both Statements I and II are correct and II is a 
 correct reason for I

(B)  If both Statements I and II are correct and II is not a 
correct reason for I

(C)  If Statement I is correct and Statement II is false
(D)  If Statement I is false and Statement II is correct.

1.  Statement I: The number of words that can be formed 
using all the letters of the word ASSASSINATION is 
69300.

   Statement II: There are m1 similar objects of one kind, 
m2 similar objects of another kind, 	, mk similar objects 
of different kind. The total number of arrangements of 
all these objects is

( )!

! ! !

m m m
m m m

K

K

1 2

1 2

+ + +	
	

2.  Statement I: A and B are two speakers to address a 
public meeting with four more speakers. The number 
of ways they can address such that A always speaks 
before B is 360.

   Statement II: The number of ways that A can speak 
before B is equal to the number of ways that B speak 
before A.

3.  Statement I: A number lock has four rings and 
each ring has 9 digits 1 2 3 9, , , , .…  The number of 
 unsuccessful attempts by a thief who does not know 
the key code to open the lock is 6560.

   Statement II: If repetitions are allowed, the number of 
 permutations of n dissimilar objects taken r at a time is nr.

4.  Statement I: Let x x xn1 2, , ,…  be a permutation of 
the natural numbers 1 2, , , .… n  If n is odd, then the 
 product ( ) ( ) ( )x x x nn1 21 2- - -…  is even.

   Statement II: ( )x iii

n
- =

=å 0
1

5.  Statement I: If n ³ 1 is an integer, then ( )!/( )!n n n2 2  is 
an integer.

   Statement II: mn objects can be divided among n 
 persons in ( )!/( !)mn m n  ways.

6.  Statement I: Consider n straight lines in a plane 
of which no two are parallel and no three are 
 concurrent. Then the number of new lines that can 
be formed by joining the points of intersection of 
these n lines is

1

8
3 2 1( )( )( )n n n n- - -

   Statement II: Two coplanar non-parallel lines inter-
sect in a point.

7.  Statement I: Out of 2 1n +  consecutive positive inte-
gers 3 are to be selected such that they are in AP. The 
number of ways of selecting them is n2.

   Statement II: Positive integers a, b, c are in AP if and 
only if either both a and c are even or both a and c are 
odd.

8.  Statement I: In a lake, there are crocodiles each 
having teeth varying from 1 to 32. The number of croc-
odiles in the lake is 232.

 Statement II: The number of elements in the power 
set Ã( )s  of a set S containing n elements is 2n.

Assertion–Reasoning Type Questions
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The answer to each of the questions in this section is a 
non-negative integer. The appropriate bubbles below the 
respective question numbers have to be darkened. For 
example, as shown in the figure, if the correct answer to 
the question number Y is 246, then the bubbles under Y 
labeled as 2, 4, 6 are to be darkened.

X Y Z

0 0 0 0

1 1 1 1

2 2 2

3 3 3 3

9 9 9 9

8 8 8 8

7 7 7 7

6 6 6

5 5 5 5

4 4 4

W

1.  Out of 10 points in a plane, p points are collinear 
( ).0 10< <p  The number of triangles formed with 
 vertices at these points is 110. Then the value of p is 

.

2.  In a panchayat election, the number of candidates 
 contesting for a ward is one more than the  maximum 
number of candidates a voter can vote. If the total 
number of ways of which a voter can vote is 62, then 
the number of candidates is .

3.  From four couples (wife and husband) a four-member 
team is to be constituted. The number of teams that 
can be formed which contain no couple is .

4.  In a test there are n students. 2n k-  students gave wrong 
answers to k questions ( ).1 £ £k n  If the total number 
of wrong answers given by the students is 2047, then n 
is equal to .

5.  If the number of permutations of n different objects 
taken n – 1 at a time is K times the number of permu-
tations of n objects (of which two are identical) taken 
n - 1 at a time, then K is equal to .

 6.  There 5 ladies and 10 gentlemen. A  committee 
of 5 members is to be formed with two ladies and 
three  gentlemen. The number of ways of forming 
the  committee, excluding two particular ladies and 
 including two particular gentlemen, is .

 7.  The number of arrangements of n distinct object 
taken all at a time is equal to K times the number 
of arrangements of n objects which contain two 
 similar objects of one kind and three similar objects 
of another kind. In such case K is equal to .

 8.  If A B a b= ={ , , , } { , },1 2 3 4 and  then the number of 
surjections from A onto B is .

 9.  The number of ordered triplets ( , , )x y z  of positive 
integers such that their product is 24 is .

10.  The least positive integer n such that (n-1)C5 + (n-1)C6 < nC7  
is .

11.  Six xs are to be placed in the squares of the given 
figure (containing 8 squares) with not more than 
one x in each square and such that each row contains 
atleast one x. The number of ways that this can be 
done is .

12.  Five points on positive x-axis and 10 points on 
 positive y-axis are marked and line segments 
 connecting these points are drawn. Then the 
 maximum number of points of intersection of these 
50 line segments in the interior of the first quadrant 
is .

13.  The number of triangles whose vertices are at the 
vertices of an octagon but sides are not the sides of 
the octagon is .

Integer Answer Type Questions
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   ANSWERS

Single Correct Choice Type Questions

 1. (B)
 2. (C)
 3. (D)
 4. (A)
 5. (D)
 6. (C)
 7. (A)
 8. (D)
 9. (B)

10. (A)
11. (A)
12. (C)
13. (C)
14. (A)
15. (A)
16. (B)
17. (D)

Matrix-Match Type Questions

1. (A) ® (r), (B) ® (p), (C) ® (p), (D) ® (s)
2. (A) ® (r), (B) ® (s), (C) ® (p), (D) ® (q)

 3. (A) ® (p), (B) ® (q), (C) ® (r), (D) ® (s)
 4. (A) ® (s), (B) ® (p), (C) ® (q), (D) ® (r)

Comprehension-Type Questions

1. (i) (A); (ii) (D); (iii) (C)  2. (i) (B); (ii) (A); (iii) (D)

Integer Answer Type Questions

1. 5
2. 6
3. 16
4. 11
5. 2
6. 24
7. 12

 8. 14
 9. 30
10. 14
11. 26
12. 450
13. 16

Assertion–Reasoning Type Questions

1. (D)
2. (A)
3. (A)
4. (A)

 5. (A)
 6. (A)
 7. (C)
 8. (D)

Multiple Correct Choice Type Questions

1. (A), (C)
2. (A), (D)
3. (A), (B), (C), (D)
4. (A), (B), (C), (D)
5. (A), (B), (C), (D)

 6. (A), (B), (D)
 7. (B), (D)
 8. (A), (B), (D)
 9. (A), (B), (C), (D)
10. (A), (B), (C), (D)





The binomial theorem desc-
ribes the algebraic expan-
sion of powers of a binomial. 
According to the theorem, 
it is possible to expand the 
power (x + y) n into a sum 
 involving terms of the form 
axbyc. The  binomial coeffi-
cients appear as the entries of 
Pascal’s triangle.
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The theorem which gives expansion of (a + b)n into the sum of n + 1 terms, where n is a positive integer, is called the 
binomial theorem. We have come across formulas like

( )

( )

( )

a b a ab b

a b a a b ab b

a b a a b a b

+ = + +

+ = + + +

+ = + +

2 2 2

3 3 2 2 3

4 4 3 2 2

2

3 3

4 6 ++ +4 3 4ab b

The coefficients involved in these expansions are called binominal coefficients. In this chapter, we derive expan-
sion of (a + b)n  for a positive integer n and study the properties of the binominal coefficients in these expansions. This 
will be further extended to a negative integer n or a rational number.

7.1 | Binomial Theorem for Positive Integral Index

In the expansions of (a + b)2, (a + b)3 and (a + b)4 given above, observe that as we proceed from left to right, the index 
of a decreases by 1 while the index of b increases by 1. Also, observe that

( )

( )

(

a b a ab b

a b a a b ab b

a

+ = + +

+ = + + +

2 2

0

2 2

1

2

2

2

3 3

0

3 3

1

2 3

2

2 3

3

3

C C C

C C C C

++ = + + + +b a a b a b ab b)4 4

0

4 4

1

3 4

2

2 2 4

3

3 4

4

4C C C C C

Keeping these in mind, we derive a formula for (x + a)n in the following. The idea behind writing x as one of the 
summands in (x + a)n is just to look at it as a polynomial of degree n, so that we can apply various results of addition 
and multiplication of polynomials in the study of the binominal coefficients,

THEOREM 7.1 
(BINOMIAL 

THEOREM 
FOR POSIT IVE 

INTEGRAL 
INDEX)

PROOF

For any positive integer n and any real or complex number a,

( )x a x x a x a a

x a

n n n n n n n n
n

n

n
r

n r r

r

n

+ = + + + +

=

- -

-

=
å

C C C C

C

0 1

1

2

2 2

0

	

We use induction on n. For n = 1, this is trivial, since 1C0 = 1 = 1C1.

Let n > 1 and assume the theorem for n - 1; that is

( )x a x an n
r

n r r

r

n

+ =- - - -

=

-

å1 1 1

0

1

C

Then, we have

( ) ( ) ( )

( )

x a x a x a

x a x a

n n

n
r

n r r

r

n

n
r

+ = + +

=
æ
èç

ö
ø÷

+

=

-

- - -

=

-

-

å

1

1 1

0

1

1

C

C xx a x a

x a x

n r r
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n
n

r
n r r

r

n

n n n
r

n

-
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-
- - - +

=

-

- - - -

å å+

= +

0

1
1 1 1

0

1

1

0

0 0 1

C

C C rr r

r

n
n

r
n r r n

n
n

r

n

n n

a x a x a

x

=

-
- - - + -

-
- +

=

-

-

å å+ +

= +

1

1
1 1 1 1

1

0 1 1

0

2

C C ( )

11

1

1
1

1

1

1

0

0 1

C C

C C

r
n r r

r

n
n

r
n r r

r

n
n

n n n
r

n

x a x a a

x a

-

=

-
-

-
-

=

-

-

å å+ +

= + +( --
-

=

-
-å +1

1

1

1
0C Cr

r

n
n r r n

n
nx a x a)
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= + +

=

-

=

-

-

=

å

å

n n n
r

n r r

r

n
n

n
n

n
r

n r r

r

n

x a x a x a

x a

C C C

C

0

0

1

1
0

0

Thus, the theorem is valid for all positive integers n. ■

DEFINITION 7.1   Note that there are n + 1 terms in the above expansion of (x + a)n. The (r + 1)th term is called 
the general term and is denoted by Tr+1. It is given by

T x a r nr
n

r
n r r

+
-= £ £1 0C ( )

COROLLARY 7.1 For any positive integer n and for any real number a,

( ) ( )x a x a

x x a x a x a

n n
r

n r r

r

n

n n n n n n n

- -

- + +

-

- - -

=

=

=
å C

C C C

0

1

1

2

2 2

3

3 3− 	

++ - + + - + --
-

-( ) ( ) ( )1 1 11

1

1r n
r

n r r n n
n

n n nx a xa aC C− 	

The general term in the above expansion is ( )- -1 r n
r

n r rx aC .

(1) The fourth term in the expansion of ( )2 5 8x a+  is 

8

4 1

8 4 1 4 1 8

3

5 5 3 3

5 3

2 5 2 5

224000

C C-
- - -( ) ( ) ( ) ( )( )x a x a

x a

=

= ×

(2) The ninth term in the expansion of ( )2 3 17x a-  is

17

8

17 8 8 17

8

9 8 9 82 3 2 3C C( ) ( ) ( ) ( )x a x a- - =

Examples

COROLLARY 7.2

PROOF

For any positive integer n and any real numbers a, b and c,

( )
!

! ! !, ,

a b c
n

r s t
a b cn

r s t n
r s t n

r s t+ + =
£ £
+ + =

å
0   

First, treat b + c as single real number and use Theorem 7.1 to get

( ) ( )a b c a b cn n
r

n r r

r

n

+ + = +-

=
å C

0

and hence expand ( )b c r+  to get ( )r + 1  terms. Therefore, the expansion of ( )a b c n+ +  contains

( )
( )( ) ( )r s
n n

r

n

s

n
n+ = =

+ +
=

= =

+
+å å1

1 2

20 1

1
2

2C

number of terms and we can see that

( )
!

! ! !, ,

a b c
n

r s t
a b cn

r s t n
r s t n

r s t+ + =
£ £
+ + =

å
0   

Here the summation is taken over all ordered triples (r, s, t) of non-negative integers such that 
r + s + t = n.
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Note: In general, for any positive integers n and m,

 
( )

!

! ! !
x x x

n
r r r

x x xm
n

mr r r n

r r r

m

m

m
1 2

1 2

1 2

1 2

1 2+ + + =
+ + + =

å	
	

	
	

 The summation is taken over all ordered m-tuples (r1, r2, …, rm) of non-negative integers such that 
r1 + r2 + 	 + rm = n.

By Theorem 6.16, the number of terms in the above expansion is ( )

( )

n m
m

+ -
-

1

1C . In particular,
 the number of terms in ( )a b c n+ +  is

( ) ( )( )n n n+ =
+ +2

2

2 1

2
C

Also, the number of terms in the expansion of ( )a b c d n+ + +  is

 ( ) ( ) ( )( )( )n n n n n+ -
-

+= =
+ + +4 1

4 1

3

3

1 2 3

6
C C  

■

DEFINITION 7.2  The middle term(s) in the expansion of ( )x a n+  is defined to be the term T n( / )2 1+  if n is even and 
the terms T n( )/+1 2  and T n( )/+3 2  if n is odd.

Note that, if n is even then the expansion of ( )x a n+  contains n + 1 terms and there are equal number of terms before 
and after the term T n( / )2 1+ . If n is odd, then the expansion of ( )x a n+  has even ( )n + 1  number of terms and there are 
exactly (n – 1)/2 terms each before T n( )/+1 2  and after T n( )/+3 2. The total number of terms is 

n n
n

-
+ + +

-
= +

1

2
1 1

1

2
1

1.  The middle term in the expansion of ( )3 4 16x a+  is 
T T( / )16 2 1 9+ =  which is given by

16

8

16 8 8 16

8

8 8 8 83 4 3 4C C( ) ( )x a a x- = × × × ×

2.  There are two middle terms in the expansions of 
( ) .2 3 11x a-  These are

T T x a a x( )/ ( ) ( )11 1 2 6

11

5

11 5 5 11

5

6 5 5 62 3 2 3+
-= = - = - × × ×C C

and T T x a a x( )/ ( ) ( )11 3 2 7

11

6

11 6 6 11

6

5 6 6 52 3 2 3+
-= = - = × × ×C C

Examples

DEFINITION 7.3  The binomial expansion of ( )1+ x n  is

n n n n
n

n n
n

nx x x xC C C C C0 1 2

2

1

1+ + + + +-
-	

This is called the standard binomial expansion and the coefficients in this are called the 
 binomial coefficients. That is, n n n n

r
n

n
n

nC C C C C C0 1 2 1, , , , , , ,… … -  are called the binomial coef-
ficients. These are simply denoted by C C C C C0 1 1, , , , , , .… …r n n-

Note that Cr alone has no meaning, unless we specify n also. If we say that C C C0 1, , ,… n  are the binomial  coefficients 
means that these are n n n

nC C C0 1, , , ,…  respectively. In the following we prove certain important  properties of the bino-
mial coefficients.

THEOREM 7.2 Let C C C C0 1 2, , , ,… n  be the binomial efficients. Then the following hold good.

1. C Cr n r= -  for all 0 £ £r n

2. C C C C0 1 2 2+ + + + =	 n
n

3. C C C C C C0 2 4 1 3 5

12+ + + = + + + = -	 	 n .  That is,

 
C C

even odd

r
r

r
r

nå å= = -2 1

4. C C C C0 1 2
12 3 1 2 2+ × + × + + + × = + -	 ( ) ( )n nn

n
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PROOF Note that

 C Cr
n

r

n
n r r

= =
-

!

( )! !
 for each 0 ≤ r ≤ n

1. It is trivial.

2. We have the standard binomial expansion

( )1 0 1 2

2

1

1+ = + + + + +-
-x x x x xn n n n n

n
n n

n
nC C C C C	

  By substituting 1 for x, we get that

2 0 1 2 1

0 1 2 1

n n n n n
n

n
n

n n

= + + + + +

= + + + + +
-

-

C C C C C

C C C C C

	

	

3. By substituting –1 for x in the standard binomial expansion, we get that

0 1 10 1 2 1= - + - + - × + + - ×C C C C C	 	( ) ( )r
r

n

  Therefore

C C C C C

C C C C C C

0 1 2 3 4

0 2 4 1 3 5

0- + - + - =

+ + + = + + +

	

	 	

  and by part (1), each of these is 2 2 2 1n n/ = - .

4. Consider

 S n n= + × + × + + + ×C C C C0 1 22 3 1	 ( )  (7 .1)

  Writing the terms in the reverse order, we get that 

S n nn n= + × + × + + × + × +-( )1 3 21 2 1 2C C C C C	

  Since C Cr n r= -  for each 0 £ £r n, we get

S n n n n n= + × + × + + × + × +- -( )1 3 20 1 2 1C C C C C	

  Adding this to Eq. (7.1), we get that

2 2 2 2

2

2 2

0 1

0 1

S n n n

n

n

n

n

n

= + × + + × + + + ×

= + + + +

= +

( ) ( ) ( )

( )( )

( )

C C C

C C C

	

	

  Therefore S n n= + -( )2 2 1 . That is,

C C C C0 1 2

12 3 1 2 2+ + + + + = + -	 ( ) ( )n nn
n

 ■

THEOREM 7.3 Let C C C C0 1 2, , , ,… n  be the binomial coefficients. Then the following hold good.

1. For any real numbers a and d, 

a a d a d a nd a ndn
n× + + × + + × + + + × = + × -C C C C0 1 2

12 2 2( ) ( ) ( ) ( )	

2. r nr
r

n
n× = ×

=

-å C
1

12

3. r r n nr
r

n
n( ) ( )- = - ×

=

-å 1 1 2
1

2C

4. r n nr
r

n
n2

1

21 2× = + ×
=

-å C ( )
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PROOF 1.  Put S a a d a d a nd n= × + + × + + × + + + ×C C C C0 1 22( ) ( ) ( ) .	  Writing the terms in the reverse 
order and using C Cr n r= - , we have 

 S a nd a n d a d an n= + × + + - × + + + × + ×-( ) [ ( ) ] ( )C C C C0 1 11 	

  Adding two equations, we get

2 2 2 20 1S a nd a nd a nd n= + × + + × + + + ×( ) ( ) ( )C C C	

  Therefore 

S a nd a ndn
n= + + + + = +

1

2
2

1

2
2 20 1( )( ) ( )C C C	

  Thus S a nd n= + -( ) .2 2 1

2. Substituting 0 for a and 1 for d in part (1), we get

0 1 2 0 1 20 1 2
1× + × + × + + × = + × -C C C C	 n nn

n( )

  Therefore

r nr
r

n
n× = ×

=

-å C
1

12

  In the following solution, differentiation is used which we discuss in Vol. III.

3.  Consider ( )1 0 1 2

2

1

1+ = + × + × + + +-
-x x x x xn

n
n

n
nC C C C C	 . On differentiating both sides with 

respect to x, we get 

n x x x nxn
n

n( )1 2 31

1 2 3

2 1+ = + × + × + + ×- -C C C C	

  Again on differentiating we get that 

n n x x n n xn
n

n( )( ) ( )- + = × + × × + × × + + - ×- -1 1 2 3 2 4 3 11

2 3 4

1C C C C	

  Substituting 1 for x in the above, we get that 

n n n nn
n( ) ( )- = × × + × × + + --1 2 2 1 3 2 12

2 3C C C	

  Thus

r r n nr
n

r

n

( ) ( )- = - -

=
å 1 1 2 2

1

C

4. We have

 

r r r r

r r r

r r

r
r

n

r
r

n

r r
r

n

r

n

2

1 1

11

1

1

× = - + ×

= - × + ×

=

= =

==

å å

åå

C C

C C

( ( ) )

( )

( -- × + ×

= - × + ×

= - +

=

==

- -

-

åå 1

1 2 2

1 2 2

12

2 1

2

)

( )

( ( ) )

C Cr r
r

n

r

n

n n

n

r

n n n

n n n

nn n n( )+ -1 2 2
 ■
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Next, we will discuss about numerically greatest term among the ( )n + 1  terms in the expansion of ( )1+ x n. Before 
this, let us recall that, for any real number x, [x] denotes the largest integer less than or equal to x and that [x] is called 
the integral part of x. Also, x - [x] is called the fractional part of x and is denoted by {x}. Note that x x x x= + Î[ ] { }, [ ] � 
and 0 1£ <{ }x .

DEFINITION 7.4  In the binomial expansion of ( )1+ x n, a term Tr  is called numerically greatest if | | | |T Ti r£  for all 
1 1£ £ +i n .

THEOREM 7.4

PROOF

Let x be a non-zero real number, n a positive integer and m the integral part of ( )| |/( | |)n x x+ +1 1 .

1.  If m n x x m< + + < +( ) | |/( | |) ,1 1 1  then Tm+1  is the numerically greatest term in the binomial 

expansion of ( ) .1+ x n

2.  If m n x x= + +[( ) | |]/( | |),1 1  then Tm  and Tm+1 are the numerically greatest terms in the binomial 

expansion of ( ) .1+ x n

Let T T Tn1 2 1, , ,… +  be all the terms in the binomial expansion of ( ) .1+ x n  Then

T xr
n

r
r

+ =1 C  for all 0 £ £r n

Since x Tr¹ +0 1,   is a non-zero real number for each r. Now, consider

T
T

x
x

n x
n r r

n r r
n x

n

r

r

n
r

r

n
r

r

r

r
+

-
- -= =

-
´

- + -

=

1

1

1 1

1 1C

C

!

( )! !

( )!( )!

!

( -- +
×

r
r

x
1)

Therefore

 
T
T

n r
r

xr

r

+ =
- +1 1( )

| |  (7.2)

Now

| | | |
( )

| |

| |

| |

| |

T T
n r

r
x

n
r x

n
r

x
x

r r+ ³ Û
- +

³

Û
+

- ³

Û
+

³
+

1

1
1

1
1

1

1 1

 

Û ³
+

+

Û £
+
+

1 1

1

1

1

r
x

n x

r
n x

x

| |

( ) | |

( ) | |

| |

Therefore, for any integer r with 1 1£ £ +r n , we have

 | | | |
( ) | |

| |
T T r

n x
x

mr r+ ³ Û £
+
+

é

ë
ê

ù

û
ú =1

1

1
 (7.3)
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Also, by Eq. (7.1) again

 | | | |
( )| |

| |
T T r

n x
xr r+ = Û =

+
+1

1

1
 (7.4)

and | | | |
( )| |

| |
T T r

n x
xr r+ £ Û ³

+
+1

1

1
 (7.5)

Now, we shall distinguish two cases. First note that since m is the integral part of (n + 1)| x |/(1 + | x |), 
we have

m
n x

x
m£

+
+

< +
( ) | |

| |

1

1
1

1. Suppose that m n x x m< + + < +[( ) | |]/( | |)1 1 1. From Eqs. (7.3)–(7.5), we have

| | | | | | | |T T T Tm m1 2 1< < < < +	  and | | | | | |T T Tm m n+ + +> > >1 2 1	

  Thus

| | | |T Tm i+ >1  for all i m¹ + 1

  and therefore Tm+1  is the numerically greatest term.

2. Suppose that m n x x= + +[( ) | |]/( | |)1 1 . From Eq. (7.4), we have 

| | | |T Tm m+ =1

  Again, by Eqs. (7.3) and (7.5), we get

| | | | | | | | | | | |T T T T T Tm m m n1 2 1 2 1< < < = > > >+ + +	 	

  Thus, Tm  and Tm+1  are the numerically greatest terms in the binomial expansion of ( ) .1+ x n
 ■

COROLLARY 7.3 For any non-zero real numbers a and x, if Tm  is numerically greatest term in [ ( / )]1+ x a n, then a Tn
m  

is numerically greatest term in ( ) .a x n+

QUICK LOOK 1

1.  If [( ) | |]/( | |)n x x+ +1 1  is not an integer, and m is the 
integral part of [( ) | |]/( | |),n x x+ +1 1  then Tm+1  is the 
numerically greatest term in ( ) .1 + x n

2.  If [( ) | |]/( | |)n x x+ +1 1  is an integer and is equal to m, 
then Tm  and Tm+1  are both numerically greatest terms 

in ( ) .1+ x n  In this case note that | | | |T Tm m= +1  and that 
Tm  may not be equal to Tm+1  and we can only infer 
that T Tm m= ± +1.

Example     7.1   

Find the numerically greatest term(s) in the binomial 
expansion of ( )1 2 12- x  for x = 1/5.

Solution: Put X = –2/5 and consider ( )1 12+ X . We have

( ) | |

| |

( / )

( / )

12 1

1

13 2 5

1 2 5

26

7

+
+

=
×

+
=

X
X

and the integral part of this is 3. Therefore, by part (1) 
of Theorem 7.4, T4  is the numerically greatest term in 
( )1 12+ X  and 

T X4

12

3

12 3

9 9
12 11 10

1 2 3

2

5
220

2

5
= = × ×

× ×
-æ

èç
ö
ø÷ = - æ

èç
ö
ø÷

-C
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Example     7.2  

Find the numerically greatest term in the binomial 
expansion of ( )2 3 19x y-  when x = 1 4/  and y = 1 6/ .

Solution: We have

( ) ( )2 3 2 1
3

2

19 19

19

x y x
y
x

- = -æ
èç

ö
ø÷

Put X y x= -3 2/  and consider

( ) | |

| |

| |

| |

19 1

1

20 1

1 1
10

+
+

=
-

+ -
=

X
X

which is an integer. By part (2) of Theorem 7.4, T10  and 
T11  are the numerically greatest terms in the binomial 

expansion of ( )1 19+ X  and of ( )2 3 19x y- . These terms are 
given by

T x y10

19

9

10 9 19

9

10 9

19

92 3 2
1

4
3

1

6

1

2
= - = - ×æ

èç
ö
ø÷

×æ
èç

ö
ø÷

= - ×C C C( ) ( )
119

and T x y11

19

10

9 10 19

10

9 10

19

2 3 2
1

4
3

1

6

1

= - = ×æ
èç

ö
ø÷

×æ
èç

ö
ø÷

= ×

C C

C10

( ) ( )

2219

Note that, in this case T T10 11= - .

THEOREM 7.5

PROOF

1. If n is even, then n
nC /2  is the greatest among the binomial coefficients n n n n

nC C C C0 1 2, , , , .…

2. If n is odd, then n
n

n
nC C( )/ ( )/- +=1 2 1 2  are the greatest among n n n n

nC C C C0 1 2, , , ,… .

This follows from Theorem 7.4 by taking x = 1 and from the part that Tm
n

m= -C 1. ■

7.2 | Binomial Theorem for Rational Index

In the earlier section, we have proved that, for any positive integer n and for any real number x,

( )1 0 1

1

2

2+ = + + + +x x x xn n n n n
n

nC C C C	

This also can be expressed as

( )
( )( ) ( )

1 1
1 2 1

1 2 31

+ = +
- - - +

× ×=

¥

åx
n n n n r

r
xn

r

r	
	

For r n> , the coefficient of xr becomes zero and the above is an expression of n + 1 terms only. However, for a 
negative integer n or for a fraction (rational number) n, we have a similar formula consisting of infinitely many terms, 

provided | | .x < 1  The proof of this is beyond the scope of this book and we state the following without proof and derive 
certain useful consequences.

THEOREM 7.6 Let x be a real number such that - < <1 1x . Then for any rational number m,

( )
( ) ( )

1 1
1 1

1 2 31

+ = +
- - +

× ×=

¥

åx
m m m r

r
xm

r

r	
	

COROLLARY 7.4 Let n be a positive integer and x a real number such that - < <1 1x . Then

1. ( ) ( ) ( )1 1
0

1+ = --

=

¥
+ -åx xn r

r

n r
r

rC

2. ( )1 1

0

- =- + -

=

¥

åx xn n r
r

r

r

C
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PROOF From Theorem 7.6, we get that

( )
( )( )( ) ( )

(

1 1
1 2 1

1 2 3

1
1

1

+ = +
- - - - - - - +

× ×

= - +

-

=

¥

åx
n n n n r

r
x

n
x

n

n

r

r	
	

nn
x

n n n
x

n n n r
r

r+
×

-
+ +

× ×
+ + -

+ + -
× ×

1

1 2

1 2

1 2 3
1

1 1

1 2 3

2 3) ( )( )
( )

( ) ( )
	

	
	

++

= + -
+ - + - +

× ×

= -

=

¥

+ -

å

	

	
	

1 1
1 2 1

1 2 3

1

1

1

( )
( )( ) ( )

( ) (

r

r

r

r n r

n r n r n n
r

x

))Cr
r

r

x
=

¥

å
0

Also, by replacing x with –x in the above, we have

( ) ( ) ( )( )

( )

1 1 1

0

1

0

- = - × -

=

- + -

=

¥

+ -

=

¥

å

å

x x

x

n r n r
r

r

r

n r
r

r

r

C

C
 ■

COROLLARY 7.5

PROOF

Let m and n be positive integers and x a number such that - < <1 1x . Then we have the following.

1. ( )
( ) ( ) [ ( ) ]/1 1

1 1 2

1

1 2

2

+ = + +
-

×
æ
èç

ö
ø÷

+ +
- - -

×
x

m x
n

m m n x
n

m m n m r nm n 	
	

	rr
x
n

r
æ
èç

ö
ø÷

+	

2. ( )
( )

( )
( ) [ ( )/1 1

1 1 2
1

1
2

- = - × +
-

×
æ
èç

ö
ø÷

+ + -
- - -

x
m x

n
m m n x

n
m m n m rm n r	

	 nn
r

x
n

r
]

1 2×
æ
èç

ö
ø÷

+
	

	

3. ( )
( )

( )
( ) [ (/1 1

1 1 2
1

1
2

+ = - × +
+

×
æ
èç

ö
ø÷

+ + -
+ + --x

m x
n

m m n x
n

m m n m rm n r	
	 )) ]n

r
x
n

r

1 2×
æ
èç

ö
ø÷

+
	

	

4. ( )
( ) ( ) [ ( ) ]/1 1

1 1 2

1

1

2

- = + × +
+

×
æ
èç

ö
ø÷

+ +
+ + -

×
-x

m x
n

m m n x
n

m m n m r nm n 	
	

22	
	

r
x
n

r
æ
èç

ö
ø÷

+

Here we will prove part (1) only. Parts (2), (3) and (4) can be similarly proved. From Theorem 7.6,

 

( )
( / )[( / ) ] [( / ) ]

( /

/1 1
1 1

1 2 3

1

1

+ = +
- - +
× ×

= +

=

¥

åx
m n m n m n r

r
x

m n

m n r

r

	
	

)) ( / )[( / ) ] ( / )[( / ) ][( / ) ]

1

1

1 2

1 2

1 2 3

2 3x
m n m n

x
m n m n m n

x+
-

×
+

- -
× ×

+

+

	

(( / )[( / ) ] [( / ) ( )]

( )

m n m n m n r
r

x

m x
n

m m n

r- - -
× ×

+

= + × +
-

×

1 1

1 2 3

1
1 1 2

	
	

	

xx
n

m m n m n x
n

m m n m r n

æ
èç

ö
ø÷

+
- -

× ×
æ
èç

ö
ø÷

+

+
- - -

2 3
2

1 2 3

1

1

( )( )

( ) ( ( ) )

	

	
××

æ
èç

ö
ø÷

+
2	

	
n

x
n

r

 ■

Try it out Solve parts (2)–(4) of Corollary 7.4.
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QUICK LOOK 2

For any real number x with - < <1 1x , we have the following:

1. ( ) ( )1 1 11 2 3+ = - + - + + - +-x x x x xr r	 	

2. ( )1 11 2 3- = + + + + + +-x x x x xr	 	

3. (1 + x)-2 = 1 - 2x + 3x2 - 4x3 + 	 + (-1)r · (r + 1)xr + 	 

4. ( ) ( )1 1 2 3 4 12 2 3- = + + + + + + +-x x x x r xr	 	

5. ( ) ( )
( )(

1 1 3
3 4

1 2

3 4 5

1 2 3
1

3 4 5 1 23 2 3+ = - +
×
×

-
× ×
× ×

+ + -
× × + +-x x x x

r r rr	
	 ))

1 2 3× ×
+

	
	

r
xr

 
= - +

×
×

-
×
×

+ + - ×
+ +

×
+1 3

3 4

1 2

4 5

1 2
1

1 2

1 2

2 3x x x
r r

xr r	 	( )
( )( )

6. ( )
( )( )

1 1 3
3 4

1 2

4 5

1 2

1 2

1 2

3 2 3- = + +
×
×

+
×
×

+ +
+ +

×
+-x x x x

r r
xr	 	

In the following examples we will use the fact that the general term in the expansion of ( )1 + -x m  is given by

T
m m m r

r
xr

r r
+ = -

+ + -
× ×1 1
1 1

1 2 3
( )

( ) ( )	
	

This is the (r + 1)th term in the expansion of ( )1 + -x m  for r > 0 and first term is always 1.

Example     7.3   

Obtain the fifth term of [ ( / )] .1 3 8+ -x

Solution: The fifth term is given by

T T
x

5 4 1

4

4

1
8 8 1 8 4 1

1 2 3 4 3
= = -

+ + -
× × ×

æ
èç

ö
ø÷+ ( )

( ) [ ( )]	

 =
× × ×
× × ×

=
8 9 10 11

1 2 3 4 3

110

27

4

4

4x
x

Example     7.4   

Obtain the sixth term in the expansion of [ ( / )] .1 42 4- -x Solution: The sixth term is given by

T T
x

6 5 1

2 5

4 5 6 7 4 5 1

1 2 3 4 5 4
= = × × × + -

× × × ×
æ
èç

ö
ø÷+

	[ ( )]

=
× × ×

× × × ×
=

4 5 6 7

1 2 3 4 5 4

7

4

10

5 5

10x
x

Example    7.5  

Obtain the fifth term in the expansion of [ ( / )] ./6 5 11 6 5+ y

Solution: The given expression can be written as

6
5

11
6 1

5

6 11

6 5

6 5

6 5

+æ
èç

ö
ø÷

= +
×

æ
èç

ö
ø÷

y y
/

/

/

The fifth term in the expansion is given by

T T
y

5 4 1

6 5

4

6
6 6 5 6 2 5 6 3 5

1 2 3 4

5

66

6

= = - - × - ×
× × ×

æ
èç

ö
ø÷

é

ë
ê

ù

û
ú

=

+
/ ( )( )( )

66 5

4

46 1 4 9

1 2 3 4

5

66

/ ( )( )× × - -
× × ×

æ
èç

ö
ø÷ y
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Example     7.6   

Obtain the 10th term in the expansion of ( ) ./3 4 2 3- x

Solution: We can write the given expression as 

( ) / /

/

3 4 3 1
4

3

2 3 2 3

2 3

- = -æ
èç

ö
ø÷

x x

The 10th term in the expansion is given by

T T
x

10 9 1

9

9

2 31
2 2 3 2 2 3 2 8 3

1 2 9

4

3
3

2

= = -
- - × - ×

×
æ
èç

ö
ø÷

×

= -

+ ( )
( )( ) ( ) /	

	

×× × × × × × × ×
× ×

æ
èç

ö
ø÷

× ×
1 4 7 10 13 16 19 22

1 2 3 9

4

3
3

9

2 3 9

	
/ x

Example     7.7   

Obtain the values of x for which the binomial expansion 
of ( )3 4 7- -x  is valid.

Solution: The given expression can be written as

( )3 4 3 1
4

3

7 7

7

- = -æ
èç

ö
ø÷

- -
-

x
x

Therefore, the binomial expansion of (3 - 4x)-7 is valid 
if and only if that of [ ( / )]1 4 3 7- -x  is valid and this is 
valid if - < <1 4 3 1x / . That is

-
< <

3

4

3

4
x  or | |x <

3

4

Example     7.8   

Find the sum of the infinite series

1
1

3

1 3

3 6

1 3 5

3 6 9
+ +

×
×

+
× ×
× ×

+ 	

Solution: This sum can be written as

S = + × +
×
×

æ
èç

ö
ø÷

+
× ×
× ×

æ
èç

ö
ø÷

+1
1

1

1

3

1 3

1 2

1

3

1 3 5

1 2 3

1

3

2 3

	

= +
+ + -

×
×æ
èç

ö
ø÷

é

ë
ê
ê

ù

û
ú
ú=

¥

å1
1

1 21

m m n m r n
r

x
n

r

r

( ) ( ( ) )	
	

where m n x= = =1 2 2 3, , / . Substituting these values we 
get

S = -æ
èç

ö
ø÷

=

-

1
2

3

3

1 2/

[by part (4) of Corollary 7.4]

Example     7.9   

Find the coefficient of x4 in ( ) ./1 4 3 5- -x

Solution: The general term in the expansion of (1 - 
4x)-3/5 is

T
r

r
x

r

r

+ =
+ + × + + + -

× ×
æ
èç

ö
ø÷1

3 3 5 3 2 5 3 1 5

1 2 3

4

5

( )( ) ( ( ) )	
	

Therefore x4 appears in T5 only and hence

T
x

x5

4 4

4

43 8 13 18

1 2 3 4

4

5

13 18 4

5
=

× × ×
× × ×

æ
èç

ö
ø÷

=
× ×

The coefficient of x4  in the expansion of (1 - 4x)-3 is 
( )/ .13 18 256 625× ×

Example     7.10   

Using the binomial theorem for rational index, find the 
approximate value of ( ) /242 1 5 correct to 4 decimals.

Solution: Consider 

( ) ( )

( )

/ /

/

/

242 243 1

243 1
1

243

1 5 1 5

1 5

1 5

= -

= -æ
èç

ö
ø÷

( /
3 1

1

5

1

243

1
= - × +

55 1 5 1

1 2

1

243

3 1
1

5
0 00243

2

25
0 0

2
)[( / ) ]

( . ) ( .

-
×

æ
èç

ö
ø÷

é

ë
ê
ê

ù

û
ú
ú

= - -

	

00243

1

243

1

3
0 3

2

5

5

)

( . )

	

�

é
ëê

ù
ûú

= æ
èç

ö
ø÷

é

ë
ê
ê

ù

û
ú
ú

since  
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= - -

= - -

3
3

5
0 00243

6

25
0 00243

3 0 001458 0 000001417176

2( . ) ( . )

. .

	

(by neglecting other terms)

= 2.9998541

2 9985� . (corrected to 4 decimals)

Note that when we are required to find an approximation of an expression correct to K decimal places, we choose r, 
the number of terms to be taken in consideration, such that the magnitude of the rth term is less than 1 10 2/ K +  so that 
its decimal representation has atleast K + 2  zeros immediately after the decimal.

Example     7.11   

Find the approximate value of 4 3 3 2 2+ -x x/( ) ,  when 
| |x  is so small that x2 and higher powers of x can be 
neglected.

Solution: The given expression can be written as 

4 3

3 2

2 1 3 4

9 1 2 3

2

9
1

3

4
1

2

1 2

2

1 2

+
-

=
+
-

= +æ
èç

ö
ø÷

× -

x

x
x
x

x

( )

[ ( / )]

[ ( / )]

/

/
22

3

2

9
1

1

2

3

4
1 2

2

3

2x

x
x

æ
èç

ö
ø÷

= + ×æ
èç

ö
ø÷

+ -
-æ

èç
ö
ø÷

é
ëê

ù
ûú

-

( )

(by neglecting x2 and the higher powers of x)

= +æ
èç

ö
ø÷

+æ
èç

ö
ø÷

= + +æ
èç

ö
ø÷

2

9
1

3

8
1

4

3

2

9
1

3

8

4

3

x x

x x (by neglecting xx

x

x
x

2

2

9
1

41

24

2

9

41

108

24 41

108

 too)

= +æ
èç

ö
ø÷

= + =
+

   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions

1.  If the sum of the fifth and sixth terms is zero in the 
binomial expansion of (a - b)n, n £ 5, then the value 
of a/b is

(A) (n - 4)/5 (B) 5/(n - 4) (C) 5 (D) 1/5

Solution: If n £ 5, then the fifth and sixth terms exist in 
the binomial expansion of (a - b)n only when n = 5, then 
in (a - b)5,

Fifth term = - =-5

4

5 4 4 45C a b ab( )

Sixth term = - = --5

5

5 5 5 5C a b b( )

If the sum of fifth and sixth terms is zero, then

5 0

5

1

5

4 5

4 5

ab b

ab b

a
b

- =

=

=

 Answer: (D)

2.  If a and b are the coefficients of xn  in the expansions 
of ( )1 2+ x n  and ( ) ,1 2 1+ -x n  respectively, then

(A) a = 2b (B) b = 2a

(C) a = 3b (D) b = 3a

Solution: xn occurs in the (n + 1)th term of (1 + x)2n or 
(1 + x)2n-1. Therefore 

a
n

n n
b

n
n n

n
n

n
n= = = =

-
-

-2 2 12 2 1

1
C and C

( )!

! !

( )!

( )! !

( )

Hence

2
2

n
n

b a a b= =or

 Answer: (A)

3.  If in the expansion of ( ) ( )1 1+ -x xm n, the coefficients 
of x and x2  are 3 and –6, respectively, then m and n are 
respectively

(A) 12, 9 (B) 13, 9 (C) 9, 13 (D) 9, 12

Solution: We have

( ) ( ) ( )

( )

1 1 1

1

1 2

2

1 2

2

+ - = + + +

- + +

x x m x m x

n x n x

m n C C

C C

	

	´
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Therefore coefficient of x is given by

 m n m nC C1 1 3- = - =  (7.6)

Now coefficient of x2 is

 

m n m n

m m n n mn

m n m n

C C C C2 2 1 1

2

6

1 1 2 12

12

9

+ - × = -

- + - - = -

- - + = -

-

( ) ( )

( ) ( )

(mm n

m n

+ = -

+ =

) 12

21

 (7.7)

Solving Eqs. (7.6) and (7.7), we get m n= =12 9, . 

 Answer: (A)

4.  In the expansion of (1 + x)15, if the coefficients of 
(r - 1)th and (2r + 3)rd terms are equal, then r is equal to

(A) 4 (B) 6 (C) 5 (D) 7

Solution: The coefficients of (r - 1)th and (2r + 3)rd 
terms are

T x T xr r
r

r r
r

- -
-

+ +
+= =1

15

2

2

2 3

15

2 2

2 2C and C

Since it is given that they are equal, we have

15

2

15

2 2

2 2 2

C Cr r

r r

- +=

- ¹ +

Þ - + + =

Þ =

( ) ( )r r

r

2 2 2 15

5

 Answer: (C)

5.  Let a be the coefficient of x10 in the expansion of 
( )1 2 10- x  and b the term independent of x in the 
expansion [ ( / )]x x- 2 10. Then a : b is equal to

(A) 1 : 12 (B) 1 : 22 (C) 6 : 1 (D) 1 : 32

Solution: We have x x10 2 5= ( ) . The coefficient of x10 is 10

5C .
Independent term in the expansion [x − (2/x)]10 is −25∙10C5.
Therefore

a b: : := =1 2 1 325

 Answer: (D)

6.  The value of the term independent of x in the expan-
sion of

x

x x

x

x x

+

- +
-

-
-

æ

è
ç

ö

ø
÷

1

1

1

23 3

10

is

(A) 110 (B) 90 (C) 210 (D) 200

Solution: Put x y3 =  and x z=  so that 

x

x x
y

+

- +
= +

1

1
1

23 3

and 
x

x x z
-

-
= +

1
1

1

The given expansion is

y
z

x
x

+ - -æ
èç

ö
ø÷

= -æ
èç

ö
ø÷

1 1
1 1

10

3

10

Therefore

T x xr r
r r r

+
- -= × × - ×1

10 10 3 21C ( )/ /( )

Tr+1 is independent of x implies

10

3 2
0

-
- =

r r

Hence

20 5 0 4- = =r ror

Therefore independent term value is

10

4

41 210C ( )- =
 Answer: (C)

7.  The coefficient of x50  in the expression ( )1 1000+ +x  
2 1 3 1 1001999 2 998 1000x x x x x( ) ( ) ( )+ + + + +	  is

(A) ( )1000

53C  (B) ( )1002

52C  (C) ( )1002

50C  (D) ( )1002

51C

Solution: Let

s x x x x x x= + + + + + + +( ) ( ) ( ) ( )1 2 1 3 1 10011000 999 2 998 1000	

The terms of the given sum follow arithmetic geometric 
progression with first factors of the terms as 1, 2, 3, ¼, 
and second factors are in GP with common ratio 
r x x= +/( ).1  Therefore

s
x x x

x x
x

x

=
+ - +

- +
-

= +

( ) { [ /( )] }

[ /( )]
( )

( )

1 1 1

1 1
1001

1

1001 1001
1001

10002

1001

1001

1002 1

1
1

1001

1 1

-
+

æ
èç

ö
ø÷

é

ë
ê
ê

ù

û
ú
ú

-

= + - +

x
x

x

x x x

( )

( ) ( ) 0001 1001

1002 1001 1002

1001

1 1002

-

= + - -

( )

( ) ( )

x

x x x

Therefore the coefficient of x50  in the expression = coef-
ficient of x50  in the expansion of ( )1 1002+ x  which is equal 
to ( ) .1002

50C

 Answer: (C)

8. Let n be a positive integer and

( ) ( )1 12 2

0

4

+ + =
=

+

åx x a xn
K

K

K

n

If a1, a2 and a3 are in AP, then the number of values of n is

(A) 2 (B) 3 (C) 4 (D) 5
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Solution: We have

a x x x n x n x xK
K

K

n
n

=

+

å = + + + + + +
0

4
2 4

1 2

21 2 1( )[ ]C C 	

On the LHS, a1, a2 and a3 are respectively the coefficients 
of x, x2 and x3. Therefore equating the coefficients of x, x2 
and x3 on both the sides we get

a a an n n n
1 1 2 2 3 1 32 2= = + = × +C C ; C C;

From these we have

a a a

n
n n n

n n

n n n n

1 3 2

1 1 3 2

2

2 2 2

3
1 2

6
4 1

+ =

+ × + = +

+
- -

= + -

 

C C C C( )

( )( )
( )

 

n n n

n n n

n

3 29 26 24 0

2 3 4 0

2 3 4

- + - =

- - - =

=

( )( )( )

, ,

 Answer: (B)

  9.  Let n be a positive integer. If the coefficients of 
second, third and fourth terms in the expansion of 
( )1 + x n  are in AP, then the value of n is

(A) 2 (B) 5 (C) 6 (D) 7

Solution: By hypothesis n n nC C and C1 2 3,  are in AP. 
Therefore

n n n

n
n n n

n n

n n n

n n

C C C1 3 2

2

2

2

1 2

6
1

6 3 2 6 6

9 14 0

+ = ´

+
- -

= -

+ - + = -

- + =

( )( )
( )

(( )( )n n- - =2 7 0

Since, there are more than three terms in the expansion, 
the value of n must be 7.

 Answer: (D)

10.  For x > 1, if the third term in the expansion of [(1/x) + 

x xlog10 ]5 is 1000, then the value of x is

(A) 10 (B) 100 (C) 5 2  (D) 50

Solution: Put log10 x y= . Therefore

1
10 1010

2
5

5

x
x x y y+æ

èç
ö
ø÷

= +-log ( )

The third term is given by

5

2

3 2

3 2 2

10 10 1000

10 10 100 10

2

2

C -

-

× =

× = =

y y

y y

2 3 2 0

2 2 1 0

2 1

2y y

y y

y

- - =

- + =

= -

( )( )

or

For these values of y we have

x x= = -10 102 1or

Since it is given that x x> =1 102, .

 Answer: (B)

11.  The coefficient of x4 in the expansion of [(x/2) - 
(3/x2)]10 is

(A) 
405

256
 (B) 

504

259

(C) 
450

263
 (D) 

400

263

Solution: The (r + 1)th term is given by

T
x

x

x

r r

r r

r r
r r

+

-

-
-

= æ
èç

ö
ø÷

-æ
èç

ö
ø÷

= ´ -

1

10

10

2

10

10

10 3

2

3

1

2
3

C

C ( )

Therefore

10 3 4 2- = Þ =r r

Hence coefficient of x4 is

10

2

2

8

3

2

9 10

2

9

256

405

256
C ´ =

×
´ =

 Answer: (A)

12.  The expression (x + x3 1- )5 + (x - x3 1- )5 is a poly-
nomial of degree:

(A) 5 (B) 6

(C) 7 (D) 8

Solution: We know that 

( ) ( ) [ ]

( )

[

a b a b a a b ab

a a b ab

+ + - = + +

= + +

=

5 5 5

0

5 5

2

3 2 5

4

4

5 3 2 4

2

2 10 5

2

C C C

xx x x x x5 3 3 3 210 1 5 1+ - + -( ) ( ) ]

where x = a and b = x3 1- . Therefore the given expres-
sion is a polynomial of degree 7.

 Answer: (C)

13. The coefficient of t24  in ( ) ( )( )1 1 12 12 12 24+ + +t t t  is

(A) 12

6 3C +  (B) 12

6 1C +
(C) 12

6C  (D) 12

6 2C +
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Solution: We have

( ) ( )( ) ( ) [ ]

[

1 1 1 1 1

1

2 12 12 24 2 12 12 24 36

12

1

2 1

+ + + = + + + +

= + +

t t t t t t t

tC 22

2

2 2 24

12 24 361

C ( ) ]

( )

t t

t t t

+ +

+ + +

	

´

Therefore the coefficient of t24  is 1 1 212

6

12

6+ + = +C C

 Answer: (D)

14.  The sum of the rational terms in the expansion of 

( )/2 31 5 10+  is

(A) 31 (B) 41 (C) 51 (D) 61

Solution: The general term is given by

Tr r
r r

+
-= ×1

10 10 2 52 3C ( )/ /

This is rational, if 10 - r is even and r is a multiple of 5.

r
r

= Þ
-

5
10

2
 is not an integer

  

r r
r

r
r

= Þ - = =

= Þ
-

=

10 10 0
5

2

0
10

2
5

and

Therefore the sum of the rational terms is

10

0

5 10

10

22 3 32 9 41C C× + × = + =
 Answer: (B)

15.  The sum of the coefficients of the polynomial 
( )1 3 2 2163+ -x x  is

(A) 0 (B) 22163 (C) 1 (D) –1

Solution: If

f x a x a x a x an n n
n( ) º + + + +- -

0 1

1

2

2 	

then the sum of the coefficients is

a a a a fn0 1 2 1+ + + +	 = ( )

Now let f x x x( ) ( )º + -1 3 2 2163. Therefore the sum of the 
coefficients is

f ( ) ( )1 1 12163= - = -
 Answer: (D)

16.  The coefficient of x99 in the expansion of (x + 1)
(x + 2)(x + 3) 	 (x + 99) (x + 100) is

(A) 5050 (B) 5500 (C) 5005 (D) 5000

Solution: We have

( )( ) ( )

( )( )( ) ( )

(

x x x x

x x x x x

+ + = + + +

=

a b a b ab

a b g a b g

ab bg

2

3 2+ + + + + +

+ + ++ +ga abg)x

By mathematical induction, we can show that the 
 coefficient of xn-1  in the expansion of (x + a1)(x + a2)
(x + a3) 	 (x + an) is a1 + a2 + 	 + an. Therefore the 
coefficient of x99 in the given expansion is

1 2 3 100
100 101

2
5050+ + + + =

´
=	

 Answer: (A)

17.  Let Tr  denote the rth term in the expansion of 
[ ( / )] .2 1 4x x n+  If the ratio T T3 2 7 1: :=  and sum of the 
coefficients of second and third terms is 36, then x 
value is

(A) 
1

2
 (B) 

-1

2
 (C) 

1

3
 (D) 

-1

3

Solution: It is given that

T

T
3

2

7=  

This implies

 

n

n

x

x

x

- +æ
èç

ö
ø÷

æ
èç

ö
ø÷

=

-
× =

-

-

2 1

2

2

2
7

1

2
2 7

2

3  (7.8)

Also

n n

n n

n n

n

C C  1 2

2

36

72 0

9 8 0

8

+ =

+ - =

+ - =

=

( )( )

Putting the value n = 8 in Eq. (7. 8), we have

7

2
2 7

2 2

3

3

× =

=

-

-

x

x

Therefore

x =
-1

3

 Answer: (D)

18. If the sixth term in the expansion of 

2
1

2

2
1

2
1

9 7

1 5 3 1

7

log

( / ) log ( )

x

x

-

-
+

+
+é

ëê
ù
ûú

is 84, then the sum of the values of x is

(A) 3 (B) 4 (C) 9 (D) 16

Solution: By hypothesis 

7

5

1 2

1
9 7

1

3 1
84C ( )x

x
-

-+
+

æ
èç

ö
ø÷

=
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Therefore

3 7

3 1
4

2 1

1

( )x

x

-

-

+
+

=

Substituting y x= -3 1 we get

y y

y y

2

2

7 4 4

4 3 0

+ = +

- + =
This gives y = 1 3,  which implies that 3x-1 = 1 or 3x-1 = 3.  
Therefore x = 1 2, . The sum of the values = + =1 2 3.

 Answer: (A)

19. The integral part of ( )2 1 6+  is

(A) 298 (B) 297 (C) 198 (D) 197

Solution: We have

( ) ( ) [( ) ( ) ( ) ]2 1 2 1 2 2 15 2 15 2 1

198

6 6 6 4 2+ + - = + + +

=

Now 0 < 2  - 1 < 1 implies 197 < ( 2  + 1)6 < 198. There-
fore the integral part of ( ) .2 1 1976+ =

 Answer: (D)

20.  The last term in  ( )/ /2 21 3 1 2+ - n  is ( ) ./ log3 5 3 83-  Then, the 
value of the fifth term is

(A) 110 (B) 210 (C) 310 (D) 220

Solution: We are given that

2 3 22 5 3 3 2 53- - × × -= =n / / ( log )

Therefore, n = 10. The fifth term is

10

4

1 3 6 1 2 42 2
7 8 9 10

24
210C × × =

× × ×
=-( ) ( )/ /

 Answer: (B)

21.  Let ( ) .1 2

0 1 2

2

2

2- + = + + + +x x a a x a x a xn
n

n	  If a0, a1, 

a2, ¼, a2n are in AP, then an  equals

(A) 2 1n +  (B) 
1

2 1n +
 (C) 2 1n -  (D) 

1

2 1n -

Solution: We have

1
2 1

2
0 1 2 2 0 2= + + + + =

+
+a a a a

n
a an n	 ( )

Therefore

a a
n

a a nd
n

n0 2

0 0

2

2 1

2
2

2 1

+ =
+

+ + =
+

( )

 (where d is the common difference)

a nd
n0

1

2 1
+ =

+

Hence

 th terma n a nd
nn = + = + =

+
( )1

1

2 1
0

 Answer: (B)

22.  If a1, a2, a3, and a4 are the coefficients of any four 
consecutive terms in the expansion of ( )1 + x n, then

a
a a

a
a a

a

a a
1

1 2

2

2 3

3

3 4+ + +
, ,  

 are in

(A) AP (B) GP (C) HP (D) AGP

Solution: Let a1, a2, a3, a4 be the coefficients of rth, 
(r + 1)th, (r + 2)th  and (r + 3)th terms, respectively.
Then

a a a an
r

n
r

n
r

n
r1 1 2 3 1 4 3= = = =- + +C  C  C C, , ,

We know that

n
K

n
K

n K
K

C

C -

=
- +

1

1

Therefore

a
a

n r
r

a
a

n
r

a

a
n r
r

a

a
n r
r

a
a

n r

2

1

2

1

3

2

3

2

4

3

1
1

1

1
1

1

1

=
- +

Þ + =
+

=
-
+

Þ + =
+
+

=
- -
rr

a
a

n
r+

Þ + =
+
+2

1
1

2
4

3

and hence

a
a a

a

a a
r

n
r
n

r
n

a
a a

1

1 2

3

3 4

2

2 31

2

1
2

1

1
2

+
+

+
=

+
+

+
+

=
+
+

æ
èç

ö
ø÷

=
+

æ
èç

ö
ø÷

This gives that the following are in AP:

a
a a

a
a a

a

a a
1

1 2

2

2 3

3

3 4+ + +
, ,

 Answer: (A)

23.  If the middle term in the expansion of ( )1 2+ x n  is 
K n xn n( / !)2 , then K is equal to

(A) ( )!2n  (B) 1 3 5 2 1× × -	 ( )n

(C) ( )!2 1n -  (D) 
1

2
2 1( )!n -

Solution: Since there are 2 1n +  terms in the expan-
sion, the (n + 1)th term will be the middle term. Therefore 
the middle term is given by 

( ) ( )!

! !

! !

2 2

1 2 3 2

n
n

n n

n

x
n

n n
x

n
n n

x

C =

=
× × 	
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[ ( )][ (1 3 5 2 1 2 4 6n
=

× × - × ×	 	 22

1 3 5 2 1 2

n x
n n

n n x
n n

n

n n

)]

! !

[ ( )] ( !)

! !
=

× × -	

Therefore K n= × × -1 3 5 2 1	 ( ).

 Answer: (B)

24.  The coefficient of x53 in the expansion of 
100 10

0

100
3 2CK

K K

K
x( ) .- ×-

=å
(A) -100

53C  (B) 100

53C  (C) - 100

52C  (D) 100

52C

Solution: We have

100 100 100 100

0

100

3 2 3 2 1CK
K K

K

x x x( ) ( ) ( )- × = - + = --

=
å

Therefore  coefficient of x53 100

53= - C .

 Answer: (A)

25.  The coefficient of xr in the expansion of (x + 3)n - 1 + 
(x + 3)n - 2(x + 2) + (x + 3)n - 3(x + 2)2 + 	 + (x + 2)n - 1 is

(A) n
r

n r n rC ( )3 2- --  (B) n
r

n r n rC -
- + - +-1

1 13 3( )

(C) n
r

r rC + -1 3 2( )  (D) n
r

n r n rC ( )3 2- -+

Solution: The terms of the given sum follow GP with 
first term (x + 3)n-1 and common ratio (x + 2)/(x + 3). 
Therefore the given sum is

( )
{ [( )/( )] }

[( )/( )]
( ) ( )x

x x
x x

x xn
n

n n+
- + +
- + +

= + - +-3
1 2 3

1 2 3
3 21

Therefore the coefficient of xr of the given sum is

n
n r

n r n
n r

n r n
r

n r n r n
r

n
n rC C C   C C-

-
-

- - -
-- = - =3 2 3 2( ) ( )∵

 Answer: (A)

26.  The coefficient of x8 in the expansion of (1 + x + x2 + x3)4 is

(A) 30 (B) 31 (C) 32 (D) 36

Solution: We have

( ) ( ) ( )

( )

(

1 1 1

1 4 6 4

1 4 6 4

2 3 4 4 2 4

2 3 4

2 4 6

+ + + = + +

= + + + +

+ + +

x x x x x

x x x x

x x x ++ x8 )

Therefore the coefficient of x8 6 4 1 6 1 31= ´ + ´ + = .

 Answer: (B)

27.  If (1 + x + 2x2)20 º a0 + a1x + a2 x
2 + 	 + a40 x

40, then the 
value of a a a a0 2 4 38+ + + +	  is

(A) 2 2 120 20( )-  (B) 2 2 120 20( )+
(C) 2 239 19-  (D) 2 239 19+

Solution: In the given identity, substituting x = 1 and 
x = -1 both sides and adding

2 2 20 2 4 40

40 20( )a a a a+ + + + = +	

Therefore

 a a a a0 2 4 40

39 192 2+ + + + = +	  (7 .9)

But a40 is the coefficient of x40 which is 220. Therefore 
from Eq. (7.9), we get

a a a a0 2 4 38

39 19 20 39 192 2 2 2 2+ + + + = + - = -	

 Answer: (C)

28. The sum

   ( )- + + + +é
ëê

ù
ûú=

å 1
1

2

3

2

5

2

7

20
2 3 4

r n
r

r

n

r r r r mC upto terms	

 is equal to

(A) 
2 1

2 2 1

mn

mn n

+
-( )

 (B) 
2 1

2 2 1

mn

m n

-
-( )

(C) 
2 1

2 2 1

2mn

mn m

-
-( )

 (D) 
2 1

2 2 1

mn

mn n

-
-( )

Solution: We have

( )- æ
èç

ö
ø÷

= -æ
èç

ö
ø÷

= æ
èç

ö
ø÷=

å 1
1

2
1

1

2

1

20

r n
r

r

r

n n n

C

( ) ( )- æ
èç

ö
ø÷

= - æ
èç

ö
ø÷

= -æ
èç

ö
ø÷==

åå 1
3

2
1

3

4
1

3

42
00

r n
r r

r n
r

r

r

n

r

n n

C C == æ
èç

ö
ø÷

1

4

n

and so on. Therefore the given sum is

1

2

1

4

1

8

1

16

æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

+ æ
èç

ö
ø÷

+
n n n n

m	 upto terms

= æ
èç

ö
ø÷ + æ

èç
ö
ø÷ + æ

èç
ö
ø÷ + æ

èç
ö
ø÷ +

é

ë
ê

1

2
1

1

2

1

2

1

2

2 3n n n n

m	 upto terms
ùù

û
ú

= -
-

= -
-

1

2

1 1 2

1 1 2

2 1

2 2 1n

n

n

mn

mn n

m( / )

( / ) ( )

 Answer: (D)

29. Let p and q be positive integers. Let

p
q

p
p p q

p q

p q

C
when 

when 

  = × -
³

<

ì

í
ï

î
ï

!

! ( )!

0

  Then the sum ( )10 20

0
C Cr m rr

m
´ -=å  is maximum when 

m is 

(A) 5 (B) 10 (C) 15 (D) 20
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Solution: We have

( )1 10

0 1 2

2

10

10+ = + + + +x x x xC C C C	  (where C Cr r= 10 )

( )1 20

0 1 2

2

20

20+ = + + + +x x x xC C C C	  (where C Cr r= 20 )

Therefore

 C C( )10 20

0

r m r
r

m

´ =-
=
å  coefficient of xm  in the expansion of

( ) ( )1 110 20+ + =x x  coefficient of xm  in ( )1 30 30+ =x mC

It is known that nCr is maximum if r = n/2 when n is even. 
Therefore the given sum is maximum, if

m = =
30

2
15

 Answer: (C)

1.  If the third term in the expansion of ( )logx x x+ 10 5 is 
10,00,000, then the value(s) of x may be

(A) 10 (B) 102 (C) 105/2 (D) 10-5/2

Solution: Put log10 x y= . Therefore

5

2

3 2 6

3 2 5

10

2

10

10

3 2 5

3 2 5

2 3 5 0

C x x

x
y x

y y

y y

y

y

y

( )

( ) log

( )

(

=

=
+ =

+ =

+ - =

+

-- + =1 2 5 0)( )y

This gives

y y= =
-

1
5

2
or

Therefore x = 10  or 10 5 2- / .

 Answers: (A), (D)

2. If ( ) ,1 1 8 24 2+ = + + +ax x xn 	  then

(A) a = 3 (B) n = 4 (C) a = 2  (D) n = 5

Solution: We have

( ) ( ) ( )1 1 1 2

2+ = + + +ax ax axn n nC C 	

Therefore

( )

( ) ( )

n

n

a an

a n n a

C

C  

1

2

2 2

8 8

24 1 48

= Þ =

= Þ - =

Now, 48 1 8 82= - = - = -n n a an an a a( ) ( )( ) ( ).
Therefore

8 6

2

2 4

- =

=

= Þ =

a

a

a n

Hence the answer is   a n= =2 4, .

 Answers: (B) and (C)

3.  If the ninth term in the expansion of [
log ( )

3 3 25 7x + + 

3 1 8 5 1 103
1- +-( / )log ( ) ]

x

 is equal to 180 where x > 1, then x 
value is

(A) log5 3 + 1 (B) log5 15 (C) log5 3 + 2 (D) log10 15

Solution: Put a = 25 71x- +  = 5 72 1( )x- +  and b = (5x–1 + 
1)-1/8. Therefore the ninth term is

10

8

2 8 2 1 1 145 5 7 5 1 180C a b x x= + + =- - -( )( )( )

Substituting y x= -5 1 in this we get

y y

y y

y

2

2

7 4 1

4 3 0

1

+ = +

- + =

=

( )

or  3

Now

y xx= Þ = Þ =-1 5 1 11  (reject as x > 1)

 y xx= Þ = Þ =-3 5 3 151

5log

 Answers: (A) and (B)

4. Which of the following statements are true?

(A)  The digit at unit place in the number 171995 + 111995 - 
71995 is 1.

(B) (106)85 - (85)106 is divisible by 7.

(C)  The positive integer which is just greater than 
(1 + 0.0001)1000 is 2.

(D)  If ( ) ,1 2 3 2 2010

0 1 2

2

4020

4020+ - = + + + +x x a a x a x a x	
then a a a a a0 2 4 6 4020+ + + + +	  is an even integer.

Solution:

(A)  (17)1995 + 111995 - 71995 = (10 + 7)1995 + (10 + 7)1995 - 71995 = 
1 + (a multiple of 10) as 71995 and -71995 cancelled with 
each other. Therefore the digit at the unit place is 1.
Therefore (A) is true.

(B)   (106)85 - (85)106 = (1 + 105)85 - (1 + 84)106. When bino-
mially expanded 1, –1 will be cancelled and in the 
remaining terms, 105 and 84 occur and are divisible 
by 7. Therefore (B) is true.

Multiple Correct Choice Type Questions
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(C) It is easy to see that

1 1 0 0001 1
1

10
21000

4

1000

< + = +æ
èç

ö
ø÷

<( . )

Therefore the integer just greater than [ ( / )]1 1 104 1000+  
is 2. Hence (C) is true.

(D) Put x = 1 and –1 and add.

 0 4 2010

0 2 4 6 4020+ - = + + + + +( ) a a a a a	

Therefore (D) is true.

 Answers: (A), (B), (C), (D)

5.  If ( )7 4 3+ = +n I f , where I is an integer and 0 < f < 1, 

then

(A) I is an even integer (B) I is an odd integer

(C) ( )( )I f f+ - =1 1 (D) f f2 1 0- + =

Solution: By hypothesis (7 + 4 3)n = I + f. Let (7 -
4 3)n = G, where 0 < G < 1. Therefore

( ) [ ( ) ( ) ]I f G n nn n n+ + = + + +- -2 7 7 3 7 32

2 2

4

4 4C C 	

When 0 < f + G < 2 and I + f + G is an integer Þ f + G = 1.

Therefore

I = 2 (some integer) – 1 is an odd number

Hence (B) is true. Again 

( )( ) ( ) ( ) ( )

( )

I f f I f G n n

n

+ - = + = + -

= - =

1 7 4 3 7 4 3

49 48 1

Therefore (C) is true.

 Answers: (B) and (C)

6. If ( ) ,6 6 14 2 1+ =+n P  then

(A) [P] is an even integer (B) PF n= +22 1

(C) PF n= +202 1  (D) [P] is an odd integer

  Note: [·] denotes integral part and F is the fractional 
part of P.

Solution: Let

( )6 6 14 2 1+ = = ++n P I F

where I P= [ ] and F P P= - [ ]. Let

( )6 6 14 2 1- =+n G

so that 0 < G < 1. Now

P G n

n

n

n

- = +

+ + ´ +-

2 2 1 6 6 14

2 1 6 6 14

1

2

3

2 2 2

[( ) ( ) ( )

( ) ( ) ( ) ]

C

C

= 2 (some

	
  positive integer)

Therefore I + F - G is an integer and 0 < F < 1, 0 < G < 1  
implies that F = G.

Also [P] = I is an even integer and

PF I F F I F G

n n n

= + = +

= + - =+ + +

( ) ( )

( ) ( ) ( )6 6 14 6 6 14 202 1 2 1 2 1

 Answers: (A) and (C)

7.  If (1 + x)n = C0 + C1x + C2x
2 + 	 + Cnx

n, where Cr 
denotes nCr, then

(A) 
C C C C

for all

0 1 2

1 2
1

1 2

1

x x x x n

n
x x x x n

x

n n-
+

+
+

- + -
+

=
+ + +

¹ -

	

	

( )

!

( )( ) ( )

,, , ,- - ¼2 3

(B) 
C C C C C0 1 2 3

1 2 3 4
1

1

1

1
- + - + + -

+
=

+
	 ( )n n

n n

(C) 
C C C C C0 1 2 3

2 3 4 5
1

2

1

1 2

- + - + + -
+

=
+ +

	 ( )

( )( )

n n

n

n n

(D) C C C C C0 1 2 3 1 0- + - + + - =	 ( )n
n

Solution: We prove (A) by mathematical induction.
For n = 1,

C C0 1

1

1 1

1

1

1

1

1x x x x x x x x
-

+
= -

+
=

+
=

+( )

!

( )

Assume for n, that is

C C C C C0 1 2 3

1 2 3
1

1 2

x x x x x n

n
x x x x n

n n-
+

+
+

-
+

+ + -
+

=
+ + +

	

	

( )

!

( )( ) ( )

Change x to x + 1 on both sides

C C C C0 1 2

1 2 3
1

1

1 2 1

x x x x n

n
x x x n

n n

+
-

+
+

+
- + -

+ +

=
+ + + +

	

	

( )

!

( )( ) ( )

On subtraction and using n n nr r rC C C+ = +-1 1( ) , we have

( ) ( ) ( ) ( )

( )
( )

n

x
n

x
n

x

n

x

nn n

+
-

+
+

+
+

+
-

+
+

+

+ -
+ +

1 1

1

1

2

1

3

1
1

0 1 2 3

1

C C C C

C

	

xx n+ + 1
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n x n x
x x x x n

n
x x x

=
+ + -

+ + + +

=
+

+ +

1

1 2 1

1

1 2

![( ) ]

( )( ) ( )

( )!

( )( )

	

	 (( )x n+ + 1

The result is also true for n + 1. Hence (A) is true.
In (A), by substituting x = 1, 2 we see that (B) and (C) 
are true.
In (1 + x)n expansion, putting x = –1 we get (D) is true.

 Answers: (A), (B), (C), (D)

8.  If (1 + x)n = C0 + C1x + C2x
2 + 	 + Cnx

n, where Cr = 
nCr, then

(A) a a d a d a nd

a nd

n

n

× + + × + + × + + + ×

= +-

C C C C0 1 2

1

2

2 2

( ) ( ) ( )

( )

	

(B) 1 2 3 1 2 10 1 2× + × + × + + + × = +C C C C	 ( ) ( )n nn
n

(C) 1 2 3 1 2 2 10 1 2

1× + × + × + + + × = +-C C C C	 ( ) ( )n nn
n

(D) 
C

C

C

C

C

C

C

C
1

0

2

1

3

2 1

2 3
1

2
+ × + × + + =

+

-

	 n
n nn

n

( )

Solution:

(A) Let

    s = a · C0 + (a + d) · C1 + (a + 2d) · C2 + 	 + (a + nd) · Cn

Since C Cr n r= -  we have

s a nd a n d a n= + × + + - × + + ×( ) [ ( ) ]C C C0 11 	

By adding both the above equations we get

2 2 2 20 1s a nd a ndn
n= + + + + = +( )[ ] ( )C C C	

Therefore

s a ndn= +-2 21( )

Therefore (A) is true.
Putting a = 1 = d, we get 

s nn= +-2 21( )

Therefore (B) and (C) are not true.

(D) Let 

u r r
n

n r r
n r r

nr
r

r

= × = ×
-

×
- + -

-

C

C 1

1 1!

( )! !

( )!( )!

!

Therefore

u r
n r

r
n r

r u n r
n n

r

r

rr

n

r
r

n

r

n

= ×
- +

= - +

× = = - + =
+

-= = =
å å

1
1

1
1

211 1 1

C

C
( )

( )åå

Therefore (D) is true.

 Answers: (A) and (D)

9.  Let Cr be the binomial coefficient in the expansion of 
(1 + x)n. Then

(A) 
C C C C0 2 4 6

1 3 5 7

2

1
+ + + + =

+
	

n

n

(B) 
C C C1 3 5

2 4 6

2 1

1
+ + + =

-
+

	
n

n

(C) C C C C C C C C C0 1 1 2 2 3 1

2

1+ + + + =- +	 n n
n

n

(D)  If sn = C0C1 + C1C2 + C2C3 + 	 + Cn-1Cn and if
sn + 1/sn = 15/4, then n = 2 or 4.

Solution:

(A) We have

C
C2 1

2 1
2 1 2 2 2 1

1

1
r n

rr
n

n r r r n+
=

- +
= ×

+
+

+
!

( )!( )!( ) ( )

( )

( )

Therefore

C
C2 1

2 12 1

1

1
r n

rr n+
= ×

+å å +
+

( )

( ) ( )

 

=
+

+ + +

=
+

=
+

+ + +

+

1

1

1

1
2

2

1

1

1

1

3

1

5

1

n

n

n

n n n

n

n

[ ]( ) ( ) ( )

( )

C C C

[see Theor

	

eem 7.2 part (3)]

Therefore (A) is true.

(B) 
C

C2 1 1

2
2

1

1
r n

rr n
- +=

+
×( )

Therefore

    

C
C C2 1 1

2

1

4
2

1

1

1

1
2 1r n n n

r n n
- + +å =

+
+ + =

+
-[ ] ( )( ) ( ) 	

Therefore (B) is true.

(C) ( ) ( ) ( )

( )

(

1 1 12

0 1

0 1

1

2

2

+ = + +

= + + +

´ + + +- -

x x x

x x

x x x

n n n

n
n

n n n

C C C

C C C

	

	 ++ Cn )

Equating the coefficients of xn + 1 (or xn - 1) both sides, 
we get

C C C C C C C C C0 1 1 2 2 3 1

2

1+ + + + =- +	 n n
n

n

Therefore (C) is true.

(D) In (C) above, replace n with n + 1. Then

15

4

2 2 2 1

2
1= =

+ +
+

+s

s
n n

n n
n

n

( )( )

( )
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Solving we get

n n

n n

n

2 6 8 0

2 4 0

2 4

- + =

- - =

=

( )( )

or

Hence (D) is true.

 Answers: (A), (B), (C), (D)

10. For any positive integers m, n (with m £ n). Let

n

m
n

m n m
n

m

æ
èç

ö
ø÷

= =
-

C
!

!( )!

Then

(A) 
n

m

n

m

n

m

m

m

n

m
æ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

+
-æ

èç
ö
ø÷

+ +
æ
èç

ö
ø÷

=
+
+

æ
èç

ö
ø÷

1 2 1

1
	

(B) 
n

m

n

m

n

m

n m
m

m

n

m

æ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

+ ×
-æ

èç
ö
ø÷

+

+ - + ×
æ
èç

ö
ø÷

=
+
+

2
1

3
2

1
2

	

( )
22

æ
èç

ö
ø÷

(C) 
n

m

n

m

n

m

n m
m

m

n

m

æ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

+ ×
-æ

èç
ö
ø÷

+

+ - + ×
æ
èç

ö
ø÷

=
+
+

2
1

3
2

1
1

	

( )
22

æ
èç

ö
ø÷

(D) 
10

2

9

2

8

2

2

2

11

3

æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

+
æ
èç

ö
ø÷

+ +
æ
èç

ö
ø÷

=
æ
èç

ö
ø÷

	

Solution:

(A) We have

n

m

n

m

n

m

m

m

x

æ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

+
-æ

èç
ö
ø÷

+ +
æ
èç

ö
ø÷

=

1 2
	

Coefficient of mm

n n n m

n
m

x x x x

 in the expression

C

( ) ( ) ( ) ( )1 1 1 11 2+ + + + + + + +

= +

- - 	
(( ) ( )

( ) ( ) ( )[ ] [

n
m

n
m

m
m

m
m

m
m

m
m

m
m

n

- -

+ + +

+ + +

= + + + + +

1 2

1 2 3

C C C

C C C C C

	

	 mm

m
m

m
m

m
m

m
m

n
m

m
m

]

[ ] [ ]

[

( ) ( ) ( ) ( )

( )

= + + + + +

=

+
+

+ + +

+
+

1

1

1 2 3

2

1

C C C C C

C

	

++ + + + +

= + +

+ + +

+
+

+

( ) ( ) ( )

( ) ( ) (

] [ ]

[ ] [

m
m

m
m

m
m

n
m

m
m

m
m

m

2 3 4

3

1

3

C C C C

C C

	
++ + +4) ]C Cm

n
m	

Finally n
m

n
m

n
mC C C+

+
++ =1

1

1

( ) .

Therefore (A) is true.

(B) Let

s
n

m

n

m

n

m
n m

m

m
=

æ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

+ ×
-æ

èç
ö
ø÷

+ + - + ×
æ
èç

ö
ø÷

2
1

3
2

1	 ( )

Therefore

s
n

m

n

m

n

m

m

m

n

m

=
æ
èç

ö
ø÷

+
-æ

èç
ö
ø÷

+
-æ

èç
ö
ø÷

+ +
æ
èç

ö
ø÷

é

ë
ê

ù

û
ú

+
-æ

èç
ö

1 2

1

	

øø÷
+

-æ
èç

ö
ø÷

+ +
æ
èç

ö
ø÷

é

ë
ê

ù

û
ú

+
-æ

èç
ö
ø÷

+
-æ

èç
ö
ø÷

+ +

n

m

m

m

n

m

n

m

m

m

2

2 3

	

	
ææ
èç

ö
ø÷

é

ë
ê

ù

û
ú

														

														

First row sum =
+
+

æ
èç

ö
ø÷

n

m

1

1

Second row sum =
+

æ
èç

ö
ø÷

n

m 1

Third row sum =
-
+

æ
èç

ö
ø÷

n

m

1

1
, etc.

Hence

s
n

m

n

m

n

m

m

m

n

m
=

+
+

æ
èç

ö
ø÷

+
+

æ
èç

ö
ø÷

+
-
+

æ
èç

ö
ø÷

+ +
+
+

æ
èç

ö
ø÷

=
+1

1 1

1

1

1

1

2
	

++
æ
èç

ö
ø÷2

Therefore (B) is true.

(D) In (A), take n = 10 and m = 2. So, (D) is true.

 Answers: (A), (B), (D)

11.  Let (1 + x)n = C0 + C1x + C2x
2 + 	 + Cnx

n where Cr 
means nCr. Then

(A) C C C C0

2

1

2

2

2 2

2

2
+ + + + =	 n

n
n

( )!

( !)

(B) a a d a d

a nd
n

n nn

× + + × + + × +

+ + × =
-
-

C C C

C

0

2

1

2

2

2

2

2

2 1

1

( ) ( )

( )
( )!

!( )!

	

(C)  Sum of the products of C0, C1, C2,¼, Cn taken two 

at a time is equal to 22n - 1 - (2n - 1)!/[n!(n - 1)!]

(D) C C C C2 3 4

12 3 1 1 2 2+ × + × + + - × = + - -	 ( ) ( )n nn
n

Solution:

(A) ( ) ( ) ( )

( )

(

1 1 12

0 1 2

2

0 1

1

+ = + +

= + + + +

+ + +-

x x x

x x x

x x

n n n

n
n

n n

C C C C

C C C

	

	´ nn r n r) ( )∵C C= -

Equating coefficient of xn on both sides

2

0

2

1

2

2

2 2n
n nC C C C C= + + + +	

Therefore (A) is true.
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(B) Let

s a a d a d a nd n= × + + × + + × + + + ×C C C C0

2

1

2

2

2 22( ) ( ) ( )	

and s a nd a n d

a n d a n

= + × + + - ×

+ + - × + + ×

( ) [ ( ) ]

[ ( ) ]

C C

C C

0

2

1

2

2

2 2

1

2 	

Therefore

2 2

2
2

2

0

2

1

2

2

2 2s a nd

a nd
n

n n

s a nd

n= + + + + +

= +

= +

( )( )

( )
( )!

( !)( !)

(

C C C C	

))
( )!

( !)( )!

2 1

1

n
n n

-
-

Hence (B) is true.

(C) We have

2
0

0 1 2

2

0

2

1

2

2

2 2

C C C C C C

C C C C

i j
i j n

n

n

å
£ < £

= + + + +

- + + + +

( )

( )

	

	

2
22n n

= -
( ))!

( !)( !)n n

So (C) is true.

(D) We have

s n

n

n= + × + × + + - ×

= - × + × + × + × +

+ - ×

C C C C

C C C C

2 3 4

0 1 2 3

2 3 1

1 0 1 2

1

	

	

( )

[( )

( ) CC  C

see Q38 part (A)]

n

nn

n

] ( )

[ ( )] [

( )

+ =

= - + - × +

= + -

-

1 1

1 1 2 1

1 2

0

1

∵

×× -2 1n

Therefore (D) is true.

 Answers: (A), (B), (C), (D)

Matrix-Match Type Questions

1. Match the items of Column I with those of Column II.

Column I Column II

(A)  The term independent of x in the 
expansion of ( ) [ ( / )]1 12 10- +x x x  
is

(p) 17
8

17
7C C+

(B)  The coefficient of a6 in the 
expansion of (1 + a)6 + 
(1 + a)7 +	+ (1 + a)15 is

(q) 16

7C

(C)  The coefficient of x8 y10 in the 
expansion of (x + y)18 is

(r) 11

5C

(D) 
1

1 10

1

3 8

1

5 6

1

11! ! ! ! ! ! !
+ + + +	 equals (s) 

2

11

10

!

Solution:

(A) We have

( ) ( )1
1

1 2

1

1

2

10

2

10 10

1

9

10

2

8

- +æ
èç

ö
ø÷

= - +

+ æ
èç

ö
ø÷

+ æ
èç

x x
x

x x

x x
x

x
x

C

C
öö
ø÷

+ +

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

2

10

1
	

x

Therefore the term independent of x is

10

5

10

6

11

6

11

52 0C C C C+ - + = =( )( )

 Answer: (A) Æ (r)

(B) The coefficient of a6 is given by

( ) ( ) ( ) ( ) [ ( )

( ) ( ) ]

(

1 1 1 1 1 1

1 1

1

6 7 15 6

2 9

+ + + + + + = + + +

+ + + + +

=

a a a a a

a a

	

	

++
+ -
+ -

=
+ - +

a
a
a

a a
a

)
[( ) ]

( )

( ) ( )

6
10

16 6

1 1

1 1

1 1

Therefore coefficient of a6 16

7= C .

 Answer: (B) Æ (q)

(C)  We have T x yr r
r r

+
-=1

18 18C . Therefore the coefficient 
of x8 y10 will be obtained when r = 10 and the coef-
ficient is 18

10

18

8

17

8

17

7C C C C= = + .

 Answer: (C) Æ (p)

(D) The given sum is

1

11

11

1 10

11

3 8

11

5 6

11

11

1

11

11

1

11

3

!

!

! !

!

! !

!

! !

!

!

!

+ + + +é
ëê

ù
ûú

= + +

	

C C 111

5

11

11

102

11

C C+ +éë ùû

=

	

!

 Answer: (D) Æ (s)
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2. Match the items of Column I with the items of Column II.

Column I Column II

(A)  If the sum of the coefficients in 
the expansion of ( )a x ax2 2 502 1- +  
is zero, then the value of 
a a a a+ + + +2 3 10	  is

(p) 1

(B)  If x x f= + = +( ) [ ]3 2 2 6  where 
[x] is the integral part of x and f = 
x – [x], then x (1 – f ) is

(q) 15

(C)  If the sum of the coefficients of 
x5 and x10 in the expansion of 
[ ( / )]x x n3 21-  is zero, then n equals

(r) 129

(D)  Number of integral terms in the 

expansion of ( )5 78 1024+  is

(s) 55

Solution:

(A)  Sum of the coefficients in the expansion of (ax2 - 

2ax + 1)50 = (a - 1)50 = 0 Þ a = 1. Therefore

a a a a+ + + + = + + + + =
×

=2 3 10 1 2 3 10
10 11

2
55	 	

 Answer: (A) Æ (s)

(B) Let x x f= + = +( ) [ ]3 2 2 6  and g = -( )3 2 2 6 . Then

[ ]x f g x g+ + = + = 2 (some integer)

Now 0 < f, g < 1 and [x] + f + g is an integer. This 
implies f + g = 1. Therefore

x f xg( ) ( ) ( )1 3 2 2 3 2 6 16 6- = = + - =
 Answer: (B) Æ (p)

(C) We have

T x
x

xr
n

r
n r

r
r n

r
n r

+
- -= ×

-æ
èç

ö
ø÷

= - ×1

3

2

3 51
1C C( ) ( )

Now

3 5 5
3 5

5
n r r

n
p- = Þ =

-
=  (say) (7.10)

3 5 10
3 10

5
n r

n
q- = Þ

-
=  (say) (7.11)

Therefore from Eqs. (7.10) and (7.11),

p – q = 1 (7.12)

Hence

n
p

p n
q

q

n
p

p n
p

p

C C

C C

( ) ( )

( ) ( )

- + - =

- + - =-
-

1 1 0

1 1 01

1

n
p

n
p

p n

C C=

- =

-

2 1

2

1

33 5

5
1

15

n
n

n

-æ
èç

ö
ø÷

= +

=

 Answer: (C) Æ (q)

(D)  We have Tr r
r r

+
-= ×1

1024 2 81024 5 7( ) ( )/ /C  is an integer. 
Therefore r is a multiple of 8. Since 0 1024£ £r , the 
number of multiples of 8 which lie between 0 and 
1024 (both inclusive) is 129.

 Answer: (D) Æ (r)

3. Match the items of Column I with the items of Column II.

Column I Column II

(A)  Coefficient of xn in the 
expansion of (1 + x)2n is

(p) (2n)Cn

(B)  Coefficient of xn in the 
expansion of ( )x x n2 2+  is

(q) 2n

(C)  Coefficient of xn in the 
expansion of n x x n( )2 12+ -

is

(r) n n nC C1

1

1

22´ ´- -( )

(D)  Coefficient of xn in 
the expansion of 
n nx xC2

2 22( )+ - is

(s) n n nC C2

2

2

42´ ´- -( )

Solution:

(A) ( )1 2 2

0

2

1

2

2

2 2

2

2+ = + + + +x x x xn n n n n
n

nC C C C	

Therefore coefficient of xn n
n= 2 C .

 Answer: (A) Æ (p)

(B) T rr+ = +1 1( )th term in the expansion of ( )x x n2 2+

= × = ×

- = Þ =

- -n
r

n r r n
r

n r rx x x

n r n r n

C C( ) ( )2 22 2

2

Therefore coefficient of x nn
n

n n= × =C 2 2 .

 Answer: (B) Æ (q)

(C) T n x x nr r
n r r

+
- -= - ×1

2 11 2[( ) ( ) ( ) ]C

= - × ×

- - = Þ = -

- -( )n x n

n r n r n

r
n r r1 2

2 2 2

2 2C

Therefore coefficient of xn in n x x n( )2 12+ -  is

( ) ( )n
n

n n n nn-
-

- - -× × = ´ ×1

2

2

1

1

1

22 2C C C

 Answer: (C) Æ (r)

(D) Similarly, the coefficient of xn in n nx xC2

2 22( )+ -  is

n n nC C2

2

2

42´ ´- -( )

 Answer: (D) Æ (s)
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4.  Match the items of Column I to the items of Column II,

if C C C C whereC is C( ) .1 0 1 2

2+ = + + + +x x x xn
n

n
r

n
r	

Column I Column II

(A)  C C C C

C
is

0 1 2 3

1 2 3 4

1
1

- + - +

+ - ×
+

	

( )n n

n

 (p) 
2

1 3 5 2 1

n

n× × × +	 ( )

(B)  C C C C

C
is

0 1 2 3

2 3 4 5

1
2

- + - +

+ - ×
+

	

( )n n

n

 (q) 
2

1 3 5 2 1

n

n× × × -	 ( )

(C) 
1 1 3 5 7

1
2 1

0 1 2 3

n
n

n n!
( )

C C C C

C
is

- + -

+ + - ×
+

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷	

(r) 
1

1n +

(D) 

 -
- - + - +

+ + - ×
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 1 3 5 7

1
2 1

0
1 2 3 4

n
n

n n!
( )

C
C C C C

C
is

	

(s) 
1

1 2( )( )n n+ +

Solution: It is known that (from Q7 in Multiple Correct 
Choice Type Questions)

C C C C

C

0 1 2 3

1 2 3

1
1 2

x x x x

x n
n

x x x x n
n n

-
+

+
+

-
+

+

+ - ×
+

=
+ + +

	

	
( )

!

( )( ) ( )

for all x ¹ - - -0 1 2 3, , , ,…

Put x = 1, 2, 1/2 and -1/2 to get the result. This is a simple 
exercise left to the students.

 Answer: (A) Æ (r), B Æ (s), (C) Æ (p), (D) Æ (q)

1.  Passage: In the expansion of (x + a)n, the general term 
is nCrx

n - r·ar and the number of terms in the expansion 
is n + 1. Answer the following three questions:

(i)  If the fourth term in the expansion of [px + (1/x)]n 
is 5/2, then np is equal to

(A) 4 (B) 3 (C) 9/2 (D) 10

(ii)  The number of terms in the expansion of 
( )x y z n+ +  is

(A) 
n n( )+ 1

2
 (B) ( )( )n n+ +1 2

(C) 
( )( )n n+ +1 2

2
 (D) ( )( )n n+ +2 3

(iii)  The coefficient of x5 in the expansion of [3x2 - 
(1/3x3)]10 is

(A) –9520 (B) 9520 (C) 9720 (D) –9720

Solution:

(i)  The fourth term in the expansion of [px + (1/x)]n  is 
5/2, that is

n npx
x

C3

3

3

1 5

2
( ) - ×æ

èç
ö
ø÷

=

Therefore

n n n
p xn n( )( )- -

× × =- -1 2

6

5

2

3 6

Now n = 6 (since the term is independent of x), 
hence

6 5 4

6

5

2

1

2

1

2

3

3

3

× ×
× =

= æ
èç

ö
ø÷

Þ =

p

p p

Therefore np = 3.

 Answer: (B)

(ii) ( ) ( )

( ) ( )

x y z x x y z

x y z y z

n n n n

n n

+ + = + +

+ + + + +

-

-

C

C

1

1

2

2 2 2	

It can be observed that second, third, fourth, ¼, 
(n + 1)th terms contain 2, 3, 4, ¼, (n + 1) terms 
in their respective expansions. Therefore the 
number of terms in the given expansion is 

1 2 3 1
1 2

2
+ + + + + =

+ +
	 ( )

( )( )
n

n n

 Answer: (C)

Comprehension-Type Questions
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(iii) We have

T x
x

x

x

r r
r

r

r
r r r

r

+
-

- -

= -æ
èç

ö
ø÷

= - ×

=

1

10 2 10

3

10 10 20 5

5

3
1

3

3 1
1

3

C

C

( )

( )

xx rr20 5 3- Þ =

Therefore the coefficient of x5  is

 - × = -
× ×æ

èç
ö
ø÷

× = - ´ = -( ) ( )10

3

43
8 9 10

6
81 120 81 9720C

 Answer: (D)

2.  Passage: Let (1 + x)n = C0 + C1x + C2x
2 + 	 + Cnx

n 
where C Cr

n
r= . For a given value of x, let p = (n + 1)| x |/

(| x | + 1). If p is an integer, then the numerical values 
of pth and (p + 1)th terms are equal and they are the 
numerically greatest terms in the expansion of (1 + x)n. 
If p is not an integer and [ p] denotes the integral part 
of p, then ([ p] + 1)th term is numerically greatest term.
Answer the following questions:

(i)  The value of numerically greatest term in the expa-

nsion of 2 1 1 2 16[ ( / )]+  is

(A) 
1

16

16

7× C  (B) 
1

16

16

8× C

(C) 
1

18

16

8× C  (D) 
1

8

16

7× C

(ii)   Numerically greatest term in the expansion of 

( )3 5 15- x when  is (are)x = 1 5/

(A) fourth and fifth term (B) sixth term

(C) seventh term (D) eighth term

(iii) The greatest value of 20 0 20Cr r( )£ £   is

(A) 20C8 (B) 20C9 (C) 20C10 (D) 20C7

Solution:

(i) We have

p =
+

+
= -

( )( / )

( / )
( )

16 1 1 2

1 2 1
17 2 1

Therefore [ p] = 7. The eighth term is numerically 
greatest and its value is

2
1

2

1

8

16

7

7

16

7× ×æ
èç

ö
ø÷

= ×C C

 Answer: (D)

(ii) We have

 ( )3 5 3 1
5

3
3 1

1

3

1

5

15 15

15

15

15

- = -æ
èç

ö
ø÷

= -æ
èç

ö
ø÷

=æ
èç

ö
ø÷

x
x

x∵

So

p =
+
+

= =
( )( / )

( / )

15 1 1 3

1 1 3

16

4
4

is an integer. Therefore numerically greatest terms 
are fourth and fifth terms.

 Answer: (A)

(iii) Consider (1 + 1)20. Then

p =
+
+

( )20 1 1

1 1

Therefore [ p] = 10 and hence 11th term is greatest 
and its value is 20C10.

 Answer: (C)

3.  Passage: If n is a positive integer, x and a are real 
(complex), then (r + 1)th term in the expansion of 
(x + a)n is n

r
n r rx aC - × . Answer the following questions:

(i)  If the coefficient of x7 in [ ( / )]ax bx2 111+  is equal 

to the coefficient of x–7 in [ ( / )]ax bx- 1 2 11 , then

(A) ab = 1 (B) ab = –1 (C) ab = 2 (D) ab = –2

(ii)  If the coefficients (2r + 4)th and (r – 2)th terms in the 
expansion of (1 + x)18 are equal, thus r is equal to

(A) 5 (B) 4 (C) 6 (D) 7

(iii)  Coefficient of x50 in the expansion of 
(1 + x)41(1 - x + x2 )40 is

(A) –1 (B) 1 (C) 40 (D) 0

Solution:

(i) We have that the (r + 1)th term is

11 2 11 11 11 22 31 1

22 3 7

5

C Cr
r

r

r
r

r
rax

bx
a

b
x

r

r

( ) - - -æ
èç

ö
ø÷

= × ×

- =

=

Therefore the coefficient of x7 in the first expansion 
is 11

5

6 5C ( / )a b .
Similarly the coefficient of x–7 in the second 

expansion is11

6

5 6C ( / )a b . Therefore

11

5

6

5

11

6

5

6
1C C

a
b

a
b

ab
æ
èç

ö
ø÷

=
æ
èç

ö
ø÷

Þ =

 Answer: (A)

(ii) By hypothesis,

 

18

2 3

18

3

2 3 3

2 3 3 18

6

C Cr r

r r

r r

r

+ -=

+ ¹ -

+ + - =

=

( ) ( )

 Answer: (C)
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(iii) We have

( ) ( ) ( )( )1 1 1 141 2 40 3 40+ - + = + -x x x x x

The power of x in this expansion is of the form either 
3r or 3r + 1 but 50 is of the form 3k + 2. Hence, coef-
ficient of x50 is zero.

 Answer: (D)

4. Passage: If n is a positive integer, then

( )1 0 1 2

2

0 1

1

2

2

+ = + + + +

= + + + +- -

x x x x

x x x

n
n

n

n n n
n

C C C C

C C C C

	

	

where Cr means nCr. Answer the following questions:

(i) C C C C C C C C0 2 1 3 2 4 2× + × + × + + × =-	 n n

(A) 2nCn (B) 2nCn - 2 (C) 2nCn + 1 (D) 22n

(ii) C C C C C0 1 2 32 3 4 1 1- × + × - × + + - × + × =	 ( ) ( )n
nn

(A) 0 (B) 2 12n -
(C) ( )2 1n nC -  (D) 2 11n n- +( )

(iii) ( ) ( ) ( ) ( )C C C C1

2

2

2

3

2 22 3+ × + × + + × =	 n n

(A) (2n)!/n!n!

(B) (2n)!/n!(n - 1)!

(C) coefficient of xn–1 in n(1 + x)2n–1

(D) ( )n n+ ×1 2

Solution:
(i) ( ) ( ) ( )

( )

(

1 1 12

0 1 2

2

0 1

1

+ = + +

= + + + +

+ + +-

x x x

x x x

x x

n n n

n
n

n n
n

C C C C

C C C

	

	 ))

Equating the coefficients xn – 2(or xn + 2) on both sides 
we get

2

2 0 2 1 3 2 4 2

n
n n nC C C C C C C C C- -= × + × + × + + ×	

 Answer: (B)

(ii) Let 

T r

r

n n

r
r

r

r
r

r
r

r
r

+

-

= - × + ×

= - × × + - ×

= - × × - +

1

1

1 1

1 1

1 1

( ) ( )

( ) ( )

( ) ( )

C

C C

C (( ) , , , ,- × =1 1 2 3r
r r nC for …

Therefore the given sum is

C C C

C

0 1

1 1

0

1

1 1 1

1 1 1 1

+ - × - + - ×

= - - + -

-
= =

-

å ån nr
r

r

n
r

r
r

n

n n

( ) ( ) ( )

( ) [( ) -- =C0 0]

 Answer: (A)

Aliter: ( )1 0 1 2

2+ = + + + +x x x xn
n

nC C C C	

Therefore

x x x x x xn
n

n( )1 0 1

2

2

3 1+ = + + + + +C C C C	

Differentiating both sides with respect to x and then
substituting x = –1 on both sides we get

0 2 3 4 1 10 1 2 3= - × + × - × + + - × + ×C C C C C	 ( ) ( )n
nn

(iii) Let s n n= × + × + × + + ×0 1 20

2

1

2

2

2 2C C C C	  

Therefore

s n n n n

r n r

= × + - × + - × + + ×

= -

C C C C

 C C

0

2

1

2

2

2 21 2 0( ) ( )

( )

	

∵

This gives

2 0

2

1

2

2

2 2 2s n nn
n

n= + + + + =[ ] ( )C C C C C	

Hence

s
n n n

n n
n

n
n n

n
n= × = é

ëê
ù
ûú

=
-

-
é

ë
ê

ù

û
ú

2 2

2 2 1

1

2 C

=  Coeffi

( )!

! !

( )!

( )! !

ccient of  in x n xn n- -+1 2 11( )

 Answer: (C)

In the following set of questions, a Statement I is given 
and a corresponding Statement II is given just below it. 
Mark the correct answer as:

(A)  Both I and II are true and II is a correct reason for I

(B)  Both I and II are true and II is not a correct reason 
for I

(C)  I is true, but II is false

(D)  I is false, but II is true

1.  Statement I: If Cr is the binomial coefficient in the 
expansion of (1 + x)n, then

C C C C forr r r
n

r r n+ × + = £ £- -
+2 21 2

2( )

 Statement II: n
r

n
r

n
rC C C-

++ =1

1( )

Solution: We have

n
r

n
r

n
n r r

n
n r r

n r n r
r n r

C C- + =
- + -

+
-

=
+ - +

- +

1
1 1

1

!

( )!( )!

!

( )!( )!

!( )

!( 11

1

1

1

)!

( )!

!( )!

( )

=
+

+ -

= +

n
r n r

n
rC

Therefore Statement II is true.

Assertion–Reasoning Type Questions
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C C C C C C C

C C C C

r r r r r r r

n
r

n
r

n
r

n

+ × + = + + +

= + + +

- - - - -

- -

2 1 2 1 1 2

1 1

( ) ( )

( ) ( rr

n
r

n
r

n
r

-

+ +
-

+

= +

=

2

1 1

1

2

)

( ) ( )

( )

C C

C

Hence Statement I is also true and Statement II is a correct 
explanation of Statement I.

 Answer: (A)

2. Statement I: If

a x b xr
r

r

n

r
r

n
r( ) ( )- = -

= =
å å2 3

0

2

0

2

and a k n bk n
n

n= ³ = +
+1 2 1

1 for all  then C, ( ) .

  Statement II:  Two polynomials of same degree are 
equal, if the corresponding coefficients are equal.

Solution: Statement II is true according to the defini-
tion of equality of polynomials. Put x – 3 = y. Therefore

a y b yr
r

r

n

r
r

r

n

( )+ =
= =
å å1

0

2

0

2

Equating coefficient of yn on both sides, we get

a a a a bn
n

n
n

n
n

n n n

n n

+ × + × + + × =

+

+
+

+
+

+ +

( ) ( ) ( )

( ) ( )

1

1 1

2

2 2

2

2

1

0

1

C C C

C C

	

11

2

2

2 1+ + + = = ³+( ) ( ) ( )n n
n n kb a k nC C   for 	 ∵

Using n
r

n
r

n
rC C C+ =-

+
1

1( ) , we have ( )2 1n
n nb+ =C

Hence Statement I is also true and Statement II is a  
correct explanation of Statement I.

 Answer: (A)

3.  Statement I: If ( )1 0 1 2

2+ = + + + +x x x xn
n

nC C C C	 ,
then

C C C C

C  for 

0

2

1

2

2

2

3

2

2 3 4

1 1 0 2

- × + × - × +

+ - × + × = ³

	

( ) ( )n
nn n

  Statement II: Any polynomial function in x is differ-
entiable for all real values of x.

Solution: Statement II is true is clear.

( )1 0 1 2

2+ = + + + +x x x xn
n

nC C C C	

Therefore

x x x x x xn
n

n( )1 0 1

2

2

3 1+ = + + + + +C C C C	

Differentiating both w.r.t. x we get

( ) ( )

( )

1 1 2 3

1

1

0 1 2

2+ + + = + × + × +

+ + ×

-x nx x x x

n

n n

n

C C C

C

	

Again multiplying both sides with x and differentiating 
w.r.t. x  we get

( ) ( ) ( ) ( )

(

1 3 1 1 1

2 3

1 2 2

0

2

1

2

2

2

+ + + + - +

= + × + × + +

- -x nx x n n x x

x x n

n n n

C C C 	 ++ ×1 2) Cn
nx

Substituting x = –1 on both sides, we have

0 = C0 - 22 · C1 + 32 · C2 - 42 · C3 + 	 + (-1)n · (n + 1)2 · Cn

Hence Statement I is true and Statement II is true. Also 
Statement II is a correct explanation of Statement I.

 Answer: (A)

4.  Statement I: If ( ) ,1 0 1 2

2+ = + + + +x x x xn
n

nC C C C	  
then

1 2 3 1 2 12

1

2

2

2

3

2 2× + × + × + + × = + ³-C C C C for 	 n n n nn
n( )

 Statement II: Any polynomial function in x is differ-
entiable for all real values of x.

Solution: Clearly Statement II is true:

( )1 0 1 2

2+ = + + + +x x x xn
n

nC C C C	

Differentiating both sides w.r.t. x we get

n x x x n xn
n

n( )1 2 31

1 2 3

2 1+ = + × + × + + ×- -C C C C	

Now, multiplying both sides with x, differentiating both 
sides w.r.t. x, and then substituting x = 1 on both sides 
we get

1 2 3 1 22

1

2

2

2

3

2 2× + × + × + + × = + -C C C C	 n n nn
n( )

Hence both statements are true and Statement II is a  
correct explanation of Statement I.

 Answer: (A)

5.  Statement I: If n is an even positive integer and 
K n= 3 2/  then

( ) ( )- × =-
-

=
å 3 01 3

2 1

1

r n
r

r

K

C

  Statement II: If m is a positive integer, and q is real 
then (cos sin ) cos sinq q q q+ = +i m i mm .

Solution: We have

1 3 2
3 3

1+ = +æ
èç

ö
ø÷

= -i i icos sin )
p p

(where 

By De Moivre’s Theorem we have

 ( ) cos sin1 3 2
3 3

+ = +é
ëê

ù
ûú

i
n

i
nn n p p

 (7 .13)
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Let n = 2m where m is a positive integer. Replacing n 
with 6m in Eq. (7.13), we have

2 2 2 1 36 6m mm i m i[cos( ) sin( )] ( )p p+ = +

Therefore

2 1 3 1 3 3

3 3

6 6 6

1

6

2

2

6

3

3 6

m m m m

m m

i i i

i i

= + = + +

+ + +

( ) ( ) ( )

( ) ( )

C C

C 	

Equating imaginary parts we get

3 3 3 3

1 3

3

6

1

6

3

6

5

2 6

7

3

3 1 6

6 1

3 1

[ ( )

( ) ]

( )

m m m m

m m
m

m

r

i

C C C C

C

- + - +

- =

-

-
-

-

	

--
-

=

= =å 1 3

2 1

1

0
3

2

( )n
r

r

K

K
n

C  where 

Hence both statements are true and Statement II is a  
correct explanation of Statement I.

 Answer: (A)

6. Statement I: If

K K

KK

n

r
n

r
3

1

2

1

196
C

C
 where C C

-=

æ
èç

ö
ø÷

= =å

then sum of the coefficients in the expansion of 
( )x x x n- +3 2 3  is 1.

 Statement II: 
C

C
r

r

n r
r-

=
- +

+1

1

1

Solution: We have

C

C

C

C
r

r

n
r

n
r

n
r n r

r n r
n

n r
r- -

= =
-

´
- - +

=
- +

1 1

1 1 1!

!( )!

( )!( )!

!

Therefore Statement II is not true. Now

 
K K n KK

KK

n

K

n
3

1

2

1

2

1

1
C

C -= =

æ
èç

ö
ø÷

= - +å å ( )

 

= + - + +

= + - + +

=

= ==

å

å å

K n K n K

n K n K K

K

n

K

n

K

n

K

[( ) ( ) ]

( ) ( )

1 2 1

1 2 1

2 2

1

2 2

1

3

111

3 2 2

2

1

2

2 1 1 2 1

6

1

4

1

12
6

n

n n n n n n n n

n n
n

å

=
+

-
+ + +

+
+

=
+

+

( ) ( ) ( )( ) ( )

( )
[ ( 11 4 2 1 3) ( ) ]- + +n n

=
+ +

= = × =
× ×

n n n( ) ( )1 2

12

14 2 7
6 7 8

12

2

2 2 2
2

This gives n = 6. Therefore sum of the coefficients in 
the expansion of ( ) ( ) .x x x- + = - + =3 1 3 1 12 3 6 6  Hence 
Statement I is true and Statement II is not true.

 Answer: (C)

7.  Statement I: If (2n+1)C0 + (2n+1)C3 + (2n+1)C6 + 	 = 170, 
then n = 4.

  Statement II: If w in non-real cube root of unity, w3 = 1 
and 1 + w + w2 = 0.

Solution: We have

( ) ( ) ( ) ( )

( )

1 2 1 2 1

0

2 1

1

2 1

2

2

2 1

2 1

2 1

+ = + + +

+

+ + + +

+
+

+

x x x

x

n n n n

n
n

n

C C C

C

	

Put x = 1, w and w2 and add. We now have

 22 1 2 1 2 2 11 1n n nw w+ + ++ + + +( ) ( )  

 = + + ++ + +3 2 1

0

2 1

3

2 1

6[ ]( ) ( ) ( )n n nC C C 	  (7.14)

LHS of Eq. (7.14)

= - - = - -+ + + + + +2 22 1 4 2 2 2 2 1 4 2 2 1n n n n n nw w w w

From Eq. (7.14), we have

2 3 170 5102 1 2 2 1n n nw w+ + +- - = ´ =

Therefore

2 5102 1 3 1 2 1n n nw w w+ - -- + =( )( )

 2 5102 1 1 2 1n n nw w+ - -- + =( )( )  (7 .15)

It is known that 1 32+ + =w wn n  or 0 according as n is 
a multiple of 3 or not. Therefore w wn n- -+ = -1 2 1 2 1( )  or  
according as n – 1 is a multiple of 3 or not.

If w wn n- -+ = -1 2 1 1( ) , then from Eq. (7 .15)

2 5092 1n+ =

which is not possible. Therefore

w wn n- -+ =1 2 1 2( )

From Eq. (7.15),

2 512 22 1 9n+ = =

which implies n = 4.

 Answer: (A)
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Integer Answer Type Questions

1. Let Cr  denote n
rC . If

C C C C C

C C C C
r r r r r

r r r r

n k
r k

+ × + × + × +
+ × + × +

=
+
+

+ + + +

+ + +

4 6 4

3 3
1 2 3 4

1 2 3

 then the value of K is .

Solution:  The numerator is

( ) ( ) ( ) ( )C C C C C C C Cr r r r r r r r+ + + + + + ++ + + + + + +1 1 2 2 3 3 43 3

 

= + × + × +

= +

+
+

+
+

+
+

+
+

+
+

( ) ( ) ( ) ( )

( ) ([

n
r

n
r

n
r

n
r

n
r

n

1

1

1

2

1

3

1

4

1

1

3 3C C C C

C ++
+

+
+

+
+

+
+

+
+

+ × +

+ +

=

1

2

1

2

1

3

1

3

1

4

2) ( ) ( )

( ) ( )

(

] [ ]

[ ]

C C C

C C

r
n

r
n

r

n
r

n
r

n++
+

+
+

+
+

+
+

+
+

+

+ × +

= + +

2

2

2

3

2

4

2

2

2

3

2

2) ( ) ( )

( ) ( ) ([ ] [

C C C

C C

r
n

r
n

r

n
r

n
r

n )) ( )

( ) ( )

( )

]C C

C C

C

r
n

r

n
r

n
r

n
r

+
+

+

+
+

+
+

+
+

+

= +

=

3

2

4

3

3

3

4

4

4

Similarly, the denominator = +
+

( ) .n
r

3

3C  Therefore

( )

( )

n
r

n
r

n K
r K

n
r

n K
r K

K
+

+
+

+

=
+
+

Þ
+
+

=
+
+

Þ =
4

4

3

3

4

4
4

C

C

 Answer: 4

2.  If (1 + 2x + 3x2)10 = a0 + a1x + a2x
2 + 	 + a20 x20, then 

a1 + a2 is equal to .

Solution:  ( ) [ ( )]1 2 3 1 2 32 10 10+ + = + +x x x x

 = + + + + +1 2 3 2 310

1

10

2

2 2C Cx x x x( ) ( ) 	

Therefore

a1

10

1 2 20= ´ =C

and a2

10

2

2 10

12 3 180 30 210= ´ + ´ = + =C C

Adding the two we get

a a1 2 230+ =
 Answer: 230

3. The number of distinct terms in the expansion of

x
x

3

3

20
1

1+ +æ
èç

ö
ø÷

when x is real and x ¹ ±1 is .

Solution: We have

x
x

x
x

x
x

3

3

20

3

3

20

1

3

3

1
1 1

1
1

1+ +æ
èç

ö
ø÷ = + +æ

èç
ö
ø÷

é
ëê

ù
ûú

= + +æ
èç

ö
ø÷

20C

++ +æ
èç

ö
ø÷ + + +æ

èç
ö
ø÷

20 20

20C C2

3

3

2

3

3

20
1 1

x
x

x
x

	

Therefore

1
1 1 1 13 3 2 3 3 3 20

3 3

2

3

3

3
, , ( ) , ( ) , , ( ) , , , , ,x x x x

x x x x
… …æ

èç
ö
ø÷

æ
èç

ö
ø÷

æ
èèç

ö
ø÷

20

are all distinct whose number is 1 + 20 + 20 = 41.

 Answer: 41

4.  The greatest value of the term independent of x in 
the expansion of [ sin (cos / )]x xa a+ 20  as a  is real is
20

10 2C -b. Then b  value is .

Solution: We have

T x
x

x

r r
r

r

r
r r

+
-

- -

= æ
èç

ö
ø÷

=

1

20 20

20 20 20

C

C

( sin )
cos

(sin ) (cos )

a
a

a a 22r

This is independent of x. Since 20 2 0- =r  so r = 10. 
Therefore

T11

20

10

10 20

10 10

10 20

10

101

2
2 2= = £ -C C C(sin cos ) (sin )a a a

and equality holds when 2 4 1a p= ±( )(n /2).  Therefore 

b = 10.

 Answer: 10

5.  The number of rational terms in the expansion of 

( )/ /5 102 3 1 4 20+ -  is .

Solution: We have

Tr r
r r

r
r r

+
- - - -= × = ×1

20 2 3 20 1 4 20 160 11 12 45 10 5 2C C( ) ( )/ / ( )/ /

which is rational when r = 8 and 20.

 Answer: 2

6.  The number of non-zero terms in the expansion of   

( ) ( )11 1 11 175 75+ - -  is .

Solution: We have

( ) ( ) [ ( ) ( )

( ) ]

11 1 11 1 2 11 11

11

75 75

1

74

3

72

5

70

+ - - = +

+ +

C C

C 	
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Therefore number of non-zero terms is

75 1

2
38

+
=

 Answer: 38

7.  If 
1

1 10

1

3 8

1

5 6

1

11 1

2

11! ! ! ! ! ! ! ! !
+ + + + =	

K

 then K value 

is .

Solution: We have

11
1

1 10

1

3 8

1

5 6

1

11 1
!

! ! ! ! ! ! ! !
+ + +é

ëê
ù
ûú

+	

= + + +

= + + + + +

+
11

1 10

11

3 8

11

5 6

11

11

11 11 11 11 11 11

! ! ! ! ! ! !
	

C C C C C1 3 5 7 9 CC

sum of the even coefficient in the expansion

of

11

=
+

=

( )1

2

11

10

x

Therefore K = 10.

 Answer: 10

8. 11

2

10

2

9

2

8

2

2

22C C C C C+ + + + +[ ]	  is equal to .

Solution: In general we prove that for any positive 
integer n ³ 2,

( ) ( ) ( )[ ]n n n n+ - -+ + + + +1

2 2

1

2

2

2

2

22C C C C C	

= + + + +1 2 32 2 2 2	 n

We know that

K K K
C2

1

2
=

-( )

Therefore

2 2

2× = -K K KC

Put K n n n= - -, , , ,1 2 2…  and add. We get

 

2

1 2 3 1 2 3

2

1

2

2

2

2

2

2 2 2 2

[ ]

( ) ( )

(

( ) ( )n n n

n n

C C C C+ + + +

= + + + + - + + + +

=

- - 	

	 	

11 2 3
1

2

1 2 3

2 2 2 2

2 2 2 2 1

2

+ + + + - +

= + + + + - +

	

	

n
n n

n n

)
( )

( ) ( )C

Therefore

( ) ( ) ( )[ ]n n n n

n

+ - -+ + + + +

= + + + +

1

2 2

1

2

2

2

2

2

2 2 2 2

2

1 2 3

C C C C C	

	

Now substituting n = 10, we have

11

2

10

2

9

2

8

2

2

2

2 2 2 22 1 2 3 10

10 11 21

6
385

C C C C C+ + + + + = + + + +

=
× ×

=

[ ]	 	

 Answer: 385

9.  If 
15

1

15

3

15

5

15

15

2 4 6 16

2 1

16

C C C C
+ + + + =

-
	

K

 then K is 

equal to .

Solution: Since 

C Cr r
n

r r

r
x

n x
x

+
× =

+
×

+
+ +

1 1

1

1 1
( )

( )

for r n= 0 1 2, , , , ,…  we have

C
C C C

0
1 2 2

1

2 3 1

1 1

1
+ + + +

+
=

+ -
+

+

x x
n

x
x

x n
n n

n

	
( )

( )

Substituting x = -1 1,  we have

C
C C C

0
1 2

1

2 3 1

2 1

1
+ + + +

+
=

-
+

+

	 n
n

n n

C
C C C C

0
1 2 3

2 3 4

1

1

1

1
- + - + +

- ×
+

=
+

	
( )n

n

n n

On subtraction we get

2
2 4 6

2 2

1
1 3 5

1C C C
+ + +é

ëê
ù
ûú

=
-

+

+

	
n

n

Therefore

C C C1 3 5

2 4 6

2 1

1
+ + + =

-
+

	
n

n

Putting n = 15,  we get

C C C C1 3 5 15
15

2 4 6 16

2 1

16
+ + + + =

-
	

Hence K = 15.

 Answer: 15
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7.1   Binomial theorem: If n is a positive integer and a is 
any real or complex number, then

( )x a x x a x a an n n n n n n n
n

n+ = + + + +C C C C0 1

1

2

2 2- - 	

7.2  General term: The (r + 1)th term n
r

n r rx aC -  is called 
the general term in the expansion of (x + a)n.

7.3 Number of terms:

 (1)  The number of terms in the expansion of (x + a)n 
is n + 1.

 (2)  The number of terms in the expansion of (x + y + z)n 
is (n + 1)(n + 2)/2  which is ( ) .n+2

2C

 (3)  The number of terms in the expansion of (x1 + 
x2 + 	 + xK )

n is ( )

( ) .
n K

K
+ -

-
1

1C

7.4 Middle term(s):

  (1)  If n is even, then the [(n / 2) + 1]th term is the 
middle term in the expansion of (x + a)n.

 (2)  If n is odd, then [(n + 1)/ 2]th and [(n + 3)/2]th are 
the middle terms.

7.5  Binomial coefficients: If n is a positive integer, then  

(1 + x)n = nC0 + nC1x + nC2x
2 + 	 + nCnx

n. The coef-

ficients xr(r = 0, 1, 2, … n) viz.

  nC0, 
nC1, 

nC2, …, nCn are called binomial coefficients 
and they will be denoted by C0, C1, C2, … , Cn.

7.6  Properties of binomial coefficients: Let Cr be the 
binomial coefficient in the expansion of (1 + x)n for 
r = 0, 1, 2, …, n. Then

 (1) Cr = Cn−r

 (2) C0 + C1 + C2 + 	 + Cn = 2n.

 (3) C0 + C2 + C4 + 	 = C1 + C3 + C5 + 	 = 2n-1

 (4) 1 · C0 + 2 · C1 + 3 · C2 + 	 + (n + 1) · Cn = (n + 2)2n-1

7.7  Useful formulae: Let C0, C1, C2, … , Cn be binomial 
coefficients in the expansion of (1 + x)n. Then

 (1) 1 · C1 + 2 · C2 + 3 · C3 + 	 + n · Cn = n · 2n−1

 (2)  a · C0 + (a + d)·C1 + (a + 2d)·C2 + 	 + (a + (n − 1)d)· Cn

= (2a + (n − 1)d) 2n-1

 (3) r r n nr
n

r

n

( ) ( )- × = - -

=
å 1 1 2 2

1

C

 (4) r n n
r

n

r
n2

1

21 2
=

-å × = +C ( )

 (5) C C C C0

2

1

2

2

2 2 2

2

2
+ + + + = =	 n

n
nC

n
n

( )!

( !)

 (6) C0Cr + C1Cr + 1 + C2Cr + 2 + 	 + Cn - rCn = 
( )!

( )! ( )!

2n
n r n r- × +

 7.8  Most useful result: If Cr is the binomial coefficient in 
the expansion of (1 + x)n, and x ¹  0, -1, -2, -3,¼, then 

 

C C C C C0 1 2 3

1 2 3
1

1 2 3

x x x x x n

n
x x x x

n n- - -
+

+
+ +

+ +
+

=
+ + +

	

	

( )

!

( )( ) ( )

For example,

 (1) When x = 1, then

 
C C C0 1 2

1 2 3

1

1
- + - =

+
	

n

 (2) When  x = 2,  then

 
C C C0 1 2

2 3 4

1

1 2
- + - =

+ +
	

( )( )n n

 7.9 Greatest term: Consider the expansion of (1 + x)n.

 Let

 p
n x

x
=

+
+

( )1

1

 Then

 (1)  pth and ( p + 1)th terms are numerically equal 
and they are the numerically greatest terms in 
the expansion of (1 + x)n, if p is an integer.

 (2)  If p is not an integer and [ p] denotes the inte-
gral part of p, then ([ p] + 1)th term is numerically 
greatest term.

7.10 Greatest value of nCr:

Greatest value of

 n
r

n
n

n
n

n
n

n

n
C

C if is even

C C if is odd
=

=

ì
í
ï

îï - +

/

( )/ ( )/

2

1 2 1 2

Binomial Theorem for Rational Index

7.11  Theorem: If n is a rational number and -1 < x < 1, then

 

( )
!

( )

!

( )( )

!

1 1
1

1

2

1 2

3

2

3

+ = + +

+ + + ¥

x
n

x
n n

x

n n n
x

n -

- -
	

the general term is

 n n n n r
r

xr( )( ) ( )

!

- - -1 2 1	 +

   SUMMARY
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7.12 Useful expansions:

 (1) ( )
!

( )

!

( )( )

!

1 1
1

1

2

1 2

3

2

3

- = - +
-

-
- -

¥

x
n

x
n n

x

n n n
x

n

	

 (2) ( )
!

( )

!

( )( )

!

1 1
1

1

2

1 2

3

2

3

+ = +
+

+ +
¥

-x
n

x
n n

x

n n n
x

n -

- 	

(3) ( )
!

( )

!

( )( )

!

1 1
1

1

2

1 2

3

2

3

- x
n

x
n n

x

n n n
x

n- = + +
+

+ +

+ +
+ + ¥

	

	

(4) (1 - x)-1 = 1 + x + x2 + x3 + 	 + ¥

(5) (1 + x)-1 = 1 - x + x2 - x3 + 	 + ¥

(6) (1 - x)-2 = 1 + 2x + 3x2 + 4x3 + 	 + ¥

(7) (1 + x)-2 = 1 - 2x + 3x2 - 4x3 + 	 + ¥

   EXERCISES

Single Correct Choice Type Questions

1. The coefficient of x4 in the expansion of (x2 - x - 2)5 is

(A) 490 (B) – 490 (C) 390 (D) 30

2.  The number of non-zero terms in the expansion of 

( ) ( )5 1 5 16 6+ + -  is

(A) 3 (B) 4 (C) 5 (D) 2

3. 2 3 2 4 3 10 910

2

10

3

10

4

10

10× + × × + × × + + × × =C C C C	

(A) 35 · 29 (B) 45 · 28 (C) 45 · 210 (D) 45 · 29

4. C C C C C1 2 3 4

12 3 4 1- × + × - × + + - × × =-	 ( )n
nn

(A) 1 (B) 0 (C) –1 (D) n

5.  The numerically greatest term in the expansion of  
( ) /1 3 1 210- =x x when  is

(A) 10

6

6
2

3
C

æ
èç

ö
ø÷

 (B) 10

7

7
2

3
C

æ
èç

ö
ø÷

(C) 10

6

7
3

2
C

æ
èç

ö
ø÷

 (D) 10

6

6
3

2
C

æ
èç

ö
ø÷

6.  If (1 + x + x2)n = a0 + a1x + a2x
2 + 	 + a2nx

2n and n is 

odd, then the value of a a a a a n0 2 4 6 2- + - + +	  is

(A) 1 (B) –1 (C) 0 (D) 22n

7.  If Cr is the binomial coefficient in the expansion of  

( ) / , /1 110

0

10

0

10
+ =

= =å åx a r
r r r r and C then C  is equal to

(A) 9a (B) 10a (C) 5a (D) 11a

8.  Which one of the expansions of the following will 
contain x2?

(A) ( )/ /x x- +1 5 3 5 252  (B) ( )/ /x x3 5 1 5 232- -

(C) ( )/ /x x3 5 1 5 222+ -  (D) ( )/ /x x3 5 1 5 242+ -

9.  The coefficient of xn in the expansion of (x + C0) 

(x + C1) ( ) ( )x x n r
n

r+ + = +C C  where C C2

2 1	  is

 (A) 2n + 1 (B) 2n + 1 - 1 (C) 22n (D) 2n - 1

10.  The first integral term other than the first term 

beginning from the left in the expansion of 

( )3 23 9+  is

 (A) second term (B) third term

 (C) fourth term (D) fifth term

  11.  The largest term in the expansion of (2 + 3x)25 when 
x = 2 is its

 (A) thirteenth term (B) twentieth term

 (C) twenty-sixth term (D) nineteenth term

12.  If n is even, then the last term in the expansion of 
cosn q  in terms of cosines of multiples of q is

 (A) n
nC( / )2  (B) 

1

2 1 2n
n

n- C( / )  (C) 
1

2
2n

n
nC( / )  (D) 

1

2n

13.  The last term in the expansion of sin9 q  as sines of 
multiples of q is

 (A) 
63

128
sinq  (B) 

-63

128
sinq  (C) 

63

128
 (D) 

-63

128

14.  Given positive integers n > 2, r > 1 and the coeffi-
cients of (3r)th and ( )r + 2 th terms in the binomial 
expansion of ( )1 2+ x n  are equal, then

 (A) n r= 2   (B) n r= 3

 (C) n r= +2 1 (D) n r= +3 1 

15.  In the expansion of [ ( / )] ,2 42 9a a-  the sum of the 
middle terms is

 (A) 
63

32
814æ

èç
ö
ø÷

+a a( ) (B) 
63

32
814æ

èç
ö
ø÷

-a a( )

 (C) 
63

32
813æ

èç
ö
ø÷

-a a( ) (D) 
63

32
813æ

èç
ö
ø÷

-a a( )
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16.  The coefficient of x4 in the expansion of (1 + x + x3 + 
x4)10. is

 (A) 40

4C  (B) 10

4C  (C) 210 (D) 310

17.  If (1 + x + x2)n = a0 + a1x + a2x
2 + 	 + a2nx

2n, then 
a0a1 - a1a2 + a2a3 - a3a4 + 	 is equal to

 (A) 0 (B) 22n (C) 22n – 1 (D) –1

18.  If the coefficients of x7 and x8 in the expansion of  
[ ( / )]2 3+ x n  are equal, then n is equal to

 (A) 56 (B) 55 (C) 45 (D) 15

19.  If the coefficients of rth, (r + 1)th and (r + 2)th terms 
in ( )1 + x n  are in HP, then

 (A) n n r+ - =( )2 02  (B) n n r- + =( )2 02

 (C) n n r- - =( )2 02  (D) n n r+ - =( )2 0

20.  If the total number of terms in the expansion of  
( )x y z n+ + 2  is 45, then n is equal to

 (A) 8 (B) 9 (C) 7 (D) 22

21.  If the sum of the coefficients in the expansions of  
( ) ( )1 3 10 12 2- + +x x xn nand  are, respectively, a and 
b, then

 (A) a b= 2  (B) a b= 3  (C) a b= 2  (D) a b= 3  

22. n
r

r

n
r

p
p

r
pC C

= =

-

å å
æ

èç
ö

ø÷
=

1 0

1

2

 (A) 43 - 3n + 1 (B) 4n - 3n - 1 

 (C) 4n - 3n (D) (B) 4n - 3n + 2

23.  If the fourth term in the expansion of ( [ /( log )]x x1 1 10+ + 

x12 6)  is equal to 200 and x > 1, then x is equal to

 (A) 10 (B) 100 (C) 10 2   (D) 104

24.  The coefficient of (ab)6 in the expansion of 
[ ( / )]a b a2 12-  is

 (A) – 824 (B) 824 (C) 924 (D) –924

Multiple Choice Type Questions
1.  In the expansion of [ ( / )] , ,x a x an+ ¹2 0  if no term is 

 independent of x, then n may be

 (A) 10 (B) 12 (C) 16 (D) 20

2.  If a and b are non-zero and only one term in each 
of the expansions of [ ( / )] [ ( / )]x a x x b xn n- + and 2  is 
independent of x, then n is divisible by

 (A) 2 (B) 3 (C) 4 (D) 6

3.  If the third, fourth and fifth terms in the expansion of 
( )x a n+  are respectively 84, 280 and 560, then

 (A) x = 1 (B) a = 2

 (C) n = 7 (D) x a n= = =2 3 8, ,  

4. Which of the following is (are) true?

 (A)  The coefficient of x-1 in the expansion of [x + 

(1/x2)]8 is 56.

 (B)  The coefficient of x in the expansion of [x + 

(1/x2)]8 is 0.

 (C)  The coefficient of x9 in the expansion of [2x2 - 

(1/x)]20 is 0.

 (D)  The coefficient of x30 in the expansion of (x3 + 

3x2 + 3 1 15 45

15x + ) . is C

5.  It is given that (1 + x + x2)n = a0 + a1x + a2x
2 + 	 + a2nx

2n. 
Which of the following is (are) correct?

 (A) If n is odd, then a a a a0 2 4 6 0- + - + =	 .

 (B) If n is even, then a a a a1 3 5 7 0- + - + =	 .

 (C)  If n K= +4 1,  where K is a positive integer, then 
a1 - a3 + a a5 7 1- + =	 .

 (D) If n is a multiple of 4, then a a a a0 2 4 6 1- + - + =	 .

6.  Which of the following statements is (are) true?

 (A)  There are two consecutive terms in the expansion 
of ( )3 2 74+ x  whose coefficients are equal.

 (B)  For a positive integer n, the coefficients of 
second, third and fourth terms in the expansion 
of ( )1 2+ x n  are not in AP.

 (C) Larger of 99 100 10150 50 50+  and  is 10150.

 (D)  The sum of the coefficients in the binomial expan-
sion of ( )5 4 21x y-  is 1.

7. Which of the following are true?

 (A) ( C ) ( C ) ( C ) ( C ) ( C )10

0

2 10

1

2 10

2

2 10

3

2 10

10

2- + - + +

=

	

-( )!

! !

10

5 5

 (B) ( ) ( ) ( ) ( ) ( )

( )!

! !

11

0

2 11

1

2 11

2

2 11

3

2 11

11

2

11

6 5

C C C C C- + - + -

=

	

(C) 2 2
2

2
3

2
4

2
11

3 1

11

0

2 1 3 2 4 3 11 10

11
10

× + × + × + × + + ×

=
-

=

C
C C C C

where C C

	

( r rr )

(D)  The coefficient of x3 in the expansion of 1 + (1 + x) + 

( ) ( ) ( )1 1 12 3 10 11

4+ + + + + +x x x	  is C .
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Matrix-Match Type Questions

In each of the following questions, statements are given in 
two columns, which have to be matched. The statements in 
Column I are labeled as (A), (B), (C) and (D), while those 
in Column II are labeled as (p), (q), (r), (s) and (t). Any 
given statement in Column I can have correct matching 
with one or more statements in Column II. The appropriate 
bubbles corresponding to the answers to these questions 
have to be darkened as illustrated in the following example.

Example: If the correct matches are (A) ® (p), (s); (B) ® 
(q), (s), (t); (C) r); D) r) t)® ®( ( ( , ( ; that is if the matches 
are (A) ® (p) and (s); (B) ® (q), (s) and (t); (C) ® (r); 
and (D) ® (r), (t); then the correct darkening of bubbles 
will look as follows:

A

B

C

D

p q r s t

1. Match the items in Column I with those in Column II.

Column I Column II

(A)  If the middle term 
in the expansion of 
[ / ( / )]x x3 3 2 2 10+  is axK, 
then a =

(p) 
10

2

108

C

(B)  The term independent 
of x in the expansion of 
[ / ( / )]x x3 3 2 2 10+  is

(q) 10

4 5184C ´

(C)  The term independent 
of x in the expansion of 
[ ( / )]2 32 3 10x x-  is

(r) 
10

5

32

C

(D)  The coefficient of the middle 
term in the expansion of 
[ ( / )]2 32 3 10x x-  is b, then b is

(s) - ´65 10

5C

2. Match the items in Column I with those in Column II

Column I Column II

(A)  The coefficient of x 
in the expansion of 
( )[ ( / )]1 2 3 1 13 5 8- + +x x x  is

(p) 378

(B)  The coefficient of x3  
in the expansion of 
( )[ ( / )]1 2 2 1 32 2 9+ + -x x x x  is

(q) 154

(C)  The coefficient of x5  in the 
expansion of ( )1 3 9+ +x x  is

(r) 31

(D)  If ( )1 2 2 6+ -x x
= + + + +

+ + + + + =
1 1 2

2

12

12

2 4 6 8 10 12

a x a x a x
a a a a a a

	 ,  then

(s) -224/24

1.  Let C C C C0 1 2, , , ,… n  be binomial coefficients in the 

 expansion of ( ) .1 + x n

Answer the following questions:

(i) ( )C C C C0 1 2

2+ + + + =	 n

 (A) 2 12n +

 (B) 1 2

1

2

2

2

2+ + + +n n n
nC C C	

 (C) 2 12n -

 (D) 2

1

2

2

2

3

2

2

n n n n
nC C C C+ + + +	

(ii) 
C C C C0 1 2

4 5 6
1

4
- + - + -

+
=	 ( )n n

n

 (A) 
6

1 2 3 4( )( )( )( )n n n n+ + + +

 (B) 
( )( )( )n n n+ + +2 3 4

6

 (C) 0

 (D) 
( )( )( )n n n+ + +1 2 3

6

Comprehension-Type Questions
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Statement I and Statement II are given in each of the 
questions in this section. Your answers should be as per the 
following pattern:

(A)  If both Statements I and II are correct and II is a 
correct reason for I

(B)  If both Statements I and II are correct and II is 
not a correct reason for I

(C)  If Statement I is correct and Statement II is false.

(D)  If Statement I is false and Statement II is correct.

1. Statement I: 
n

r
n

r
n

rr

n nC

C C+
=

+=

-

å
10

1

2

Statement II: n
K

n
K

n
KC C C+ =-

+
1

1( )

2.  Statement I: If sin7 q  is expressed as a series of sines 
of multiples of q,  then the coefficient of sin / .5 7 64q is

Statement II: If x i= +cos sin ,q q  then

x
x

KK
K+ =
1

2cos q

and x
x

i KK
K- =
1

2 sin q  

where K is a positive integer.

3. Statement I: If

 

( )1 0 1 2

2

0 1

1

2

2

+ = + + + +

= + + + +- -

x x x x

x x x

n
n

n

n n n
n

C C C C

C C C C

	

	

then

r n r nr
r

n
n

n( ) ( )- =
=

-å C C2

0

2 2 2

 Statement II: nCK = nCn - K and the derivative of (x + 

a)n = n(x + a)n - 1.

4.  Statement I: If n is a positive integer, then in the expa-
nsion of (1 + x)n, the coefficients of (r + 1)th, (r + 2)th, 

and (r + 3)th terms are in G.P.

  Statement II: Three non-zero numbers a b c, and  are 
in GP if and only if ac b= 2 .

5.  Statement I: No three consecutive coefficients in the 
expansion of ( )1 + x n  are in HP.

  Statement II: Non-zero numbers a b c, and  are in HP 
if 1 1 1/ , / /a b cand  are in AP.

Assertion−Reasoning Type Questions

Integer Answer Type Questions
The answer to each of the questions in this section is a 
 non-negative integer. The appropriate bubbles below the 
respective question numbers have to be darkened. For 
example, as shown in the figure, if the correct answer to 

the question number Y is 246, then the bubbles under Y 
labeled as 2, 4, 6 are to be darkened.

(iii) - + + × + × + + - × =C C C C C0 1 2 33 5 2 1	 ( )n n

 (A) n n× -2 1 (B) ( )n n- -1 2 1

 (C) n n×2  (D) ( )n n- 1 2

2.  (Note: This question may be attempted after studying 
integration):

Let ( )1 0 1 2

2+ = + + + +x x x xn
n

nC C C C	  and x dxr

a

b

ò =
[ /( )]( )1 1 1 1r b ar r+ -+ + . Using this information, answer 

the following questions:

(i) 
C C C C0 1 2

1 2 3 1
+ + + +

+
=	 n

n

 (A) 
2 1

1

n

n
-
+

 (B) 
2 1

1

1n

n

+ -
+

 (C) 
2 1

1

1n

n

+ +
+

 (D) 
2 1

1

n

n
+
+

(ii) 2 2
2

2
3

2
1

0

2 1 3 2 1× + × + × + + ×
+

=+C
C C C

	 n n

n

 (A) 
3 1

1

n

n
-
+  (B) 

3 1

1

n

n
+
+

 (C) 
3 1

1

1n

n

+ +
+  (D) 

3 1

1

1n

n

+ -
+

(iii) C
C C C C

0
1 2 3

2 3 4
1

1
- + - + + -

+
=	 ( )n n

n

 (A) 0 (B) 
2 11n

n

+ -

 (C) 
1

1n +
 (D) 

1

1 2( )( )n n+ +
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   ANSWERS

Single Correct Choice Type Questions

 1. (D)
 2. (B)
 3. (D)
 4. (B)
 5. (D)
 6. (C)
 7. (C)
 8. (C)
 9. (C)
10. (C)
11. (B)
12. (C)

13. (A)
14. (A)
15. (D)
16. (D)
17. (A)
18. (B)
19. (A)
20. (A)
21. (D)
22. (C)
23. (A)
24. (C)

Multiple Correct Choice Type Questions

1. (A), (C), (D)
2. (A), (B), (D)
3. (A), (B), (C)
4. (A), (B), (C), (D)

5. (A), (B), (C), (D)
6. (A), (B), (C), (D)
7. (A), (C), (D)

Matrix-Match Type Questions

1. (A) ®  (r), (B) ®  (p), (C) ®  (q), (D) ®  (s) 2. (A) ®  (q), (B) ®  (s), (C) ®  (p), (D) ®  (r)

Comprehension-Type Questions

1. (i) (B), (ii) (A), (iii) (D) 2. (i) (B), (ii) (D), (iii) (C)

X Y Z

0 0 0 0

1 1 1 1

2 2 2

3 3 3 3

9 9 9 9

8 8 8 8

7 7 7 7

6 6 6

5 5 5 5

4 4 4

W

1.  If the second term in the expansion of ( )x x x n13 +  is  
14 5 2×x / ,  then n nC C3 2/ =  .

2.  If P and Q are, respectively, the sum of even and odd 
terms in the expansion of (x + a)10, then (x + a)20 -
 (x - a)20 = k PQ where k is .

3.  If 32 cos6 q = a1 cos 6q + a2 cos 4q + a3 cos 2q + a4, then  
a4 is equal to .

4.  If 256 sin7q · cos2 q = a1 sin 9q + a2 sin 7q + a3 sin 5q + 
a4 sinq, then a4  is equal to .

5.  The digit at the unit’s place in the number 172010 + 
112010 - 72010 is .
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Assertion–Reasoning Type Questions

1. (A)
2. (A)
3. (A)

4. (D)
5. (A)

Integer Answer Type Questions

1. 4
2. 4
3. 10

4. 14
5. 1



Matrices: A matrix (plural 
matrices) is a  rectangular array 
of numbers. Matrices are a key 
tool in linear  algebra. One 
use of  matrices is to represent 
linear transformations.

Determinants: The determin-
ant is a special number associ-
ated with any square matrix. 
The fundamental geometric 
meaning of a determinant is a 
scale factor for measure when 
the matrix is regarded as a 
linear transformation.
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The theory of matrices plays an important role in almost all branches of Mathematics and other subjects. A very important 
application of matrices is to find solutions of system of linear equations. Let us consider a simple situation where three stu-
dents Ram, Rahim and Robert have appeared for class tests in four subjects English, Mathematics, Physics and Chemistry 
and the marks obtained by each of them in these subjects are given in a tabular form given below.

English Mathematics Physics Chemistry

Ram 80 86 78 75

Rahim 75 84 72 68

Robert 78 68 74 78

This also can be represented by an array of numbers without drawing lines and not writing the names of the 
 subjects on the top row and the names of the students on the left most column, as given below. 

80 86 78 75

75 84 72 68

78 68 74 78

é

ë

ê
ê
ê

ù

û

ú
ú
ú

The brackets given on the left end and right end do not convey any meaning but just improve the  presentation style. 
The first horizontal line of numbers shows the marks obtained by Ram in English, Mathematics, Physics and Chemistry, 
respectively. Similarly the second and third horizontal lines show the same for Rahim and Robert,  respectively. The 
first vertical line of numbers shows the marks obtained in English by Ram, Rahim and Robert. The second, third and 
fourth vertical lines show the same for Mathematics, Physics and Chemistry, respectively.

The horizontal lines are called rows and the vertical lines are called columns. The rows are numbered from top to 
bottom. The top row is called the first row and the subsequent rows are called second row, third row, etc. The columns 
are numbered from left to right. The left most column is called the first column and the subsequent columns are called 
second column, third column, etc.

In this chapter, we make a detailed study of matrices whose entries are real or complex numbers.

8.1 | Matrices

In this section we shall give a formal definition of a matrix and discuss various types of matrices and their properties.

DEFINITION 8.1  Matrix, Rows, Columns, Order An ordered rectangular array of real or complex numbers 
or functions or of any kind of expressions is called a matrix. The horizontal lines in the 
array are called rows and the vertical lines are called columns. If there are m rows and n 
columns in a matrix A, then A is called an m ´ n matrix or an “m by n” matrix or a matrix 
of order m ´ n.

DEFINITION 8.2  Elements or Entries The numbers or functions or expressions in a matrix A are called 
 “elements” or “entries” of A. If A is m ´ n matrix, then there are m rows of elements and
n columns of elements. In each row of an m ´ n matrix there are exactly n elements and in each 
column there are exactly m elements.

(1) Consider the matrix 

A = -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 4 1

1 2 1 3

5 3 2 4

Then A is a 3 ´ 4 matrix, since there are 3 rows and 
4  columns in A. Here

 2 3 4 1 is the first row

 –1 2 1 3 is the second row

 5 –3 2 –4 is the third row

Examples
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2

1

5

-
é

ë

ê
ê
ê

ù

û

ú
ú
ú
 is the first column

3

2

3-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 is the second column

4

1

2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 is the third column

1

3

4-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 is the fourth column

(2)  

1 3 2

3
1

2
0

2 3 1

1

3

2

3
4

-

- -

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

 is a 4 ´ 3 matrix, since there are 4 rows
  and 3 columns.

(3)  2 1 3

4 0 2

-
-

é

ë
ê

ù

û
ú
 is a 2 ´ 3 matrix, since there are 2 rows

 and 3 columns.

(4) 
2 1

0 3

-é

ë
ê

ù

û
ú  is a 2 ´ 2 matrix.

(5) [2] is a 1 ´ 1 matrix.

In general, an m n´  matrix is of the form

A

a a a

a a a

a a a

n

n

m m mn

=

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

11 12 1

21 22 2

1 2

	
	

�
	

where each aij is a number or a function or an expression. The entries in the ith row are

a a ai i in1 2, , ,…

and the entries in the jth column are

a a aj j mj1 2, , ,…

for 1 1£ £ £ £i m j nand . The variable aij stands for the entry which is common for the ith row and jth column. For 
simplicity, we write

A a A a A aij m n ij ij m n= = =( ) ( ) [ ]´ ´or or

to denote an m n´  matrix whose entry in the ith row and jth column is aij. For convenience, aij is called the ijth entry 
of the matrix A aij= ( ). Further m n´  is called the order of A.

DEFINITION 8.3  Equality of Matrices Two matrices are said to be equal if they are of the same order and for 
any i and j, the ijth entries of the two matrices are same. In other words, if A aij= ( )  is an m n´  
matrix and B bij= ( )  is a p q´  matrix, then we say that A and B are equal and write A = B if 
m = p, n = q and a bij ij=  for all 1 1£ £ = £ £ =i m p j n qand .

Note: A 2 ´ 3 matrix can never be equal to a 3 ´ 2 matrix, since their orders are different. For example

2 1

3 4

1

2
0

2 3
1

2

1 4 0

-
é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

¹
-é

ë

ê
ê

ù

û

ú
ú

DEFINITION 8.4  Square Matrix An m n´  matrix is said to be a square matrix if m = n, that is, the number of 
rows is equal to the number of columns.
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Example

The matrices

[ ],2
1 1

0 2

1 2 2

3 4 1

2 0 1

-é

ë
ê

ù

û
ú

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

and

are square matrices. If A is an n n´  matrix, then we say 
that A is a square matrix of order n.

DEFINITION 8.5  Let A aij= ( )  be an m ´ n matrix. A is called a vertical matrix if m > n and a horizontal matrix 
if m < n.

(1)  
2 3 1

1 0 1-
é

ë
ê

ù

û
ú  is a horizontal matrix, since the  columns 

are more in number than rows. 
(2)  

2 1

3 0

1 1-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 is a vertical matrix, since the rows are more
 in number than the columns. 

Examples

Recall that, if the rows and columns are equal in number, then the matrix is called the square matrix. Note that any 
matrix must be either a square matrix or a  vertical matrix or a horizontal matrix.

DEFINITION 8.6  Row Matrix and Column Matrix A matrix is called a row matrix if it has only one row and is 
called a column matrix if it has only one column.

The matrix 2 3 1[ ]  is a row matrix and the matrix 

2

1

2-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 is a column matrix.

Example

DEFINITION 8.7  Zero Matrix A matrix is called a zero matrix or null matrix if all its entries are zero. A zero 
matrix is usually denoted by O, without mentioning its order and is to be understood as per 
the context.

The matrices [ ],0
0 0

0 0

0 0 0

0 0 0

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
úand  are all zero matrices.

Example

DEFINITION 8.8  Diagonal of a Matrix Let A aij= ( ) be a square matrix of order n, that is A is a n n´  matrix. 
Then the elements

a a a anm11 22 33, , , ,…

are called the diagonal elements and the line along which these elements lie is called the 
 principal diagonal or main diagonal or simply the diagonal of the matrix.
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A

a a a a

a a a a

a a a a

a a a a

n

n

n

n n n nn

=

é

ë

ê
ê

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

	
	
	

�

êê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

1, 0 are the diagonal elements in 
1 2

1 0-
é

ë
ê

ù

û
ú  and 2, 1, –1 are the diagonal elements in 

2 3 0

1 1 2

4 0 1

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

.

Example

DEFINITION 8.9  Diagonal Matrix A square matrix A aij= ( ) is said to be a diagonal matrix if aij = 0  for all 
i j¹ ,  that is, except those in the diagonal of A, all the entries in A are zeros. Note that the 
diagonal elements need not be zeros.

Examples

(1) 
0 0

0 2

é

ë
ê

ù

û
ú  is a diagonal matrix.

(2)  

2 0 0

0 1 0

0 0 1-

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 and 

3 0 0 0

0 1 0 0

0 0
1

2
0

0 0 0 2-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

 are diagonal matrices. 

Note that the zero matrix of order n n´  is also a diagonal matrix for any n.

DEFINITION 8.10  Scalar Matrix A diagonal matrix A aij= ( ) is called a scalar matrix if a aii jj=  for all i and j, 
that is, a matrix A aij= ( )  is a scalar matrix if all the diagonal elements are equal and the other 
 elements are zeros.

If a is any real or complex number and n is any positive integer, then define 

a
a i j

i j
ij =

=

¹

ì
í
ï

îï

if

if0

for any 1 £ £i j n, . Then ( )aij  is a scalar matrix

 

a

a

a

0 0

0 0

0 0

	
	

�
	

é

ë

ê
ê
ê
ê

ù

û
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ú
ú
ú

and any scalar matrix is of this form.

DEFINITION 8.11  Identity Matrix A scalar matrix is called the identity matrix or a unit matrix if each of the 
 diagonal element is the number 1. That is, a square matrix A aij= ( )  of order n is called the 
 identity matrix of order n if
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a
i j

i j
ij =

=

¹

ì
í
ï

îï

1

0

if

if

for all 1 £ £i j n, . The identity matrix of order n is denoted by In.  The identity or unit matrix 
In of order n will be simply called the identity and denoted by I when there is no ambiguity 
about n.

I I I I1 2 3 41
1 0

0 1

1 0 0

0 1 0

0 0 1

1 0 0 0

0 1 0 0

0 0 1
= [ ] =

é

ë
ê

ù

û
ú =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=, , ,
00

0 0 0 1
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ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Example

DEFINITION 8.12  Triangular Matrices A square matrix A aij= ( ) is called an upper triangular matrix if 

a i j A aij ij= > =0 for all ( ) is called a lower triangular matrix if

 a i jij = <0 for all

Example

Upper Triangular Matrices

1 2

0 1

2 3 2

0 1 1

0 0 4

1 2 3 2

0 2 0 4

0 0 5 3

0 0 0 1

-
é

ë
ê

ù

û
ú

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-
-

-
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ú
ú
ú
ú

Lower Triangular Matrices

2 0

1 1

3 0 0

2 1 0

1 0 2

4 0 0 0

2 0 0 0

3 2 5 0

1 0 3 9

-
é

ë
ê

ù

û
ú

-

é
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ê
ê
ê

ù

û
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ú

-
- -

é
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ê
ê, and
êê
ê

ù

û

ú
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ú
ú

Note that a square matrix is both upper and lower  triangular matrix if and only it is a diagonal matrix.

DEFINITION 8.13  Addition of Matrices Let A a B bij ij= =( ) ( )and  be matrices of order m n´ . Then, we define

A B a bij ij+ = +( ) for all 1 1£ £ £ £i m j nand

That is, the ijth entry in A + B is the sum of the ijth entries in A and B. A + B is called the sum 
of A and B and the operation + is called the addition of matrices.

Note that the addition is defined among matrices of the same order. For any m n´  matrix A aij= ( ), we defined an 

m n´  matrix -A by 

- = -A aij( )

and for any m n´  matrices A and B, we write, as usual, A - B for

A B a bij ij+ - = -( ) ( )

where A a B bij ij= =( ) ( ).and
Recall that two matrices A a B bij ij= =( ) ( )and  are said to equal if A and B are of the same order, say m n´  and 

a b i m j nij ij= £ £ £ £for all and1 1 .
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Example     8.1   

If

A B= -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 0 1 3

1 1 2 1

3 2 4 2

1 1 2 4

2 3 1 2

4 0 4 3

and ,

then find out A + B.

Solution: We have

A B+ =
+ + - + +

+ - - + + +
+ - + + - + -

é

ë

2 1 0 1 1 2 3 4

1 2 1 3 2 1 1 2

3 4 2 0 4 4 2 3

( )

( )

( ) ( ) ( )

êê
ê
ê

ù

û

ú
ú
ú

 =
3 1 3 7

1 2 3 3

7 2 0 1

-
-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

We shall use this technique in proving the following, in which all matrices are considered to be over real or complex 
numbers.

THEOREM 8.1

PROOF

Let A a B b C cij ij ij= = =( ), ( ) ( )and  be matrices of order m n´ .  Then the following are true.

1. Associative law for addition: A B C A B C+ + = + +( ) ( ) .

2. Commutative law for addition: A B B A+ = + .

3. A O A+ = , where O is the m n´  zero matrix and is called the additive identity.
4. A A O+ - =( ) . Here -A is called the additive inverse of A.

5. Cancellation laws for addition: A B A C B C B A C A B C+ = + Þ = + = + Þ =and .

6. There exists unique matrix D such that A D B+ = .

1. For any 1 1£ £ £ £i m j nand ,

ijth entry in A B C a b cij ij ij+ + = + +( ) ( )

= + +( )a b cij ij ij (since + is associative for numbers)

= ijth entry in ( )A B C+ +

Therefore A B C A B C+ + = + +( ) ( ) .

2. For any 1 1£ £ £ £i m j nand ,

ijth entry in A B a bij ij+ = +

= +b aij ij  (since + is commutative for numbers)

= ijth entry in B A+

Therefore A B B A+ = + ..

3.  A O aij+ = +( ) ( )0

= +( )aij 0

= =( )a Aij

4.  A A a aij ij+ - = + -( ) ( ) ( )

= + -( ( ))a aij ij  

= =( )0 O
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5. Suppose that A B A C+ = + . Then, for any 1 £ £i m  and 1 £ £j n,

a b ij A Bij ij+ = +th entry in

= +ij A Cth entry in

= +a cij ij

Hence b cij ij= .  Therefore B b c Cij ij= = =( ) ( ) .. Also

B A C A A B A C

B C

+ = + Þ + = +
Þ = [ ( )]by 2

6. Put D B A= - . Then 

A D A B A B A A B A A B O B+ = + - = - + = + - + = + =( ) ( ) ( )  ■

DEFINITION 8.14  A real or complex number is called a scalar. For any matrix A aij= ( )  of numbers and for any 
scalar k, we define the matrix kA as the one whose ijth entry is obtained by multiplying the 
ijth entry of A by k, that is

kA kaij= ( )

If

A =

-

-
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 2 3

0 9 4

5 6 7

8 5 2

,

then

4

4 8 12

0 36 16

20 24 28

32 20 8

A =

-

-
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Example

Hereon, all matrices are assumed to be with entries as real or complex numbers and we would not specify this any further.

THEOREM 8.2

PROOF

Let A a B bij ij= =( ) ( )and  be m n´  matrices and s and t be scalars. Then the following properties 
are satisfied:

1. s A B sA sB( )+ = +
2. ( )s t A sA tA+ = +
3. s tA st A t sA( ) ( ) ( )= =
4. ( ) ( ) ( )- = - = -s A sA s A

5. 0A O=  (0 on the left side is the scalar zero and O on the right is the zero matrix)

6. sO = O
Let 1 1£ £ £ £i m j nand .

1. ijth entry in s A B s a bij ij( ) ( )+ = +

= +sa sbij ij

= ijth entry in sA sB+

Therefore, s A B sA sB( ) .+ = +
2. ijth entry in ( ) ( )s t A s t aij+ = +

= +sa taij ij

= ijth entry in sA tA+

Therefore, ( ) .s t A sA tA+ = +
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3. s ta st a ts a t saij ij ij ij( ) ( ) ( ) ( ).= = =  Therefore, s tA st A t sA( ) ( ) ( ).= =
4. ( ) ( ) ( )- = - = -s a sa s aij ij ij . Therefore, ( ) ( ) ( ).- = - = -s A sA s A

5. and 6. Since 0 0 0× = = ×a sij , therefore OA = O = sO. ■

Example     8.2   

Let A and B be 2 ´ 2 matrices. Find A and B such that

3 2
9 4

2 6
A B+ =

- -
é

ë
ê

ù

û
ú

and 2 5
17 1

6 15
A B+ =

-
-

é

ë
ê

ù

û
ú

Solution: Let 

A
a a

a a
B

b b

b b
=

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

11 12

21 22

11 12

21 22

and

Then, from the hypothesis,

9 4

2 6
3 2 3 2

11 12

21 22

11 12

21 22- -
é

ë
ê

ù

û
ú = + =

é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
úA B

a a

a a

b b

b b

=
+ +
+ +

é

ë
ê

ù

û
ú

3 2 3 2

3 2 3 2

11 11 12 12

21 21 22 22

a b a b

a b a b

and therefore, by equating the corresponding ijth entries 
on both sides, we get

 9 = 3a11 + 2b11 (8.1)

 4 = 3a12 + 2b12 (8.2)

 -2 = 3a21 + 2b21 (8.3)

 -6 = 3a22 + 2b22 (8.4)

Similarly, by using 

2 5
17 1

6 15
A B+ =

-
-

é

ë
ê

ù

û
ú

we get that

 17 = 2a11 + 5b11 (8.5)

 -1 = 2a12 + 5b12 (8.6)

 6 = 2a21 + 5b21 (8.7)

 -15 = 2a22 + 5b22 (8.8)

By solving Eqs. (8.1) and (8.5), we can find a11 and b11 
as a11 = 1 and b11 = 3. Similarly, by solving Eqs. (8.2) 
and (8.6), Eqs. (8.3) and (8.7), and Eqs. (8.4) and (8.8),  
we get

a b12 122 1= = -and

a b21 212 2= - =and

and a b22 220 3= = -and

Therefore 

A B=
-

é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú

1 2

2 0

3 1

2 3
and

Example     8.3   

Evaluate the following:

cos
cos sin

sin cos
sin

sin cos

cos sin
q

q q
q q

q
q q
q q-

é

ë
ê

ù

û
ú +

-é

ë
ê

ù

û
ú

Solution: We have

cos
cos sin

sin cos
sin

sin cos

cos sin
q

q q
q q

q
q q
q q-

é

ë
ê

ù

û
ú +

-é

ë
ê

ù

û
ú

=
-

é

ë
ê

ù

û
ú

+
-

cos cos sin

cos sin cos

sin sin cos

sin cos s

2

2

2

q q q
q q q

q q q
q q iin

cos sin

cos sin

2

2 2

2 2

2

0

0

1 0

0 1

q

q q
q q

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú =

+
+

I
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Example     8.4   

Compute the matrix X, if it is given that 2 3 3X A B+ = ,  
where 

A B=
-é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

1 1

0 2

3 5

4 6
and

Solution: Suppose that 2 3 3X A B+ = .  Then 2X = 3B- 
3 3A B A= -( ).  Therefore

X B A= -
3

2
[ ]

=
é

ë
ê

ù

û
ú -

-é

ë
ê

ù

û
ú

æ
èç

ö
ø÷

=
- - -
- -

é

ë
ê

ù

û
ú

=

3

2

3 5

4 6

1 1

0 2

3

2

3 1 5 1

4 0 6 2

3

2

( )

22 6

4 4

3 9

6 6

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú

In the following, we define the product AB of two matrices A and B only when the number of columns in A is equal 
to the number of rows in B.

DEFINITION 8.15  Multiplication of Matrices Let A be an m ´ n matrix and B an n ´ p matrix. If  A = (aij) and 
B = (bij), then the product AB is defined as the m p´  matrix (cij), where

c a b a b a b a bij ir rj
r

n

i j i j in nj= = + + +
=

å
1

1 1 2 2 	

for all 1 1£ £ £ £i m j pand .

Example     8.5   

Let A be a 4 ´ 3 matrix and B be a 3 ´ 2 matrix given by 

A B=

-

-
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
-

-
é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1

1 0 4

0 2 2

3 1 2

2 3

1 4

3 1

and

Find the product AB.

Solution: We get the product AB as a 4 ´ 2 matrix 
given by

AB cij= ( )

where cij = 
r=å 1

3
air brj  for all 1 £ i £ 4 and 1 £ j £ 2 and 

A = (aij) and B = (bij). Now

c a b a b a b

c a

11 11 11 12 21 13 31

12 11

2 2 3 1 1 3

4 3 3 2

= + +
= - -
= - - = -
=

´ + ´ + ´( ) ( )

bb a b a b

c a b a

12 12 22 13 32

21 21 11 2

2 3 3 4 1 1

6 12 1 5

+ +
= - -
= - - =
= +

´ + ´ +
+
( ) ( )

22 21 23 31

1 2 0 1 4 3

2 0 12 14

b a b+
= -
=

´ + ´ + +
+ + =

( )

c a b a b a b

c a b

22 21 12 22 22 23 32

31 31 11

1 3 0 4 4 1

3 0 4 1

= +
= - + +
= - + + =
=

+
´ ´ ´( )

++ +
= + - + -
= - - = -
= +

a b a b

c a b a b

32 21 33 31

32 31 12 32

0 2 2 1 2 3

0 2 6 8

´ ´ ( ) ( )( )

222 33 32

41 41 11 42 21 43

0 3 2 4 2 1

0 8 2 6

+
= - + + -
= + - =
= + +

a b

c a b a b a b

´ ´ ´( ) ( )

331

42 41 12 42 22 43 32

3 2 1 1 2 3

6 1 6 1

3

= - + - +
= - - + = -
= + +
= -

( ) ( )

( )

´

c a b a b a b

(( )- + +
= + + =

3 1 4 2 1

9 4 2 15

´ ´

Therefore 

AB cij= =

-

-
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

( )

2 5

14 1

8 6

1 15
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Note: The ijth entry in the product AB is simply obtained by multiplying the ith row of A and jth column of B. Note 
that the ith row of A and jth column of B are both n-tuples 

( , , , , )a a a a

b

b

b

i i i in

j

j

nj

1 2 3

1

2…
�

and

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

respectively and the ijth entry in AB is the sum of the products a b a b a bi j i j in nj1 1 2 2, , , .…

THEOREM 8.3

PROOF

Let A aij= ( )  be an m n´  matrix, B bij= ( )  an n p´  matrix and C cij= ( ) a p q´  matrix. Then

A BC AB C( ) ( )=

Note that BC is an n q´  matrix and AB is an m p´  matrix. Let BC d i n j qij= £ £ £ £( ), , ,for 1 1  
and AB u i m j pij= £ £ £ £( ), , .for 1 1  Then

d b cij ir rj
r

p

=
=

å
1

 (8.9)

and u a cij is sj
s

n

=
=

å
1

 (8.10)

Both A BC AB C( ) ( )and are m q´  matrices. For any 1 1£ £ £ £i m j qand ,

ijth entry of A BC a dit tj
t

n

( ) =
=
å

1

=
æ
èç

ö
ø÷

=

==

==

åå

å

a b c

a b c

it tr rj
r

p

t

n

it tr rj
r

p

t

11

11

[by Eq. (8.9)]

( )
nn

it tr
t

n

rj
r

p

ir rj
r

p

a b c

u c

ij AB C

å

åå

å

=
æ
èç

ö
ø÷

=

=

==

=

11

1

th entry in ( ) [[by Eq. (8.10)]

Thus ( ) ( ) .AB C AB C=  ■

We have proved earlier that A B B A+ = +  for any 
matrices A and B of the same order; that is the  addition 
is  commutative. However, the multiplication of matrices 

is not commutative. In fact, if A B×  is defined, then B A×  
may not be defined. 

QUICK LOOK 1
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Consider the following examples.

(1)  Let A be a 3 ´ 2 matrix and B a 2 ´ 4 matrix. Then 
A B×  is defined, since the number of columns in A is 
2 which is same as the number of rows in B. However 
B A×  is not defined, since the number of columns in 
B( )= 4  is not equal to the number of rows in A( ).= 3

(2)  Even if A × B and B × A are defined, they may not be 
of same order. For example, let A be a 2 ´ 3 matrix 
and B be a 3 ´ 2 matrix. Then A × B and B × A are both 
defined. However, A × B is a 2 ´ 2 matrix and B × A is 
3 ´ 3 matrix.

Examples

Even if A × B and B × A are defined and of same order, A × B and B × A may not be equal matrices.

Example     8.6   

Let

A B=
-

é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
ú

1 0

2 1

2 1

1 0
and

Show that A B×  and B A×  may not be equal matrices.

Solution: We have

A B× =
× + - × + ×

× + - - × + -
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

1 2 0 1 1 1 0 0

2 2 1 1 2 1 1 0

2 1

5 2

( )

( )( ) ( )

and B A× =
× + × × + -

- + × - + -
é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û

2 1 1 2 2 0 1 1

1 1 0 2 1 0 0 1

4 1

1 0

( )

( ) ( ) ( ) úú

Therefore A B A B× ¹ × .

THEOREM 8.4

PROOF

Let A and B be any matrices. Then AB and BA are both defined and are of same order if and only 
if both A and B are square matrices of same order.

Let A be an m ´ n matrix and B be a p q´  matrix. Suppose that A B B A× ×and  are defined and of 
same order. Then n = p and q = m. Also, A B×  is of order m ´ q and B A×  is of order p n´ . Since 
A B×  and B A×  are of same order, we have m = p and q = n. Thus

m = q = n and p = n = q

Therefore, A and B are square matrices of same order m ´ m. Converse is clear. ■

(1)  If A is a 3 ´ 4 matrix and B is 4 ´ 3 matrix, then A B×  
is defined and is a matrix of order 3 ´ 3. Also, B A×  is 
defined and is a matrix of order 4 ´ 4.

(2) If A and B are square matrices each of order 3 ´ 3, 
then AB and BA defined and each of them is of 
order 3 ´ 3.

Examples

THEOREM 8.5 

PROOF

The multiplication of matrices is distributive over addition in the following sense.

1. If A is an m ´ n matrix and B and C are n p´  matrices, then

A B C A B A C( )+ = × + ×

2. If A and B are m ´ n matrices and C is an n p´  matrix, then

( )A B C AC BC+ = +

Let A a B b C cij ij ij= = =( ), ( ) ( )and .

1.  Suppose that A is of order m ´ n and B and C are of order n p´ . Then A(B + C) and A × B + 
A × C are both of order m ´ p. For any 1 1£ £ £ £i m j pand ,

ijth entry in A B C a b cir rj rj
r

n

( ) ( )+ = +
=

å
1
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= +
= =

å åa b a cir rj
r

n

ir rj
r

n

1 1

= ijth entry in A B A C× + ×

Therefore, A B C AB AC( ) .+ = + . Note that we have used the fact that the multiplication of 
numbers is distributive over addition of numbers.

2. This can be proved on similar lines. ■

In Definition 8.15, we have defined the multiplication of a matrix by a scalar. A scalar (i.e., a real or complex number) 
can be identified with a scalar matrix (see Definition 8.10) and the scalar multiplication of a matrix A is actually a 
multiplication of A with a scalar matrix, as we see below.

THEOREM 8.6

PROOF

Let A be an m n´  matrix and k a scalar. Then BA kA AC= = ,  where B is the m m´  scalar matrix 
and C is the n n´  scalar matrix with k as diagonal entries.

Let B be the m m´  diagonal matrix 

k

k

k

0 0 0

0 0 0

0 0 0

	
	

�
	

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

and C be the n n´  diagonal matrix 

k

k

k

0 0 0

0 0 0

0 0 0

	
	

�
	

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Then BA, kA and AC are all m n´  matrices. For any 1 1£ £ £ £i m j nand ,

ijth entry in BA b a kair rj
r

m

ij= =
=

å
1

where B b b k i j b i jij ij ij= = ¹ = ¹( ) .and if and if0  Therefore BA kA= . Similarly AC kA= . ■

COROLLARY 8.1 If A is any n n´  square matrix and k is an n n´  scalar matrix, then A k k A× = × .

The converse of this is proved in the following, that is, we prove next that the scalar matrices are the only matrices 
which commute with all similar matrices (i.e., matrices of same order).

THEOREM 8.7

PROOF

Let A be an n n´  square matrix such that AB = BA for all n n´  matrices B. Then A is a scalar 
matrix.

Let A = (aij). We shall prove that aii = ajj for all 1 £ i, j £ n and aij = 0 for all 1 £ i ¹ j £ n. Let 1 £ i, 
j £ n be fixed and define B = (bst) by

b
s i t j

st =
= =ì

í
î

1

0

if and

otherwise

Then, since AB BA= ,  by taking ijth entries both in AB BAand ,  we get that

a b b air rj
r

n

ir
r

n

rj
= =

å å=
1 1
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By substituting for brj and bir, we get

a aii jj=

Therefore, all the diagonal elements in A are same. Also, let 1 £ ¹ £i j n  and define C cst= ( )  as

c
s j t

s j t jst =
= =
¹ ¹

ì
í
î

1 if

if or0

Again, from AC CA= , we get that

a c c air rj
r

n

ir rj
r

n

= =
å å=

1 1

Substituting for both sides, we have aij = 0 (cir = 0 for all r, since i j¹ ). Thus, aij = 0 for all i j¹  and 
hence A is a scalar matrix of order n n´ . ■

THEOREM 8.8

PROOF

Let A = (aij) be an m ´ n matrix and Im and In  be unit matrices of order m ´ m and n ´ n, respec-
tively. Then

Im A A A In= =

Note that Im is the square matrix of order m m´  in which each of the diagonal entries is 1 and all 
the non-diagonal entries are 0; that is,

Im = ( )eij

where

e
i j

i j
ij =

=

¹

ì
í
ï

îï

1

0

if

if

Now, for any 1 1£ £ £ £i m j nand ,  the ijth entry of I Am  is 

e a air rj ij
r

m

=
=

å
1

 (since eir = 0 for all r i¹ )

Therefore Im × =A A. Similarly A I An× = . ■

COROLLARY  8.2 If A is square matrix of order n n´ , then I A A A In n× = = × .

DEFINITION 8.16  Recall from Definition 8.11 that the matrix In is called the identity matrix or unit matrix order n.
In view of Corollary 8.2, In is also called the multiplicative identity of order n. When there is 
no ambiguity about n, In is simply denoted by I and one has to take the order of I depending 
on the context where it is used.

When we multiply a matrix A with I, from right or left, A is duplicated. If we multiply A with the zero matrix, we get 
the zero matrix as in the case of number systems.

THEOREM 8.9 Let A be an m n´  matrix and O Om nand  be zero matrices of order m m´  and n n´  respectively. 
Then

O A O A Om m n n= = ×´

where Om n´  is the zero matrix of order m n´ .
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PROOF Recall that Om is a square matrix of order m ´ m in which all the entries are zero. Now, consider

O A O O A
O A O A

m m m

m m

× = +
= +

( )

[by part (2) of Theorem 8.5]

Therefore, we have

O A O A O A O A Om m m m m n+ = = + ´ [ . ]by part (3) of Theorem 8 1

By the cancellation law [part (5) of Theorem 8.1], we get

O A Om m n= ´

Similar arguments yield

AO On m n= ´  ■

THEOREM 8.10

PROOF

Let A be m n´  matrix and B and C be n p´  matrices. Then the following hold:

1. A B AB A B( ) ( ) ( )- = - = -
2. A B C AB AC( )- = -
3. ( )A D B AB DB- = -  for any m n´  matrix D.

1. Consider the zero matrix On p´ .  Then, we have

AB A B A B B

A On p

+ - = + -
= × ´

( ) [ ( )] [

[

by part (1), Theorem 8.5]

by part (4), TTheorem 8.1]

by Theorem

by part (4), Theor

=
= + -

´O

AB AB
m p [ . ]

[ ( )] [

8 9

eem 8 1. ]

By the cancellation law [part (5), Theorem 8.1], we get that

A B AB( ) ( )- = -

Similar argument gives us that ( ) ( ).- = -A B AB

2. We have

A B C A B C

AB A C

AB AC AB AC

( ) [ ( )]

( )

( )

- = + -
= + -
= + - = -

3. We have

 

( ) [ ( )]

( )

( )

A D B A D B

AB D B

AB DB AB DB

- = + -
= + -
= + - = -

 

■

Unlike in the number system, product of two non-zero matrices can be zero. Consider the following example.

Example     8.7   

Let A and B be non-zero matrices given by 

A B=
é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú

2 2

2 2

2 2

2 2
and

Show that AB and BA are zero matrices.

Solution: We have

AB =
´ + - - + ×
´ + - - + ×

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0 0

0 0

( ) ( )

( ) ( )

and

BA =
´ + - × + -

- + ´ - + ´
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0 0

0 0

( ) ( )

( ) ( )
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Further, for two matrices A and B, it is quite possible that AB = 0 without BA being zero. In the following we have 
such an instant.

Example     8.8   

Let A and B be 2 2´  matrices given by 

A B=
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

0 1

0 1

1 1

0 0
and

Find out AB and BA. Are these zero matrices?

Solution: We have

A B× =
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

× + × × + ×
× + × × + ×

é

ë
ê

ù

û

0 1

0 1

1 1

0 0

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0úú =
é

ë
ê

ù

û
ú

0 0

0 0

and

B A× =
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

× + × × + ×
× + × × + ×

é

ë
ê

ù

û

1 1

0 0

0 1

0 1

1 0 1 0 1 1 1 1

0 0 0 0 0 1 0 1úú =
é

ë
ê

ù

û
ú

0 2

0 0

Therefore A B O B A O× = × ¹and .

DEFINITION 8.17  Let A be a square matrix of order m m´ . For any non-negative integer n, define An recur-
sively as follows:

A
n

A A n
n

n=
=

× >
ì
í
î

-

Im if

if

0

01

Note that 

A A A I A A A A A A A A A A A A Am
1 0 2 1 3 2= × = × = = × = × = × = × ×; ; ( ) ; .etc

Also A2, A3, … are defined only when A is a square matrix.

Example     8.9   

Let A be a scalar matrix 

a

a

a

0 0

0 0

0 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

where a is a given scalar. Then, find A2 and An.

Solution: For given A we have

A a I a I a I a I

a a I I a I

2

3 3 3 3

3

2

3

= =

= =

( ) ( ) ( )

( )

× ×

3

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

a

a

a

2

2

2

0 0

0 0

0 0

Infact, for any n ³ 0,

A a a I

a

a

a

n n n

n

n

n

= = =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

( )I3 3

0 0

0 0

0 0

For a non-zero square matrix A and a positive integer n, 
An may be zero, but A may not be zero. For example, 
consider

A =
- -

é

ë
ê

ù

û
ú

2 4

1 2

Then A2
2 4

1 2

2 4

1 2
=

- -
é

ë
ê

ù

û
ú - -

é

ë
ê

ù

û
ú

Example
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=
+ - + -

- + - - - + - -
é

ë
ê

ù

û
ú =

2 2 4 1 2 4 4 2

1 2 2 1 1 4 2 2

0 0

0

× ×
×

( ) ( )

( ) ( )( ) ( ) ( )( ) 00

é

ë
ê

ù

û
ú

THEOREM 8.11

PROOF

Let A and B be square matrices of order m m´  and s a scalar. Then the following hold good:

1. For any integer n sA s An n n³ =0, ( )
2. ( )A B A AB BA B+ = + + +2 2 2

3. ( )A B A AB BA B- = - - +2 2 2

4. ( )( )A B A B A AB BA B+ - = - + -2 2

5. If AB BA A B A B A B= + - = -, ( )( )then 2 2  

6. A A An r n r× = +

7. ( )A An r nr=
8. ( )A B A A B ABA BAB B A AB BA B+ = + + + + + + +3 3 2 2 2 2 3

9. If AB BA A B A A B AB B= + = + + +, ( )then 3 3 2 2 33 3  

The proofs of (1), (6) and (7) are by induction. The others are straightforward verifications and 
are left to the reader. ■

DEFINITION 8.18  Let f x a a x a x a xn
n( ) = + + +0 1 2

2 	  be a polynomial in the indeterminate x and the coefficients 
ai’s be scalars. Then, for any m m´  matrix A, we define

f A a a A a A a An
n( ) = + + + +0 1 2

2 	

 where each ai is treated as the scalar matrix of order m m´  in which each diagonal entry is ai 
and the other entries are 0. Note that f(A) is again an m m´  matrix. f(A) is said to be a matrix 
polynomial.

For any square matrix A and a scalar s

(
0

s A C A sn n
r

n r r

r

n

+ = -

=

) å

This is a matrix polynomial and is equal to f(A) where

f x s x C A sn n
r

n r r

r

n

( ) ( )= + = -

=
å

0

Example

The product of any two diagonal (scalar) matrices of the 
same order is again a diagonal (scalar) matrix.

If A = (aij) and B = (bij) are diagonal matrices of 
order n n´ , then

a b i j nij ij= = £ ¹ £0 1for all

The ijth entry in the product AB is

a b a b
a b i j

i jir rj
r

n

ii ij
ii ii

=
å = =

=
¹

ì
í
î1 0

if

if

Therefore, except the diagonal entries, all the other 
entries in AB are zero. Therefore AB is a diagonal matrix. 
If A and B are scalar matrices, then

a b b b i j nii jj ii jj= = £ £and for all 1 ,

and hence a b a bii ii jj jj= ×  and this shows that AB is also a 
scalar matrix.

Example
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Example     8.10   

Solve the matrix equation

XA B=

where

A B=
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

1 2

2 3

2 1

1 3
and

Solution: Since A and B are 2 2´  matrices, to satisfy 
the equation XA = B, X also must be a 2 2´  matrix. Let

X
a b

c d
=

é

ë
ê

ù

û
ú

From XA = B, we have

a b a b

c d c d

+ +
+ +

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

2 2 3

2 2 3

2 1

1 3

Equating the corresponding entries on both sides, we 
have

a b c d a b c d+ = + = + = + =2 2 2 1 2 3 1 2 3 3; ; ;

Solving these, we get that a b c d= - = = = -4 3 3 1, , .and  
Therefore

X =
-

-
é

ë
ê

ù

û
ú

4 3

3 1

Example     8.11   

Let A be the matrix

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Prove that

An

n n n n

n n n n

n n n n

n n

=

- - - -

- - - -

- - - -

- -

4 4 4 4

4 4 4 4

4 4 4 4

4 4

1 1 1 1

1 1 1 1

1 1 1 1

1 11 1 14 4n n- -

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

for any positive integer n.

Solution: We shall use induction on n. If n = 1, it is clear. 
Let m > 1 and assume that result is true for n = m - 1. Then

A A A

a a a a

a a a a

a a a a

a a a a

m m= × =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

é

ë

ê
ê-1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

êê
ê

ù

û

ú
ú
ú
ú

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

a a a a

a a a a

a a a a

a a a a

(wherre ) 

=

a m

m m m m

m m m m

m m m

= -

- - - -

- - - -

- - -

4

4 4 4 4

4 4 4 4

4 4 4 4

2

1 1 1 1

1 1 1 1

1 1 1 mm

m m m m

-

- - - -

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1

1 1 1 14 4 4 4

Example     8.12   

Two persons X and Y wanted to purchase  onions,
tomatoes and potatoes for each of their families. The 
quantities in kilograms of each of the items required by 
X and Y are given in the table below:

Onions Tomatoes Potatoes

X

Y

12 6 6

10 4 5

There are two markets in the town, market I and market II. 
The costs per kilogram of each item in the two markets are 
given in rupees in the table in the right column:

Market I Market II

Onions

Tomatoes

Potatoes

10 9

6 7

8 9

Prepare a comparison table, showing the probable expen-
ditures of the persons X and Y in the two  markets I, 
and II, and their preferences of I and II. It is given that 
they can go to only one market each.

Solution: Let A be the person–item matrix, that is

A =
é

ë
ê

ù

û
ú

12 6 6

10 4 5
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and B be the item–market matrix, that is

B =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

10 9

6 7

8 9

We have to compute person–market matrix, that is, we 
have to calculate the product A·B. Now A is a 2 ́  3 matrix 
(2 person – 3 items) and B is a 3 ´ 2 matrix (3 items – 2 
markets) and therefore A·B is a 2 ´ 2 matrix (2 person – 2 
markets) given by

A B× =
× + × + × × + × + ×
× + × + × × + × + ×

é

ë
ê

ù12 10 6 6 6 8 12 9 6 7 6 9

10 10 4 6 5 8 10 9 4 7 5 9ûû
ú

=
é

ë
ê

ù

û
ú

204 204

164 163

Therefore the required table is

Market I Market II

Rs Rs.X

Y

. 204 204

164 163

Then X understands that both markets are equally  prefe-
rable, while Y decides to go to market II, when it is given 
that the qualities are same in markets I and II.

DEFINITION 8.19 For any matrix A, the transpose of A is defined to be the matrix obtained by interchanging 
the rows and columns in A. The transpose of A is denoted by A AT or ¢. If A aij= ( )  is an m n´  
matrix, then the transpose AT is an n m´  matrix given by

A aij
T = ¢( )

 where ¢ =a aij ji. That is, the ijth entry in A becomes the jith entry in AT.

(1) If then TA A=
-

-
é

ë
ê

ù

û
ú = -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 1

3 1 2

1 3

2 1

1 2

,
(2) If then TA A=

- -

- -

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
-
- -

-

é

ë

2 3 4

4 2 3

1 6 5

2 3 1

2 4 1 2

3 2 6 3

4 3 5 1

, êê
ê
ê

ù

û

ú
ú
ú

Examples

THEOREM 8.12

PROOF

Let A and B be m n´  matrices and s a scalar. Then 

1. ( )A B A B+ = +T T T

2. ( )sA s AT T= ×
3. ( )- = -A AT T

Let A = (aij) and B = (bij). Then, A, B and A + B are matrices of order m n´  and therefore 

A B A B A BT T T T Tand ( ), , + +  are all n m´  matrices. For any 1 1£ £ £ £i n j mand , ijth entry in 

( )A B ji A B

a b

ij A ij B

ji ji

+ = +
= +

= +

=

T

T T

th entry in

th entry in th entry in

iij A Bth entry in T T+

Therefore 

( )A B A B+ = +T T T

Similarly, we can prove that ( )sA s AT T= ×  and deduce, by taking s A A= - - = -1, ( ) .that T T  ■

Example     8.13   

Consider the following matrices:
A B=

- -
é

ë
ê

ù

û
ú =

- -
-

é

ë
ê

ù

û
ú

2 3 1

4 1 5

1 2 3

2 1 4
and
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Compute A B A B A B A BT T T T Tand, , , ( ) .+ + +

Solution: We have

A BT Tand=
-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
- -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 4

3 1

1 5

1 2

2 1

3 4

Now

A B+ =
+ - + + -

- + - - + +
é

ë
ê

ù

û
ú

=
-

-
é

ë
ê

ù

û
ú

2 1 3 2 1 3

4 2 1 1 5 4

1 5 2

6 0 9

( ) ( )

( )

Therefore

( )A B+ =
-

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

T

1 6

5 0

2 9

Also

A BT T+ =
+ - - + -

+ - +
+ - +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

-

é

ë

ê
ê

2 1 4 2

3 2 1 1

1 3 5 4

1 6

5 0

2 9

( ) ( )

( )

êê

ù

û

ú
ú
ú

= +( )A B T

THEOREM 8.13

PROOF

Let A be an m n´  matrix and B an n p´  matrix. Then

( )AB B AT T T= ×

First note that AB is defined, since A and B are of order m n n p´ ´and ,  respectively, and that 
AB is of order m p´  and hence ( )AB T  is of order p m´ . Also, since BT and AT are of order 
p n n m´ ´and ,  respectively; B AT T×  is defined and is of order p m´ . Therefore ( )AB B AT T Tand  
are both of order p m´ . For any 1 1£ £ £ £i p j mand , we have

ij AB ji AB

a b

b a

b

jr ri
r

n

ri jr
r

n

th entry in th entry inT( ) =

=

= ×

= ¢

=

=

å

å
1

1

iir rj
r

n

rs rsa A a B b

ij B A

× ¢ = ¢ = ¢

= ×
=

å
1

[where and

th entry in

T

T T

( ) ( )]T

Thus ( ) .AB B AT T T= ×  ■

Example     8.14   

Consider the following matrices:

A B=
-

- -
é

ë
ê

ù

û
ú =

-
- -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1

1 4 2

4 3 1

2 1 2

3 2 1

and

Compute A B A B A B ABT T T T Tand, , , ( ) .× ×

Solution: Since A and B are of order 2 3 3´ ´and 3 ,  
respectively, AB is defined and is of order 2 3´ . We have

A BT Tand=
-

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= - - -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 1

3 4

1 2

4 2 3

3 1 2

1 2 1

AB =
-

- -
é

ë
ê

ù

û
ú

5 5 7

2 3 7

( )AB T =
-

-
é

ë

ê
ê
ê

ù

û

ú
ú
ú

5 2

5 3

7 7

Also

B AT T =
- + - + -

- + - - +
+ - - - +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

-
-

8 6 3 4 8 6

6 3 2 3 4 4

2 6 1 1 8 2

5 2

5 3

7 7

éé

ë

ê
ê
ê

ù

û

ú
ú
ú
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Example     8.15   

Recall Example 8.12 where two persons X and Y wanted 
to purchase the items onions, tomatoes and potatoes 
in markets I or II. The matrix A is given as the person–
item matrix and B as the item –market matrix. Instead, 
suppose we are given the item–person matrix and the 
market–item matrix. Then we have the following tables.

X Y

Onions 12 10

Tomatoes 6 4

Potatoes 6 5

Onions Tomatoes Potatoes

Market I

Market II

10 6 8

9 7 9

These are simply AT and BT, respectively. BT is a 2 ´ 3 
matrix and AT is the 3 2´  matrix. If we take product 
B AT T× , then we get the market–person matrix. Now

B AT T× =
é

ë
ê

ù

û
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
× + × + × × +

10 6 8

9 7 9

12 10

6 4

6 5

10 12 6 6 8 6 10 10 6×× + ×
× + × + × × + × + ×

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú =

4 8 5

9 12 7 6 9 6 9 10 7 4 9 5

204 164

204 163
(AA B× )T

The required table is

 

X Y

Market I

Market II

204 164

204 163

DEFINITION 8.20  A matrix A is said to be symmetric if it is equal to its transpose, that is, A A= T. If A aij= ( ), 

then A is called symmetric if a aij ji=  for all i and j. Note that if A is an m n´  matrix, then AT 

is an n m´  matrix and therefore A can be symmetric only if A is a square matrix.

(1)  

1 2 0

2 1 4

0 4 3

-
é

ë

ê
ê
ê

ù

û

ú
ú
ú
 is a symmetric matrix, because when we 

interchange the rows and columns, we get the same 
matrix.

(2) 
2 1

4 3

é

ë
ê

ù

û
ú  is not a symmetric matrix

(3)  
2 3 1

4 2 3- -
é

ë
ê

ù

û
ú  is not symmetric, since a symmetric 

matrix is necessarily a square matrix.

Examples

QUICK LOOK 2

1.  The zero matrix of order n n´  and the identity 
matrix are both symmetric matrices.

2. Any diagonal matrix is always symmetric.

Note that a square matrix is symmetric if and only if the entries on the lower side of the diagonal are precisely the 
reflections of those on the upper side of in the diagonal as shown in Figure 8.1.

4

2

0

1

2

-1

3

-2

0

3

-4

-1

1

-2

-1

5 Diagonal

FIGURE 8.1 Symmetric square matrix.
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DEFINITION 8.21  A square matrix A aij= ( ) is said to skew-symmetric if a aij ji= -  for all i and j. In other words, 
A is skew-symmetric if and only if A A= - T .

Examples

(1) The matrix 

0 2 3 4

2 0 1 3

3 1 0 1

4 3 1 0

- -
- - -
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 is skew-symmetric. (2)  The matrix 

1 2 3 4

2 0 1 3

3 1 0 2

4 3 2 0

-
- -
- - -

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

  is not  skew-symmetric
 since a a11 11¹ - .

In the following we derive certain important properties of symmetric matrices and skew-symmetric matrices.

THEOREM 8.14

PROOF

Let A and B be any n n´  square matrices.

1. If A and B are symmetric, then so is A B± .

2. If A and B are skew-symmetric, then so is A B± .

3. If AB = BA and A and B are symmetric (skew-symmetric), then AB is symmetric.

4. If A is symmetric (skew-symmetric), then so is sA for any scalar s.

Recall that A is symmetric if and only if A A= T  and that A is skew-symmetric if and only if A A= - T.

1. Suppose that A and B are symmetric. Then, by Theorem 8.12, we have

( )A B A B A BT± = ± = ±T T

 and therefore A B±  is also symmetric.

2. If A and B are skew-symmetric matrices, then

( ) ( )A B A B A B A BT± = ± = - = - ±T T ∓

 and therefore A B±  is skew-symmetric.

3. Case I: Suppose A and B are symmetric and AB = BA. Then

( )AB B A B A ABT T T= = × =

 and therefore AB is symmetric.
 Case II: If A and B are skew-symmetric and AB = BA, then

( ) ( )( )AB B A B A BA ABT T T= = - - = =

 and therefore AB is symmetric.

4. Case I: If A is symmetric and s is a scalar, then

( )sA sA sAT T= =
 and hence sA is symmetric.
 Case II: If A is skew-symmetric, then

( ) ( ) ( )sA sA s A sAT T= = - = -
 and hence sA is skew-symmetric. ■

Note that, if A and B are skew-symmetric and AB = BA, then AB is not a skew-symmetric; however, AB is symmetric. 
In this context, we have the following.

THEOREM 8.15 Let A and B be square matrices of same order such that AB = BA. If one of A and B is symmetric 
and the other is skew-symmetric, then AB is skew-symmetric.
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PROOF Suppose that A is symmetric and B is skew-symmetric (there is no loss of generality, since 
AB = BA). Then

( ) ( ) ( ) ( )AB B A B A BA ABT T T= = - = - = -

and therefore AB is skew-symmetric. ■

THEOREM 8.16

PROOF

Let A be a square matrix. Then A is symmetric (skew-symmetric) if and only if AT is symmetric 
(skew-symmetric).

This follows from the fact that ( ) .A AT T =  Also since A is symmetric

A A A A A= Þ = =T T T T( )

and A A A A A= - Þ = - = -T T T T( )  ■

THEOREM 8.17

PROOF

If A is a skew-symmetric matrix, then all the diagonal entries in A are zero.

Let A = (aij) be a skew-symmetric matrix. Then a aij ji= -  for all i and j. In particular, aii = -aii and 
hence 2aii = 0 or aii = 0 for all i. Therefore all the diagonal entries aii are zero. ■

Note: The converse of Theorem 8.17 is not true. For example the matrix

0 1 2

3 0 4

1 1 0-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

is not skew-symmetric.

THEOREM 8.18

PROOF

For any square matrix A, A + AT is symmetric and A – AT is skew-symmetric.

Let A be a square matrix. Then

( ) ( )A A A A A A A A+ = + = + = +T T T T T T T

and hence A + AT is symmetric. Also,

( ) [ ( )]

( ) [ ( ) ]

( )

(

A A A A

A A A A

A A

A A A A

- = + -

= + - = + -

= + -

= - = - -

T T T

T T T T T T

T

T TT )

Therefore A - AT is skew-symmetric. ■

THEOREM 8.19

PROOF

Any square matrix can be uniquely expressed as a sum of a symmetric matrix and a skew- 
symmetric matrix.

Let A be any square matrix. Then, by Theorem 8.18, A + AT is symmetric and A - AT is skew-
symmetric. Also, by part (4) of Theorem 8.14 we have

1

2
( )A A+ T  is symmetric 

and 
1

2
( )A A- T  is skew-symmetric
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Now, we have

 A A A A A= + + -
1

2

1

2
( ) ( )T T  (8.11)

To prove the uniqueness of this expression, let A B C= + , where B is a symmetric matrix and C is 
a skew-symmetric matrix. Then

A A B C B C

B C B C

B C B C

B

+ = + + +

= + + +
= + + -
=

T T

T T

( ) ( )

2

and therefore

B A A= +
1

2
( )T

Also,

A A B C B C

B C B C

B C B C

C

- = + - +

= + - +
= + - -
=

T T

T T

( ) ( )

( )

( )

2

and therefore

C A A= -
1

2
( )T

Thus, Eq. (8.11) is an unique expression of A as a sum of a symmetric matrix and a skew- symmetric 
matrix. ■

THEOREM 8.20

PROOF

Let A and B be symmetric matrices of the same order. Then the following hold:

1. An is symmetric for all positive integers n.

2. AB is symmetric if and only if AB = BA.

3. AB + BA is symmetric.

4. AB - BA is skew-symmetric.

1. For any positive integer n,

( ) ( )A A A A A A A An nT T T T= = = =	 	 	

 and therefore An is symmetric.

2. AB is symmetric Û =( )AB ABT

Û =
Û =

B A AB

BA AB

T T

3. ( ) ( ) ( )AB BA AB BA

B A A B

BA AB AB BA

+ = +

= +
= + = +

T T T

T T T T

Therefore AB + BA is symmetric.

4. ( ) ( ) ( )

( )

AB BA AB BA

B A A B

BA AB AB BA

- = -

= -
= - = - -

T T T

T T T T

Therefore AB – BA is skew-symmetric. ■



8.1   Matrices 383

THEOREM 8.21

PROOF

For any square matrix A, AAT and ATA are both symmetric.

We have

( ) ( )AA A A AAT T T T T T= =

and ( ) ( )A A A A A AT T T T T T= =

Therefore AAT and ATA are both symmetric. ■

Example     8.16   

Express the matrix A as a sum of a symmetric matrix and 
a skew-symmetric matrix.

A = - -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1

1 2 4

5 3 5

Solution: To do this, we should compute

1

2

1

2
( ) ( )A A A A+ -T Tand

Now transpose of A is given by

AT =
-
- -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 1 5

3 2 3

1 4 5

For AT, first row of A becomes the first column of AT, the 
ith row of A becomes the ith column of AT. Now

A A+ =
+ + - +

- + - + - + -
+ - + - + -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

T

2 2 3 1 1 5

1 3 2 2 4 3

5 1 3 4 5 5

( )

( ) ( )

( )

== -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

4 2 6

2 4 1

6 1 10

  T1

2

2 1 3

1 2
1

2

3
1

2
5

( )A A+ = -

-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

 (8.12)

Again

A A- =
- - - -

- - - - - - -
- - - - - -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

T

2 2 3 1 1 5

1 3 2 2 4 3

5 1 3 4 5 5

( )

( ) ( )

( )

==
-

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 4 4

4 0 7

4 7 0

  T1

2

0 2 2

2 0
7

2

2
7

2
0

( )A A- =

-

-

-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

 (8.13)

By Theorem 8.19 and using Eqs. (8.12) and (8.13) we 
have

 

A A A A A= + + -

= -

-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

+

-

-

1

2

1

2

2 1 3

1 2
1

2

3
1

2
5

0 2 2

2 0
7

( ) ( )T T

22

2
7

2
0

-

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

symmetric skew-symmetric

Let A and B be square matrices of same order. If B is 
symmetric (skew-symmetric), then so is ABAT. That is

( ) ( )ABA A B AT T T T T T=

=

=
- = -

ì

AB A

ABA B

A B A B ABA

T T

T

T T

if is symmetric

if is skew-symmetric( )
íí
î

Example

DEFINITION 8.22  A square matrix A is said to be an orthogonal matrix if A A IT × = , where I is the identity 
matrix of order same as that of A.
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Example     8.17   

Prove that the following matrices are orthogonal:

(1) A =
-

-
é

ë
ê

ù

û
ú

cos sin

sin cos

a a
a a

(2) A =
-

é

ë
ê

ù

û
ú

sin cos

cos sin

a a
a a

Solution:

(1) Consider the matrix

A =
-

é

ë
ê

ù

û
ú

cos sin

sin cos

a a
a a

Then

AT =
-é

ë
ê

ù

û
ú

cos sin

sin cos

a a
a a

and

A AT× =
+

- +

cos sin cos sin sin cos

sin cos cos sin sin co

2 2

2

a a a a - a a

a a a a a ss2a

é

ë
ê
ê

ù

û
ú
ú

=
é

ë
ê

ù

û
ú =

1 0

0 1
I

Therefore, A is an orthogonal matrix.

(2) Let

A =
-

é

ë
ê

ù

û
ú

sin cos

cos sin

a a
a a

Then

AT =
-é

ë
ê

ù

û
ú

sin cos

cos sin

a a
a a

and

A AT =
+ -

- +

sin cos sin cos cos sin

cos sin sin cos cos sin

2 2

2

a a a a a a

a a a a a 22

1 0

0 1

a

é

ë
ê
ê

ù

û
ú
ú

=
é

ë
ê

ù

û
ú = I

Therefore, A is an orthogonal matrix.

Let 

A

b c

a b c

a b c

= -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 2

Find the values of a, b and c such that A is an orthogonal 
matrix.

Solution: For the given matrix we have

A

a a

b b b

c c c

T = -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0

2

Multiplying AT with A we get

AT A

=

+ + -
+

+

-

+

+

+

( ( (

)

(

)

[

)

[

0 0 2 0

2 0 2 2 2

2

2

a b ab c ca
a

b ba

ab

b b b b

ca

b c b

× ×

× × × × (( )

)

[ ( )

( )( )]

[ ( )

( ) ]

[ ( )(

-
-

+ -

+ - -

+ -

+ -

+ - -

c
ba

c c a

b b

b c c b

b c

c c c× ×0 2 2 ))
] ( )] ]+ + - +

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
úc a c b c× 2

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 0 0

0 6 0

0 0 3

2

2

2

a

b

c

A is orthogonal if and only if

A A IT = =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0

0 1 0

0 0 1

that is,

a b c= ± = ± = ±
1

2

1

6

1

3
, and  

Example     8.18   
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DEFINITION 8.23  The following operations on matrices are called elementary transformations or elementary 
operations:

 1. The interchange of any two rows (or columns).

 2. The multiplication of any row (or column) by a non-zero scalar.

 3.  The addition to the entries of a row (or column) the corresponding entries of any other 
row (or column) multiplied by a non-zero scalar.

There are totally six types of elementary transformations on a matrix, three types are due to rows and three types due 
to columns. An elementary transformation is called a row transformation or a column transformation according as it 
applies to rows or columns, respectively. We follow a fixed notation to describe these six elementary transformations 
as detailed below.

1.  We denote the elementary transformations of interchanging the ith row and jth row by R Ri j« .  For example, for 
a matrix

A = - -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1 4

1 2 3 2

3 4 2 1

applying the elementary transformation R R2 3« , that is, interchanging the second row and third row, we get the 
matrix

2 3 1 4

3 4 2 1

1 2 3 2- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2.  The elementary transformation of interchanging the ith column and jth column is denoted by C Ci j« .  For example, 
by applying the transformation C C1 3«  to the matrix A given above we get the matrix

1 3 2 4

3 2 1 2

2 4 3 1

- -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

3.  The elementary transformation of multiplying the entries in the ith row by a non-zero scalar s is denoted by R sRi i® .  
For example, application of the transformation R R3 32®  to the matrix 

A = - -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1 4

1 2 3 2

3 4 2 1

gives us the matrix 

2 3 1 4

1 2 3 2

6 8 4 2

- -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

4.  The elementary transformation of multiplying the entries of the ith column by a non-zero scalar s is denoted by 
C sCi i« . For example, the application at C C3 32«  to the matrix A given above gives us the matrix

2 3 2 1 4

1 2 2 3 2

3 4 2 2 1

2 3 2 4

1 2 6 2

3 4 4 1

×
- -

×

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= - -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

( )
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5.  The transformation of adding to the entries in ith row, the corresponding entries of the jth row multiplied by a non-
zero scalar s is denoted by R R sRi i j® + .  For example, when we apply the transformation R R R2 2 13® +  to the matrix

A = - -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1 4

1 2 3 2

3 4 2 1

we get the matrix

2 3 1 4

1 3 2 2 3 3 3 3 1 2 3 4

3 4 2 1

2 3 1 4

5 11 0 14

3 4 2 1

- + × + × - + × + ×
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
êê
ê

ù

û

ú
ú
ú

6.  Lastly, the transformation of adding to the entries in ith column, the corresponding entries in the jth column 
 multiplied by a non-zero scalar s is denoted by C C sCi i j® + . For example, the application of C C C2 2 13® +  to the 
matrix A in (5) gives us the matrix

2 3 3 2 1 4

1 2 3 1 3 2

3 4 3 3 2 1

2 9 1 4

1 1 3 2

2 13 2 1

+ ×
- + - -

+ ×

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= - - -
é

ë

ê( ) êê
ê

ù

û

ú
ú
ú

DEFINITION 8.24  Let A and B be two matrices of the same order and et be an elementary transformation 
(i.e., et is any six transformations described above). Then we write A Bet¾ ®¾  to denote 
that B is obtained by applying the elementary transformation et to A. For example

A BR R1 2«¾ ®¾¾

denotes that B is obtained by interchanging the ith row and jth row in A. It can be easily seen that

A B B A
et f¾ ®¾ ¾ ®¾implies

where f is another elementary transformation, which may be called the inverse transformation of et.

For example, R Ri j«  (or C Ci j« ) is inverse of itself. R s R C s Ci i i i® ®( / ) ( / ) ]1 1 [  is the inverse of R sR C sCi i i i® ®( ).
Also, R R sRi i j® +  is the inverse of R R s Ri i j® + -( )  and C C sCi i j® +  is the inverse of C C s Ci i j® + -( ) . In other words, 
the inverse of an elementary transformation is again an elementary transformation.

DEFINITION 8.25  A square matrix A is said to be an elementary row (column) matrix if it is obtained by apply-
ing an elementary row (column) transformation to the identity matrix I, that is, I A

et¾ ®¾ .

(1)  The matrix 

1 0 0

0 0 1

0 1 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

is an elementary matrix, since it is obtained by inter-
changing the second and third rows in the identity 
matrix

1 0 0

0 1 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(2)  Let

E =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 0 1

0 1 0

1 0 0

Then E is an elementary column matrix, since 

I E
C C1 3«¾ ®¾¾ .

(3)  Let

E =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 3

0 1 0

0 0 1

Examples
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Then I E
C C C3 3 13® +¾ ®¾¾¾¾ and  hence E is an elementary 

column matrix. (4)  

1 0 0

0 1 0

0 0 1

1 0 0

0 4 0

0 0 1

2 24

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾
é

ë

ê
ê
ê

ù

û

ú
ú
ú

®R R
 

and therefore this is an elementary row matrix.

The following theorem is a straightforward verification and is left for the reader.

Try it out

THEOREM 8.22 Let A and B square matrices of same order.

1.  For any elementary row transformation ert, A B
ert¾ ®¾  if and only if EA = B, where E is 

the elementary matrix for which I E
ert¾ ®¾ .

2.  For any elementary column transformation ect, A B
ect¾ ®¾  if and only if B = AE, where E 

is the elementary matrix for which I E
ect¾ ®¾ .

(1) Let 

A B= -
- - -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

3 1 4

2 3 2

1 2 3

3 1 4

2 3 2

3 4 7

and

Then A B
R R R3 3 22® +¾ ®¾¾¾¾  and

B = -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

-
- - -

é

ë

3 1 4

2 3 2

3 4 7

1 0 0

0 1 0

0 2 1

3 1 4

2 3 2

1 2 3

êê
ê
ê

ù

û

ú
ú
ú

= EA

where

E I
R R R=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾® +
1 0 0

0 1 0

0 2 1

1 0 0

0 1 0

0 0 1

3 3 12
and ¾¾¾ E

(2) Let

 A B=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 3

4 5 6

7 8 9

1 11 3

4 23 6

7 35 9

and

Then A B
C C C2 2 33® +¾ ®¾¾¾¾  and

B =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

1 11 3

4 23 6

7 35 9

1 2 3

4 5 6

7 8 9

1 0 0

0 1 0

0 3 1

ùù

û

ú
ú
ú

= ×A E

where

E I E
C C C=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾¾® +
1 0 0

0 1 0

0 3 1

2 2 33
and

Examples

DEFINITION 8.26  Two matrices A and B of same order are said to be similar or equivalent if one can be obtained 
from the other by applying a finite number of elementary transformations. If A and B are 
similar or equivalent, we denote this by A B∼ .

In other words A B∼  if there exist finite number of matrices B B B Bn1 2, , ,… =  such that

A B B B B B B
f f f f

n
f

n
n1 2 3 4

1 2 3 1¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾ =-	

where f f fn1 2, , , …  are some elementary transformations. We assume the validity of the following theorem without 
going to the intracacies of the proof.

THEOREM 8.23 Being similar is an equivalence relation on the class of all matrices, that is, for any matrices A, B 
and C, the following hold:
1. A A∼
2. A B B C A C∼ ∼ ∼and Þ
3. A B B A∼ ∼Þ
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(1) Let A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

3 5 9

2 6 4

1 2 3

.  Then

A
C C C3 3 13

3 5 0

2 6 2

1 4 0

® -¾ ®¾¾¾¾ -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

 

R R R

R R R

2 2 1

2 2 3

3 5 0

1 1 2

1 4 0

3 5 0

0 5 2

1 4 0

®

®

-

+

¾ ®¾¾¾ - -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾ -
é

ëë

ê
ê
ê

ù

û

ú
ú
ú

 
R R R

R R R

1 1 3

3 3 1

2 1 0

0 5 2

1 4 0

2 1 0

0 5 2

3 2

2

®

®

-

-

¾ ®¾¾¾ -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾¾ -
- 00

2 1 0

0 0 2

3 2 0

2 2 3
5

2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾¾ -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+C C C

B
®

( )say

Therefore A B∼ .

(2) I
R R R

3

3

1 0 0

0 1 0

0 0 1

1 0 0

3 1 0

0 0 1

2 2 1=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾¾
é

ë

ê
ê
ê

ù

û

ú
ú
ú

® +

C C C

R R R

3 3 1

3 3 2

4

2

1 0 4

3 1 12

0 0 1

1 0 4

3 1 12

6

® +

® +

¾ ®¾¾¾¾
é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾¾
22 25

7 2 29

3 1 12

6 2 25

1 1 3

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=® +R R R
A, say.

Therefore I A3 ∼ .

(3) Consider

A
R R R=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾
é

ë

ê
ê
ê

ù

û

ú
ú
ú

® -
7 2 29

3 1 12

6 2 25

1 0 4

3 1 12

6 2 25

1 1 3

RR R R

C C C

3 3 2

3 3 1

2

4

1 0 4

3 1 12

0 0 1

1 0 0

3 1 0

0

® -

® -

¾ ®¾¾¾¾
é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾¾
00 1

1 0 0

0 1 0

0 0 1

2 2 13

3

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾¾
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=® -R R R
I

Therefore A I∼ 3.

Examples

DEFINITION 8.27  A square matrix A of order n is said to be invertible or non-singular if there exists a square 
matrix B of order n such that

AB I BAn= =

where In is the identity matrix of order n, B is called inverse of A and is denoted by A–1.

THEOREM 8.24

PROOF

For any n n´  matrix A, there is atmost one inverse of A.

Suppose that B and C are inverses of A. Then AB I BA AC I CAn n= = = =and .  Now,

B I B CA B C AB CI Cn n= = = = =( ) ( )

Therefore B = C or there is atmost one inverse of A. ■
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Let

A B=
-

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
- -
- -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 1 3

5 3 1

3 2 3

7 9 10

12 15 17

1 1 1

and

Then

AB

=

- + - - - + - - × + -
+ ×

- -

[ ( ) ( )( ) [ ( ) ( )( ) [ ( )

]

[( )(

2 7 1 12 2 9 1 15 2 10 1 17

3 1

5 7)) ( )

]

[( )( ) ( )

( )]

[( )

]

[(

+ -

+ ×

- - + -

+ -

- × + ×
+ ×

-

3 12

3 1

5 9 3 15

3 1

5 10 3 17

1 1

33 7 2 12

1 1

3 9 2 15

1 1

3 10 2 17

3

)( ) ( )

]

[( )( ) ( )

( )]

[( )- + -

+ ×

- - + -

+ -

- × + ×
+ ×11 1 1 3 1] ] ( )]+ × + -

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
1 0 0

0 1 0

0 0 1

3I

Similarly, BA I AB= =3 .  Therefore A is invertible and 
A–1 = B.

Example

Before going to find an algorithm to find the inverse, if it exists, of a square matrix, we have the following.

THEOREM 8.25

PROOF

Let A and B be square matrices of the same order.

1. For any elementary row transformation f,

f AB f A B( ) ( )=

2. For any elementary column transformation g

g AB A g B( ) ( )= ×

1. By part (1) of Theorem 8.22, we have

f AB E AB EA B f A B( ) ( ) ( ) ( )= = =

where E f I= ( ).

2. Again by part (2) of Theorem 8.22, we have

g AB AB E A BE Ag B( ) ( ) ( ) ( )= = =

where E g I= ( ) ■

THEOREM 8.26

PROOF

Let A and B be invertible square matrices of the same order. Then AB is invertible and

( )AB B A- - -= ×1 1 1

We have A A I A A BB I B B× = = × = =- - - -1 1 1 1and . Now

and 

( )( ) ( )

( )( ) ( )

AB B A A BB A AIA AA I

B A AB B A A

- - - - - -

- - - -

= = = =

=

1 1 1 1 1 1

1 1 1 1 BB B IB B B I= = =- -1 1  

and hence AB is invertible and ( ) .AB B A- - -=1 1 1  ■

In the following, we prove that, for any invertible matrix, the operations of taking transpose and inverse commute with 
each other.



Chapter 8  Matrices, Determinants and System of Equations390

THEOREM 8.27

PROOF

A square matrix A is invertible if and only if its transpose is invertible and, in this case

( ) ( )A AT T- -=1 1

That is, the transpose of the inverse of A is the inverse of transpose of A.

Suppose that A is invertible. Then

A A I A A× = = ×- -1 1

Taking transposes, we get

( ) ( ) ( ) ( )A A AA I I A A A A- - - -= = = = = ×1 1 1 1T T T T T T T

Therefore, AT is invertible and its inverse is ( )A-1 T and therefore ( ) ( ) .A AT T- -=1 1  The converse 
follows from the facts that ( ) ( ) .A A A AT T and= =- -1 1  ■

THEOREM 8.28

PROOF

Every elementary matrix is invertible.

First recall, from the discussion made after Definition 8.24, that any elementary row (or 
column) transformation has an inverse which is again an elementary row (respectively column) 
 transformation. If E is an elementary matrix of order n ´ n, then

E f I= ( )

for a suitable elementary row (or column) transformation f, where I is the identity matrix of order n.
Then f -1  is also an elementary row (or column) transformation. Let

F f I= -1( )

Suppose that f is an elementary row transformation. Then, by part (1) of Theorem 8.25, we have

and 

E F f I F f IF f F f f I I

FE f I E f IE f E

× = = = = =

= = = =

-

- - -

( ) ( ) ( ) ( ( ))

( ) ( ) ( )

1

1 1 1 ff f I I- =1( ( ))

If f is a column transformation, again by part (2) of Theorem 8.25, we have

and 

E F E f I f EI f E f f I I

F E F f I f FI f

× = × = = = =

× = × = =

- - - -1 1 1 1( ) ( ) ( ) ( ( ))

( ) ( ) (FF f f I I) ( ( ))= =-1

Thus EF I FE= =  and hence E is invertible and F is the inverse of E. ■

THEOREM 8.29

PROOF

Let A be an invertible matrix. Then in each row (and in each column) there is atleast one non-zero entry.

Let A a A bij ij= =-( ) ( ).and 1  Then, for each i, the ith diagonal entry (i.e., iith entry) in A A I× =-1( ) 
is 1 and hence

1
1

=
=

åa air ri
r

n

Therefore air ¹ 0  for some r (otherwise, the above sum becomes 0). Similarly, for each j,

 arj ¹ 0 for some r ■

THEOREM 8.30

PROOF

Let A be a square matrix of order n. Then A is invertible if and only if A and In are similar.

Suppose that A and In are similar. Then there exist finite number of matrices B B B Im n1 2, , ,… =  
such that

A B B B B I
f f f f

m

f

m n
m m1 2 3 1

1 2 1¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾¾ ¾ ®¾ =-
-	
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where each fi is either an elementary row transformation or an elementary column  transformation. 
Then, by Theorem 8.22,

B R B B B Ci i i i= =- -1 1or

for each i, where R is an elementary row matrix or C is an elementary column matrix, according 
as whether fi is a row transformation or column transformation, respectively. Therefore, there 
exists elementary row matrices R R Rs1 2, , ,…  and elementary column matrices C C Ct1 2, , ,…  such 
that

I R R R A C C C s t mn s t= + =( ) ( ),1 2 1 2	 	

Put R R R R C C C Cs t= =1 2 1 2	 	and . Then, by Theorems 8.28 and 8.26, R and C are invertible 
matrices and I RACn = .  Hence

A R I C R C CRn= = =- - - - -1 1 1 1 1( )

Thus, A is invertible.
Conversely, suppose that A is invertible and let A aij= ( ). If a11 0= , then some entry, say ai1 

in the first column of A, is non-zero and we interchange the first row and ith row, by apply-
ing the row transformation R Ri1 « ,  to get a matrix whose (1-1)th entry is not zero. Then, by 
applying the transformation R a R1 11 11® ( / ) ,  we get a matrix whose (1-1)th entry is 1. Then apply 
R R a R R R a R R R a Rn n n2 2 21 1 3 3 31 1 1 1® - ® - ® -, , ,…  successively to get a matrix whose (1-1)th
entry is 1 and the other entries in the first column are zeroes. Next, in the resulting matrix, consider 
second diagonal element (i.e., (2-2)th entry). For some r ar³ ¹2 02,  (see the following remark) 
and then exchange the rth row with the second row. (2-2)th entry is not zero. Make it 1 by applying 
a row transformation and then make ar2 0=  for all r ¹ 2. Now take up (3-3)th element and make 
it 1 and other r3th elements ( )r ¹ 3  zeroes. We can continue the process until we get In. We thus 
have a sequence

A A A A A I
f f f

m n
1 2 3

1 2 3¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾ =	

of elementary row operations. Therefore A and In are similar. ■

The reader is advised to go through Examples 8.19 and 8.20 to get a better understanding of the above proof.

Remark: Let A aij= ( )  be an n ´ n invertible matrix and 1 £ £r n  satisfying the following:

a i r

a i n i j r
ii

ij

= <
= £ £ ¹ <

1

0 1

for all

for all and,

Then there exists i r³  such that air ¹ 0. For, suppose that air = 0  for all i r³ .  Consider

A A A A
C C a C C C a C

r

C C ar r r r r r r r r® - ® -
-

® -
¾ ®¾¾¾¾ ¾ ®¾¾¾¾ ¾ ®¾ ¾ ®¾1 1 2 2

1 2 1	 -- -¾ ®¾¾¾¾¾1 1, r rC

rA

Now A and Ar are similar and hence Ar is similar to In so that Ar is also invertible. But the rth column of Ar contains 
only zeroes, which is a contradiction to Theorem 8.29. Therefore air ¹ 0  for some i r³ .

COROLLARY 8.3

PROOF

Let A and B be similar square matrices of the same order. Then A is invertible if and only B is 
invertible.

Since A B∼ , we have A I B In n∼ ∼Û .  Now, we can use the above theorem to get the required 
result. ■

Note that, in the second part of the proof of Theorem 8.30, we have reduced a given invertible matrix to In by using 
 certain row transformations only. A similar procedure can be followed using the column transformations only. 
Therefore, we have the following.
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COROLLARY 8.4 Any invertible matrix can be expressed as a product of finite number of elementary row matrices 
as well as a product of finite number of elementary column matrices.

Example     8.19   

Consider the matrix

2 3 1

3 4 5

5 2 1

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Reduce it to I3 using elementary row transformations.

Solution: We have

A
R R

= -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾ -
- -

é

ë

ê
ê
ê
ê

ù

û

2 3 1

3 4 5

5 2 1

1
3

2

1

2

3 4 5

5 2 1

1 1
1

2
® úú

ú
ú
ú

¾ ®¾¾¾¾

- -

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

+

+

R R R

R R

2 2 1

3 3

3

5

1
3

2

1

2

0
17

2

13

2

5 2 1

®

® RR

R R

1

2 2

1
3

2

1

2

0
17

2

13

2

0
11

2

7

2

2

17

¾ ®¾¾¾¾

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

¾ ®¾¾¾
®

11
3

2

1

2

0 1
13

17

0
11

2

7

2

1 0
22

3

1 1 2
3

2

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

¾ ®¾¾¾¾

-

-R R R®

44

0 1
13

17

0
11

2

7

2

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

R R R3 3 2
11

2

1 0
22

34

0 1
13

17

0 0
24

34

1 0

® -

¾ ®¾¾¾¾

-

-

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

=

--

-

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

¾ ®¾¾¾

-

11

17

0 1
13

17

0 0
12

17

1 0
11

17

3 3
17

2
R R®-

00 1
13

17

0 0 1

1 0
11

17

0 1 0

0 0 1

2 2 3
13

17

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

¾ ®¾¾¾¾

-é

-R R R®

ëë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

¾ ®¾¾¾¾
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+R R R

I
1 1 3

11

17

3

1 0 0

0 1 0

0 0 1

®

Example     8.20   

Reduce the matrix given in Example 8.19 to I3 using 
column transformations only.

Solution: We have

A
C C

= -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾ -
- -

é

ë

ê
ê
ê
ê

ù

û

2 3 1

3 4 5

5 2 1

1
3

2

1

2

3 4 5

5 2 1

1 1
1

2
® úú

ú
ú
ú
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C C C2 2 1
3

2

1 0
1

2

3
17

2
5

5
11

2
1

® -

¾ ®¾¾¾¾ -

-

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

C C C

C C

3 3 1

2 2

1

2

2

17

1 0 0

3
17

2

13

2

5
11

2

7

2

®

®

-

¾ ®¾¾¾¾ -

-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

¾¾ ®¾¾¾ -

-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

¾ ®¾¾¾¾
® +

1 0 0

3 1
13

2

5
11

17

7

2

1 0 0

0
1 1 23C C C

11
13

2

52

17

11

17

7

2
-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

C C C

C

3 3 2

3

13

2

34

2

1 0 0

0 1 0

52

17

11

17

24

34

® -

®-

¾ ®¾¾¾¾

-
-

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

44
3

1 0 0

0 1 0

52

17

11

17
1

C

¾ ®¾¾¾

-

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

C C C

C C C

2 2 3

1 1 3

11

17

52

17

1 0 0

0 1 0

52

17
0 1

® -

® +

¾ ®¾¾¾¾
-

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

¾ ®®¾¾¾¾
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
1 0 0

0 1 0

0 0 1

3I

In the above discussion, we have given a procedure to reduce an invertible matrix into the identity matrix using only 
the row transformations (only the column transformations). This can be used as an algorithm to find the inverse of a 
given invertible matrix.

8.1.1  Algorithm to Find Inverse Using Only the Row Transformations (Gauss–Jordan Method)

Let A be an invertible matrix of order n ´ n. Then we get matrices A A A Is n1 2, , ,… =  and elementary row transforma-
tions f f fs1 2, , ,…  such that

A A A A A I
f f f f

s

f

s n
s s1 2 3 1

1 2 1¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾ =-
-	

Then I A f A f f A f f f An s s s s s s s s= = = × =- - - -( ) ( )( ) ( )( ).1 1 2 1 1	 	  If R R Rs1 2, , ,…  are elementary row matrices correspond-
ing to f f fs1 2, , , ,…  respectively, then

I R R R An s s= × ×-1 1	

and therefore R R Rs s-1 1	  is the inverse of A. Note that this is same as f I f I f Is s( ) ( ) ( ).-1 1	
This procedure can be easily remembered by the following method. Consider the equation

A I An=

Apply successively f f fs1 2, , ,…  to get

f A f IA f I A

f f A f f I A f f I A

I f fs

1 1 1

2 1 2 1 2 1

( ) ( ) ( )

( ( )) ( ( ) ) ( ( ))

(

= =
= = ×

=
�

ss s sf A f f f f I A- -= ×1 1 1 2 1	 	)( ) ( )( )

Therefore ( )( )f f f f Is s-1 2 1	  is the inverse of A.
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Example     8.21   

Find the inverse of the matrix

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 2

1 2 3

3 1 1

by using elementary row transformations.

Solution: We have A IA= . That is

0 1 2

1 2 3

3 1 1

1 0 0

0 1 0

0 0 1

1 2 3

0 1 2

3 1 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú

A

úú
=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

0 1 0

1 0 0

0 0 1

1 2 3

0 1 2

0 5 8

0 1 0

1

1 2A R R( )by «

00 0

0 3 1

3

1 0 1

0 1 2

0 5 8

2 1 0

3 3 1

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-

-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

A R R R( )by ®

11 0 0

0 3 1

2

1 0 1

0 1 2

0 0 2

2 1 0

1

1 1 2

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-

-é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

A R R R( )by ®

00 0

5 3 1

53 3 2

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

+A R R R( )by ®

1 0 1

0 1 2

0 0 1

2 1 0

1 0 0

5

2

3

2

1

2

1

2
3 3

-é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

æA R Rby ®
èèç

ö
ø÷

-é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-
- -

-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 1

0 1 0

0 0 1

2 1 0

4 3 1

5

2

3

2

1

2

A (byy R R R2 2 32

1 0 0

0 1 0

0 0 1

1

2

1

2

1

2

4 3 1

5

2

3

2

1

2

® -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

-

- -

-

é

ë

ê
ê
ê
ê
ê

)

ùù

û

ú
ú
ú
ú
ú

-A R R R( )by 1 1 3®

Therefore

A- =

-

- -

-

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1

1

2

1

2

1

2

4 3 1

5

2

3

2

1

2

8.1.2 Algorithm to Find Inverse Using Only the Column Transformations
Let A be an invertible matrix of order n ´ n. Then by Corollary 8.4, we get matrices B B B Ir n1 2, , ,… =  and elementary 
column transformations g g gr1 2, , ,…  such that

A B B B B B I
g g g g g

r

g

r n
r r1 2 3 4 1

1 2 3 1¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾ ¾ ®¾¾ ¾ ®¾ =-

-	

Then I B g B g g B g g g An r r r r r r r r= = = = =- - - -( ) ( ( )) ( )( ).1 1 2 1 1	 	  If C C Cr1 2, , ,…  are elementary column matrices corre-
sponding to g g gr1 2, , ,…  respectively, then

B g B g B I B g I B Ci i i i i i i i i= = × = =- - - -( ) ( ) ( )1 1 1 1

for all 1 0£ £ = =i r I I B An( ).where and  Therefore

I B B C B C C AC C Cr r r r r r= = = = =- - -1 2 1 1 2	 	

and hence C C Cr1 2 	  is the inverse of A. This procedure can be easily remembered as follows. Let us consider the 
equation

A AI=
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Apply g g gr1 2, , ,…  successively to get

g A Ag I AC AC I1 1 1 1( ) ( )= = =

g g A AC g I AC C AC C I

I g g g A AC C Cr r r

2 1 1 2 1 2 1 2

1 1 1 2

( ( )) ( )

( )

= = =

= =-

�
	 	

and hence C C Cr1 2 	  is the inverse of A.

Example     8.22   

Find the inverse of the matrix given in Example 8.21 by 
using elementary column transformations.

Solution: We have A = AI where

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 2

1 2 3

3 1 1

So we have

0 1 2

1 2 3

3 1 1

1 0 0

0 1 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

A

 by

 

1 0 2

2 1 3

1 3 1

0 1 0

1 0 0

0 0 1

1 0 0

2 1 1

1 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

«

-

A C C( )

11 3 1

0 1 0

1 0 2

0 0 1

2

1 0 0

0 1 1

3 3 1

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

® -

-

A C C C( )by

 

-- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

-
é

ë

ê
ê
ê

ù

û

ú
ú
ú

® -
5 3 1

2 1 0

1 0 2

0 0 1

2

1 0 0

0 1

1 1 2A C C C( )by

 00

5 3 2

2 1 1

1 0 2

0 0 1

3 3 2

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

-
é

ë

ê
ê
ê

ù

û

ú
ú
ú

+A C C C( )by ®

 by

1 0 0

0 1 0

5 3 1

2 1
1

2

1 0 1

0 0
1

2

1

2
3

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

-

-

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

A C C® 33

1 0 0

0 1 0

5 0 1

2
1

2

1

2

1 3 1

0
3

2

1

2

æ
èç

ö
ø÷

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

- -

-

-

é

ë

ê
ê
ê
ê
ê

ù

û

ú

 A
úú
ú
ú
ú

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

-

- -

-

( )by C C C

A

2 2 33

1 0 0

0 1 0

0 0 1

1

2

1

2

1

2

4 3 1

5

2

3

2

1

2

®

éé

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

+( )by C C C1 1 35®

Therefore

A- =

-

- -

-

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1

1

2

1

2

1

2

4 3 1

5

2

3

2

1

2

The process of finding the inverse of A by the elementary column transformations, as demonstrated in Example 8.22, 
is abstracted in the following.

8.2 | Determinants

Let us recall that a system of two equations in two unknowns, for example,

a x a x b

a x a x b
11 1 12 2 1

21 1 22 2 2

+ =
+ =

has a unique solution if a a a a11 22 21 12 0- ¹ . This system of equations can be expressed in matrix form as

a a

a a

x

x

b

b
11 12

21 22

1

2

1

2

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú
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If the 2 2´  matrix on the left side is invertible, then we can multiply the above matrix equation by the inverse of this 
matrix on the left side to get that

x

x

a a

a a

b

b
1

2

11 12

21 22

1

1

2

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

-

The existence of the inverse of this 2 2´  matrix depends on whether the number a a a a11 22 21 12-  is non-zero. This number 
is known as the determinant of the matrix. In this section, we shall define the concept of the determinant of any square 
matrix and study its properties. As usual we take matrices over real or complex numbers only.

DEFINITION 8.28  Let A be a square matrix of order n n´ . Then the determinant of A, which is denoted by | |A  
or det A, is defined inductively as follows.

1. If A is a 1 ´ 1 matrix, say A a= [ ],11  then

det A a= 11

2. If A is a 2 2´  matrix, say 

A
a a

a a
=

é

ë
ê

ù

û
ú

11 12

21 22

  then we define

det A a a a a= -11 22 21 12

3. If A is a 3 3´  matrix, say 

A a

a a a

a a a

a a a
ij= =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

( )

11 12 13

21 22 23

31 32 33

  then det A is defined as

a
a a

a a
a

a a

a a
a

a
11

22 23

32 33

12

21 23

31 33

13

2
det det det

é

ë
ê

ù

û
ú -

é

ë
ê

ù

û
ú + 11 22

31 32

a

a a
é

ë
ê

ù

û
ú

4. In general, let A aij= ( )  be an n n´  matrix, say

A

a a a a

a a a a

a a a a

n

n

n n n nn

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

11 12 13 1

21 22 23 2

1 2 3

	
	

� � � �
	

For any 1 £ £i j n, , let Bij  be the matrix of order ( ) ( )n n- ´ -1 1  obtained from A by 
deleting the ith row and jth column. Then determinant of A is given by

det ( ) det det det ( )A a B a B a B aj
j j

j

n
n= - = - + + -+

=

+å 1 11

1 1

1

11 11 12 12

1

1	 nn nBdet 1

Example     8.23   

Find the determinant of the following matrices:

(1) A =
é

ë
ê

ù

û
ú

1 2

3 4

(2) A = - -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 1 3

3 4 2

1 2 1
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Solution:

(1) For the given matrix, the determinant is

det A = × - × = - = -1 4 3 2 4 6 2

(2)  For the given matrix, the determinant can be calcu-
lated as

B B B11 12 13

4 2

2 1

3 2

1 1

3 4

1 2
=

-é

ë
ê

ù

û
ú =

- -
-

é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú, and

(B11 is obtained from A by deleting first row and 
first column, B12 is obtained by deleting first row and 

second column from A and B13 is obtained by delet-
ing first row and third column from A.) Now

det ( ) det ( ) det

( ) det

(

A a B a B

a B

= - + -

+ -
=

+ +

+

1 1

1

2

1 1

11 11

1 2

12 12

1 3

13 13

44 1 2 2 1 3 1 2 1

3 3 2 1 4

2 4 4 3 2

× - - - × - × - - -
+ - × - -

= + - - - +

( )) ( ( )( ))

( ( ) )

( ) ( ) 33 6 4

16 5 6 15

( )- +
= + - =

NOTATION 8.1 For a square matrix A aij= ( ),  we write |A| or |aij| also for the det A. For example, if

A =
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1

1 2 3

4 1 3

then

det | |A A=
- -

=
2 3 1

1 2 3

4 1 3

QUICK LOOK 

1. The determinant is defined only for a square matrix.

2.  For any square matrix A a i j nij= £ £( ) , ,and 1  let Bij 
be the matrix obtained from A by deleting the ith row 
and jth column in A. Then, it can be proved that

det ( ) det ( ) detA a B a Bi j
ij

j

n

ij
i j

ij
i

n

ij= - = -+

=

+

=
å å1 1

1 1

That is, the determinant will remain the same on 
expanding it along any row or any column.

3.  In particular, | | | |;A AT=  that is, the determinant of a 
square matrix A is same as that of its transpose.

Let 

A = - -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 1 3

3 4 2

1 2 1

Then

AT =
- -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1

1 4 2

3 2 1

and its determinant is given by

| | ( ) ( )AT = +2
4 2

2 1
3

1 2

3 1
1

1 4

3 2-
- - -

-

= +

= +
= = ( )

2 4 4 3 1 6 2 12

16 15 14

15

( ( )) ( ) ( )

| | [ ,

- - - - - -

-
A see part 2 Examplle 8 23. ]

Also, expanding det A along the second column of A we get 

( ) ( ) ( ) ( ) ( ) ( )

( )

- - - + - + + - - +
= - - +

+ + +1 1 3 2 1 4 2 3 1 2 4 9

5 20

1 2 2 2 2 3× × × × × ×
-- = =10 15 | |A

Again, expanding det A along the third row we get

( ) ( )( ) ( ) ( )

( ) ( )

- - - - + - - +

+ - +
= - +

+ +

+

1 1 2 12 1 2 4 9

1 1 8 3

14 10

3 1 3 2

3 3

× ×

× ×
111 15= = | |A

The reader can check that det A AT = - =40 det  [part (3),

Example 8.23].

Example
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8.2.1 Evaluation of the Determinant of a 3 ¥ 3 Matrix (Sarrus Diagram)

Let 

A a

a a a

a a a

a a a
ij= =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

( )

11 12 13

21 22 23

31 32 33

Then

| | ( ) ( ) (A a a a a a a a a a a a a a a a= - - - + -11 22 33 32 23 12 21 33 31 23 13 21 32 31 222

11 22 23 12 31 23 13 21 32 11 32 23 12 21 33 13

)

(= + + - + +a a a a a a a a a a a a a a a a aa a31 22 )

There is an easy of way of remembering this to evaluate the determinant of A. Write down the columns of the matrix A.
Write down the first and the second columns on the right side and draw broken lines as shown in Figure 8.2. Put + sign 
before the products of the triplets on the downward arrows and – sign before the products of the triplets on the upward 
arrows. The diagram in Figure 8.2 is called the Sarrus diagram.

a11

a21 a21 a23 a22

a32a32 a31a31 a33

a21

a11a12 a12a13

+, -

FIGURE 8.2 Sarrus diagram.

Example     8.24   

Let

A = -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

4 2 3

1 3 0

2 5 2

Find the determinant of A by using the Sarrus diagram.

Solution:
4

1 -3 0 -3

55 -2-2 2

1

42 23

FIGURE 8.3 Sarrus diagram for Example 8.24.

From Figure 8.3 we have

| | ( ) ( )

( )( )

A = - + × - + × ×
- - - - × × - × ×

= - + + -

4 3 2 2 0 2 3 1 5

2 3 3 5 0 4 2 1 2

24 0 15 18 -- - = -0 4 31

In the following theorems, we state certain properties of determinants of matrices. The reader is advised to assume 
these for the present and verify these in simpler cases of 2 2 3´ ´and 3  matrices. Let us begin with the following 
definition.

DEFINITION 8.29  Let A aij= ( )  be a square matrix of order n n´ . For any 1 £ £i j n Mij, , let  be the determinant 
of the ( ) ( )n n- ´ -1 1  matrix obtained from A by deleting the ith row and jth column in A. 
Note that the ith row is one in which aij occurs and the jth column is one in which aij occurs. 
Then Mij is called the minor of aij. There will be n2 number of minors corresponding to an 
n n´  matrix, for each entry in the matrix. If A is 3 3´  matrix then there will be 9 minors 
associated with A.
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Example     8.25   

Find the minors M11, M12 and M23 of the following matrix:

A =
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

4 3 2

5 1 3

2 0 4

Solution: The minors associated with the given matrix 
are:

M11

1 3

0 4
4=

-
= -

M

M

12

23

5 3

2 4
5 4 2 3 26

4 3

2 0
6

=
-

= - - × = -

= = -

( )

Try it out Find all the minors of the matrix A given in Example 8.25.

DEFINITION 8.30  Let A aij= ( )  be an n n´  matrix. For any 1 £ £i j n,  the cofactor of aij is defined by ( ) ,- +1 i j
ijM

where Mij is the minor of aij; that is, the determinant of the ( ) ( )n n- ´ -1 1  matrix obtained 
from A by deleting the ith row and jth column in A, multiplied by ( ) .- +1 i j  The cofactor of aij 
is denoted by Aij and is given by

Cofactor of a A Mij ij
i j

ij= = - +( )1

8.2.2 Formula for Determinant in Cofactors

Let A aij= ( )  be an n n´  matrix. Then

det | |A A a A i n

a A j n

ij ij
j

n

ij ij
i

n

= = £ £

= £ £

=

=

å

å

1

1

1

1

for any

for any

That is,

| |A a A a A a A a A a A a An n n n= + + + = + + +11 11 12 12 1 1 11 11 21 21 2 2	 	

Example     8.26   

Find the cofactors of the following matrices:

(1) A =
é

ë
ê

ù

û
ú

3 2

1 4

(2) A =
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1

4 2 6

1 0 3

Solution: 

(1) For the given matrix, the cofactors are

A A

A A
11

1 1

12

1 2

21

2 1

22

2

1 4 4 1 1 1

1 2 2 1

= - = = - × = -
= - × = - = -

+ +

+ +

( ) ; ( )

( ) ; ( ) 22 3 3× =

(2) For the given matrix, the cofactors are

A A

A

11

1 1

12

1 2

13

1 3

1
2 6

0 3
6 1

4 6

1 3
6

1
4 2

1 0
2

= -
-

= - = -
- -

=

= -
-

=

+ +

+

( ) ; ( )

( ) ; AA

A A

21

2 1

22

2 2

23

2 3

1
3 1

0 3
9

1
2 1

1 3
5 1

2 3

1 0

= -
-

=

= -
- -

= - = -
-

= -

+

+ +

( )

( ) ; ( ) 33

1
3 1

2 6
16 1

2 1

4 6
8

1
2 3

4 2
8

31

3 1

32

3 2

33

3 3

A A

A

= - = = - = -

= - = -

+ +

+

( ) ; ( )

( )
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THEOREM 8.31

PROOF

Let A aij= ( )  be an n n´  matrix. Let B be the matrix obtained by interchanging two rows (or column) 
in A. Then | | | |.B A= -

We shall verify the theorem in special case when n = 3. Let

A

a a a

a a a

a a a

B

a a a

a a=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
11 12 13

21 22 23

31 32 33

31 32 33

21 2and 22 23

11 12 13

a

a a a

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Now B is obtained from A by applying the fundamental row transformation R R1 3« .  Then

| | ( ) ( ) (B a a a a a a a a a a a a a a a= - - - + -31 22 13 12 23 32 21 13 11 23 33 21 12 11 222

31 22 13 31 12 23 32 21 13 32 11 23 33 21 12 33

)

= - - + + -a a a a a a a a a a a a a a a a a111 22

11 22 33 32 23 12 21 33 31 23 13 21 32

a

a a a a a a a a a a a a a a= - - + - - -( ) ( ) ( 331 22a

A

)

| |= -

Similar proof works for interchanging two columns. ■

COROLLARY 8.5

PROOF

Let A be an n n´  matrix in which any two rows (or two columns) are identical. Then |A| = 0.

Let ith and kth rows in A be identical and B be the matrix obtained from A by interchanging the 

ith row and kth row, that is A B
R Ri k«

¾ ®¾¾ .  Then, by Theorem 8.31

| | | |A B= -

But, since the ith and kth rows are identical, A = B, and hence |A| = |B|. Therefore |A| = 0. Similarly 
when two columns are identical, | A | = 0. ■

(1) Let

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 3

3 1 4

1 2 3

 Then |A| = 0, since first and third rows in A are iden-
tical. We can check this, by actual evaluation of | A |:

| | ( ) ( ) ( )A = × - × - × - × + × - ×
= - - + =

1 1 3 2 4 2 3 3 1 4 3 3 2 1 1

5 10 15 0

(2) Let

A B=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 3 4

2 1 3

3 4 2

4 3 1

3 1 2

2 4 3

and

Then A B
C C1 3«

¾ ®¾¾ .  We have

| | ( ) ( ) ( )

| | (

A

B

= × - × - × - × + × - ×
= - + + =
= ×

1 1 2 4 3 3 2 2 3 3 4 2 4 3 1

10 15 20 25

4 1 3 -- × - × - × + × - ×
= - - + = -

4 2 3 3 3 2 2 1 3 4 2 1

20 15 10 25

) ( ) ( )

Therefore |A| = -|B|.

Examples

THEOREM 8.32 Let A = (aij) be a square matrix of order n ´ n and s a scalar (i.e., s is a real or complex number). 
Let B be the matrix obtained from A by multiplying all the entries in a row (or a column) by s. 
That is, for some 1 £ k £ n, if

A B A B
R sR C sCk k k k® ®

¾ ®¾¾¾ ¾ ®¾¾¾or

then | B | = s | A |.
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PROOF Suppose that A B
R sRk k®

¾ ®¾¾¾ .  Let us evaluate the determinant of B along the kth row of B. Note 
that, for any 1 £ j £ n, the kjth cofactor of B (i.e., the cofactor of the kjth entry in B) is same as that 
of A. Now,

 

| |

| |

B s a B

s a A

s a A s A

kj kj
j

n

kj kj
j

n

kj kj
j

n

= ×

= ×

= ×
æ

èç
ö

ø÷
=

=

=

=

å

å

å

1

1

1

 
■

Example     8.27   

Let

A A B
R R

= -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾
®

4 3 2

1 2 3

2 1 1

2 24
and

Find B, |A|, |B| and s such that |B| = s|A|.

Solution: By hypothesis we get

B = -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

4 3 2

4 8 12

2 1 1

Now

| | [ ( ) ( )] [ ( )

( )( )] [ ( ) ]

A = - - - - -
- - - + - -
4 2 1 1 3 3 1 1

2 3 2 1 1 2 2×

= - + - - - + +
= + + =
= - - - -

4 2 3 3 1 6 2 1 4

4 21 10 35

4 8 1 1 12 3 4

( ) ( ) ( )

[ ( ) ( )] [ (| |B --
- - - + - -

= - + - - - + +
= +

1

2 12 2 4 1 2 8

4 8 12 3 4 24 2 4 16

16

)

( )( )] [ ( ) ]

( ) ( ) ( )

×

884 40 140+ =

This gives

| |B A| |= = × =140 4 35 4

Therefore s = 4.

COROLLARY 8.6 For any square matrix A of order n ´ n and for any scalar s,

| sA | = sn | A | 

THEOREM 8.33

PROOF

Let A = (aij) be a square matrix of order n ´ n. For a fixed k, let each entry in the kth row of A be 
a sum of two terms bkj and ckj, that is,

akj = bkj + ckj for each 1 £ j £ n

Let B = (bij) and C = (cij), where

bij = aij = cij  for all i ¹ k

Then |A| = |B| + |C|.

Without loss of generality we can assume that k = 1 we are given that

A

b c b c b c

a a a

a a a

n n

n

n n nn

=

+ + +é

ë

ê
ê
ê
ê

ù

û

ú
ú

11 11 12 12 1 1

21 22 2

1 2

	
	

� � 	 �
	

úú
ú
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B

b b b

a a a

a a a

C

c c c

n

n

n n nn

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

11 12 1

21 22 2

1 2

11 12

	
	

� � 	 �
	

	 11

21 22 2

1 2

n

n

n n nn

a a a

a a a

	

� � 	 �
	

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Let us evaluate the determinants along the first rows. Note that, for any 1 £ j £ n,  A1j = B1j = C1j , 
that is,

(1j)th cofactor of A = (1j)th cofactor of B = (1j)th cofactor of C

Therefore

 

| | ( )A b c A

b A c A

b B

j j j
j

n

j j
j

n

j j
j

n

j j
j

n

= +

= +

= +

=

= =

=

å

å å

å

1 1 1

1

1 1

1

1 1

1

1 1

1

cc C

B C

j j
j

n

1 1

1=
å

= +| | | |  ■

Try it out
Let

A =
+ + +

-
- - -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 4 5 1 3

2 6 4

3 4 2

Show that

| |A = -
- - -

+ -
- - -

2 4 1

2 6 4

3 4 2

3 5 3

2 6 4

3 4 2

Also, verify that

2 3 4 5

1 2 3 6

4 5 2 1

2 4 5

1 3 6

4 2 1

3 4 5

2 3 6

5 2 1

+
+ -
+ -

= -
-

+ -
-

COROLLARY 8.7

PROOF

The value of the determinant of a matrix does not change when any row (or column) is multi-

plied by a scalar s and then added to any other row (or column); that is, if A 
R R sRi i k® +

¾ ®¾¾¾¾  B or 

A 
C C sCi i k® +

¾ ®¾¾¾¾  B, then | | | |.A B=

Let A B A a
R R sR

ij
1 1 3® +

¾ ®¾¾¾ =and ( ). Then
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B

a sa a sa a sa

a a a

a a a

a a a

n n

n

n

n n nn

=

+ + +11 31 12 32 1 3

21 22 2

31 32 3

1 2

	
	
	

� �

éé

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

By Theorem 8.33,

 

| |B

a a a

a a a

a a a

sa sa sa

a a an

n

n n nn

n

= +

11 12 1

21 22 2

1 2

31 32 3

21 22

	

	

� � �

	

	 22

31 32 3

1 2

31 32 3

21 22 2

31 3

n

n

n n nn

n

n

a a a

a a a

A s

a a a

a a a

a a

	

� � � �

�

	

	

= +| | 22 3

1 2

8 32

0

	

� � � �
	

∵

a

a a a

A s A

n

n n nn

( . )

| | | | (

by Theorem

the first a= + × = nnd third rows are identical)  ■

Example     8.28   

Let

A A B
R R R= -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¾ ®¾¾¾¾® +
4 3 2

2 1 3

1 2 5

2 2 13
and

Find out B and show that |B| = |A|.

Solution: By hypothesis we get B as

B = + × + × - + ×
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

4 3 2

2 3 4 1 3 3 3 3 2

1 2 5

4 3 2

14 10 3

1 2 5

Determinant of B is

| | ( . ) [ ( ) ] [ ( ) ]B = × - - × - - + × - -
= ´ - ´ + ´

4 10 5 2 3 3 14 5 1 3 2 14 2 1 10

4 44 3 73 2 388 33=

Now

| | [ ( )] [ ( )( )] [ ( ) ]A = × - - - × - - - + × - -
= ´ - ´ + ´

4 1 5 2 3 3 2 5 1 3 2 2 2 1 1

4 11 3 7 2 5 == 33

Therefore

|B| = |A|

Example     8.29   

Let A be a 3 ´ 3 matrix, in which each row is in geometric 
progression. That is,

A

a ar ar

b bs bs

c ct ct

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

2

2

2

Then show that | | ( )( )( ).A abc r s s t t r= - - -

Solution: We have

| |A a

r r

b bs bs

c ct ct

ab

r r

s s

c ct ct

abc

r r

s s

t t

= = =
1 1

1

1

1

1

2

2

2

2

2

2

2

2

2

= - -
- -

abc

r r

s r s r

t r t r

1

0

0

2

2 2

2 2

 

(applying R2 ® R2 − R1 
and R3 ® R3 − R1 and 
using Theorem 8.32)
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= - +
- -

= - -

abc s r

r r

s r

t r t r

abc s r t r

r

( ) ( . )

( )( )

1

0 1

0

8 32

1

2

2 2

by Theorem

rr

s r

t r

2

0 1

0 1

+
+

= - -
+
+

= - - + - +

= -

abc s r t r
s r

t r

abc s r t r t r s r

abc s r t

( )( )

( )( )[ ( )]

( )(

1

1

-- -

= - - -

r t s

abc r s s t t r

)( )

( )( )( )

Example     8.30   

Let a, b, c be in AP. Evaluate the determinant of

A

x x x a

x x x b

x x x c

=
+ + +
+ + +
+ + +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2

2 3

3 4

Solution: Since a, b, c are in AP, b – a = c – b or 2b = 
a + c. Let d be the common difference b – a = c – b. By first 
applying R R R R R R2 2 1 3 3 1® - ® -and then ,  we get

| |

(

A

x x x a

b a

c a

x x x a

d

d

=
+ + +

-
-

=
+ + +é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

1 2

1 1

2 2

2

1 2

1 1

1 1

0 since RR R2 3= )

Let us recall that, for any square matrix A = (aij), the ijth minor is defined as the determinant of the matrix obtained by 
deleting the ith row and the jth column from A. It is denoted by Mij. Also, the (ij)th cofactor is defined as (–1)i+jMij and 
is denoted by Aij. Further recall that the determinant of A is defined by

| | ( )A a A a Mij ij
j

n
i j

ij ij
j

n

= = -
=

+

=
å å

1 1

1

for any 1 £ i £ n and 1 £ j £ n.

DEFINITION 8.31  Let A = (aij) be a square matrix. Then adjoint of A is defined as the transpose of the matrix 
(Aij), where Aij is the ijth cofactor in A. The adjoint of A is denoted by adjoint A or adj A. The 
ijth entry in adj A is the jith cofactor in A.

Note that adj A is also a square matrix whose order is same as that of A.

Example     8.31   

Find adj A where A is given by

A = -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

4 3 2

3 1 2

1 2 4

Solution: The cofactors of A are

A A

A

11

1 1

12

1 2

13

1 3

1
1 2

2 4
0 1

3 2

1 4
14

1
3 1

1 2

= -
-
-

= = -
-

- -
=

= -
-

=

+ +

+

( ) ; ( )

( ) 77 1
3 2

2 4
16

1
4 2

1 4
14 1

4 3

21

2 1

22

2 2

23

2 3

; ( )

( ) ; ( )

A

A A

= -
-

=

= -
- -

= - = -
-

+

+ +

11 2
11= -

A A

A

31

3 1

32

3 2

33

3 3

1
3 2

1 2
8 1

4 2

3 2
14

1
4 3

3 1
5

= -
-

= - = -
-

=

= - = -

+ +

+

( ) ; ( )

( )

Therefore 

adj

T

A = - -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

-
- -

é

ë

ê
ê
ê

0 14 7

16 14 11

8 14 5

0 16 8

14 14 14

7 11 5

ùù

û

ú
ú
ú



8.2   Determinants 405

THEOREM 8.34

PROOF

Let A be a square matrix of order n. Then

A A A A A In× = × =( ) ( ) | |adj adj

Let A = (aij) and Aij  be the cofactor of aij. Then, it can be verified that, for any 1 £ i, k £ n,

a A
A i k

i kij
j

n

kj
=

å =
=
¹

ì
í
î1 0

| | if

if

We have

adj

T

A

A A A

A A A

A A A

A A
n

n

n n nn

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

11 12 1

21 22 2

1 2

11 2…
…

� � … �
…

11 31 1

12 22 32 2

1 2 3

A A

A A A A

A A A A

n

n

n n n nn

…
…

… … … … …
… … … … …

…

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
úú
ú
ú

Therefore

A A

A

A

A

A

× =

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=adj

| |

| |

| |

| |

|

0 0 0

0 0 0

0 0 0

0 0 0

…
…
…

� … … … …
…

AA In|×

Similarly, (adj A) × A = |A| × In. ■

Try it out Verify Theorem 8.34 by considering a 3 ´ 3 matrix.

COROLLARY 8.8

PROOF

A square matrix A is invertible if and only if the determinant |A| is non-zero and, in this case,

A
A

A- =1 1

| |
( )adj

If |A| = 0, then by Theorem 8.34, we have (adj A) × A = O, the zero matrix. Therefore, we cannot 
find a matrix B such that AB = In (otherwise adj A = O and A = O) and so A is not invertible. 
Conversely, if |A| ¹ 0, then 

1 1

| | | |A
A A I A

A
Anadj adj

æ
èç

ö
ø÷

× = = ×
æ
èç

ö
ø÷

Hence A is invertible and 

 
A

A
A- =1 1

| |
( )adj

 ■

Let us recall that an invertible matrix is also called a non-singular matrix. A matrix which is not invertible is called a 
singular matrix. From the above result, a matrix is non-singular if and only if its determinant is non-zero. The following 
theorem is stated without proof, as it is beyond the scope of this book. However, the reader can assume this and use 
it freely in any instance.
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THEOREM 8.35 For any square matrices A and B of the same order

| | | | | |AB A B=

That is, the determinant of the product is equal to the product of the determinants. ■

COROLLARY 8.9

PROOF

Let A and B be square matrices of the same order. Then the product AB is non-singular if and 
only if both A and B are non-singular.

Since |A| and |B| are real numbers, we have 

| | | | | | | | | |AB A B A B= ¹ Û ¹ ¹0 0 0and

and the result follows from Corollary 8.8. ■

COROLLARY 8.10

PROOF

A square matrix is non-singular if and only if its transpose is non-singular.

Let A be a square matrix and AT be its transpose. Then, we know that |A| = | AT| [see part (4), 
Quick Look 3]. Therefore A is non-singular if and only if AT is non-singular. ■

THEOREM 8.36

PROOF

Let A be a non-singular matrix. Then A is symmetric if and only if A-1 is symmetric.

Recall that a square matrix is called symmetric if it is equal to its transpose. By Theorem 8.27, we 
have (AT )-1 = (A-1 )T.  Therefore

 A is symmetric Û =A AT

Û = =- - -A A A1 1 1( ) ( )T T

 Û -A 1 is symmetric ■

THEOREM 8.37

PROOF

Let A be a skew-symmetric matrix of order n, where n is an odd integer. Then A is singular, that 
is, its determinant is zero and hence A is not invertible.

Since A is skew-symmetric, we have

AT  = -A

Therefore,

- = -| | ( ) | |A An1  (since n is odd)

= -

= =

| |

| | | |

A

A AT

and hence | A | + | A | = 0 so that | A | = 0. Therefore, A is singular and hence not invertible. ■

THEOREM 8.38

PROOF

Let A be a non-singular matrix of order n. Then

| adj A| = | A|n-1

and hence adj A is non-singular.

In Theorem 8.34, we have proved that

A A A In× =( ) | |adj

Note that | A|In is the scalar matrix, in which each of the diagonal entries is |A| and each of the 
non-diagonal entries is zero. Now, by Theorem 8.35,
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| | | | | ( )|

|| | |

| |

A A A A

A I

A
n

n

adj adj=
=

=

and, since | A| ¹ 0, it follows that

| adj A| = | A|n-1 ¹ 0 (since | A | ¹ 0)

and therefore adj A is non-singular. ■

Try it out 

Prove that | adj A| = | A |n-1 is also true, even if | A | = 0.

Hint: When | A | = 0, then | adj A| = 0.

THEOREM 8.39

PROOF

Let A be a non-singular matrix of order n, where n ³ 2. Then

adj adj( ) | |A A An= ×-2

Put B A= adj . By Theorem 8.34,

B B B I A In
n

n( ) | | | |adj = = -1

Therefore, 

A B B A A I A AI A An
n

n
n

n× = = =- - -( ) (| | ) | | ( ) | |adj 1 1 1

Also

| | ( ) ( ) ( )

( )

| |

A I B A A B

AB B

A A

n

n

adj adj adj

adj

= × ×
=

= -1

Therefore, adj adj adj( ) | | .A B A An= = ×-2  ■

THEOREM 8.40

PROOF

Let A be a non-singular matrix of order n and B and C any square matrices of order n. Then

AB AC B C

BA CA B C

= Þ =
= Þ =

( )

(

left cancellation law

right cancellation laaw)

We have

AB AC A AB A AC= Þ =- -1 1( ) ( )

 

Þ =

Þ =

Þ =

- -( ) ( )A A B A A C

I B I C

B C

n n

1 1

Similarly, by multiplying with A-1 on the right side, we get

 BA CA B C= Þ =  ■

THEOREM 8.41 Let A and B be non-singular matrices of same order n. Then

adj adj adj( ) ( )( )AB B A=
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PROOF Recall that AB is non-singular and ( ) .AB B A- - -=1 1 1  Now, consider

( )( )( ) ( )( )

(| | )( ) (

AB B A A B B A

A B I An

adj adj adj adj

adj by Theorem

= ×
= × 88 34. )

| | ( )( )

| | ( )

| || |

| || |

| |

=
= ×
=
=
=

B A I A

B A A

B A I

A B I

AB I

n

n

n

n

adj

adj

== ( )[ ( )] ( . )AB ABadj by Theorem 8 34

Since AB is non-singular, by Theorem 8.40, we get that

 ( )( ) ( )adj adj adjB A AB=  ■

THEOREM 8.42

PROOF

Let A be non-singular matrix of order n. Then 

(adj A)T = adj (AT)

That is, the transpose of the adjoint is the adjoint of the transpose.

Since | AT | = |A| ¹ 0, AT and A are both invertible. Consider

( ) ( )

(| | )

| |

| |

| |

( )

adj adj

adj

T T T

T

T

T

T

A A A A

A I

A I

A I

A I

A

n

n

n

n

× = ×

=

=
=

=

= × AAT

Therefore, by the right cancellation law,

 (adj A)T = adj (AT) ■

THEOREM 8.43

PROOF

Let A be a non-singular matrix of order n. Then A is symmetric if and only if adj A is symmetric.

We have

 A is symmetric Þ =A AT

Þ =

Þ =

Þ

adj( adj

adj adj

adj is symmetric

T

T

A A

A A

A

)

( )

Conversely,

adj A is symmetric Þ adj(adj is symmetricA)

 
Þ ×
Þ

-| |A A

A

n 2 is symmetric (by Theorem 8.39)

is symmetric
 

■

If B is symmetric, then s B is also symmetric for any non-zero scalar s. Recall that, for any real number s, the scalar 
matrix, in which each diagonal entry is s and each of the other entries is zero, is also denoted by s. By writing s A, we 
mean the product of the scalar matrix s with the matrix A. For example, if
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A = - -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 3 1

2 1 3

1 2 4

then 

s A

s

s

s

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

- -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 0

0 0

0 0

2 3 1

2 1 3

1 2 4

Also, s A is the matrix in which each entry is obtained by multiplying the corresponding entry in A with s. If A is a 
non-singular matrix of order n, then sA is also non-singular for any non-zero scalar s and | | | |,s A s An=  since the deter-
minant of a scalar matrix s is equal to sn. Infact, the determinant of a diagonal matrix or a triangular matrix is equal to 
the product of the diagonal entries.

THEOREM 8.44

PROOF

Let f (x) = a0 + a1 x + a2 x
2 + 	 + amxm be a polynomial in x, where a0, a1, a2, …, am are real numbers, 

such that a0 ¹ 0. If A is a non-singular matrix such that f (A) = 0, then

A
a

a a A a A a Am
m- -=

-
+ + + +1

0

1 2 3

2 11
( )	

Let A be a non-singular matrix and f (A) = 0. That is,

a a A a A a Am
m

0 1 2

2 1+ + + + =-	 0

By multiplying both sides with A-1, we get that

a A a AA a A A a A Am
m

0

1

1

1

2

2 1 1 0- - - -+ + + + × =	  

Therefore 

 A
a

a a A a A a Am
m- -=

-
+ + + +1

0

1 2 3

2 11
( )	  

■

Example     8.32   

Find real numbers a and b such that a + bA + A2 = O 
where

A =
é

ë
ê

ù

û
ú

3 2

1 1

Also find A–1.

Solution: First

A A A2
3 2

1 1

3 2

1 1

3 3 2 1 3 2 2 1

1 3 1 1 1 2 1 1

= =
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

=
× + × × + ×
× + × × + ×

é

ë

×

êê
ù

û
ú =

é

ë
ê

ù

û
ú

11 8

4 3

Now, suppose that a and b are real numbers such that

0

0

0

3 2 11 8

4 3

2= + +

=
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú

a bA A

a

a

b b

b b

=
+ + +

+ + +
é

ë
ê

ù

û
ú

a b b

b a b

3 11 2 8

4 3

Therefore,

a b b

b a b

+ + = + =
+ = + + =

3 11 0 2 8 0

4 0 3 0

;

;

Solving these we get b a= - =4 1and . Therefore

1 4 0

4 0

2

1 1 2 1

- + =

- + =- - -

A A

A AA A A

This gives the inverse as

A A- = - =
é

ë
ê

ù

û
ú -

é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú

1 4
4 0

0 4

3 2

1 1

1 2

1 3
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Example     8.33   

Find adj A, | A | and A-1 where

A =
é

ë
ê

ù

û
ú

3 2

1 1

Solution: For the given matrix, we have

| |A = × - × = ¹3 1 2 1 1 0

Therefore, A is non-singular. The cofactors for A are

A A

A A
11

1 1 1 2

21

2 1 2

1 1 1 1 1 1

1 2 2 1

= - × = = - × = -

= - × = - = -

+ +

+

( ) ; ( )

( ) ; ( )

12

22

++ × =2 3 3

Therefore, 

adj

T T

A
A A

A A
=

é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú

11 12

21 22

1 1

2 3

1 2

1 3

A
A

A- = =
-

-
é

ë
ê

ù

û
ú

1 1 1 2

1 3| |
( )adj

To find the inverse of a square matrix A, or to express A-1 in terms of A, the concept of a characteristic polynomial of 
a square matrix and the much known Cayley–Hamilton Theorem are useful, especially for 2 ´ 2 and 3 ´ 3 matrices. Let 
us begin with a definition.

DEFINITION 8.32  If A is a square matrix and I is the corresponding unit matrix, then the polynomial |A - xI| in 
x is called characteristic polynomial of A and the equation |A - xI | = 0 is called the character-
istic equation of the matrix A.

Example     8.34   

Find the characteristic polynomial and characteristic 
equation of

2 1

1 1-
é

ë
ê

ù

û
ú

Solution:
Let 

A =
-

é

ë
ê

ù

û
ú

2 1

1 1

so that 

| | ( )( )A xI
x

x
x x x x- =

-
- -

= - + - = - -
2 1

1 1
2 1 1 32  

is the characteristic polynomial of A and its  characteristic 
equation is 

x x2 3 0- - =

Example     8.35   

Find the characteristic polynomial and characteristic 
equation for A given by

A =
-

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 2

0 2 1

1 0 3

Solution: We have

| |A xI

x

x

x

- =
- -

-
- -

1 1 2

0 2 1

1 0 3

= - - - - + + + -
= - - - + -

=

( )[( )( ) ] ( ) ( )

( )( )( ) ( )

1 2 3 0 1 0 1 2 2

1 2 3 5 2

x x x x

x x x x

(( )( )1 6 5 5 2

6 13 11

2

3 2

- - + + -

= - + - +

x x x x

x x x

This is the characteristic polynomial of A and its charac-
teristic equation is x x x3 26 13 11 0- + - = .

The following theorem is stated without proof as it is not necessary for a student of plus two class. However, the 
 student can assume this and use it freely whenever it is needed.
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THEOREM 8.45 
(CAYLEY–

HAMILTON)

Every square matrix satisfies its characteristic equation; that is, if A is a square matrix of order 
n and 

f x A xI a a x a x a xn
n( ) | |= - = + + + + =0 1 2

2 0	

is its characteristic equation, then

f A a I a A a A a An n
n( ) = + + + + =0 1 2

2 0	

Also if a0 0¹ ,  then

A
a

a I a A a A a An
n- -=

-
+ + + +1

0

1 2 3

2 11
( )	

Note that A-1 exists if and only if the constant term of the characteristic of A is non-zero. ■

Example     8.36   

Show that the matrix A satisfies its characteristic equa-
tion and hence find A–1, where

A =
-

é

ë
ê

ù

û
ú

2 1

1 1

Solution: The characteristic equation of the given 
matrix is x x2 3 0- - =  (see Example 8.34). That is

f x x x( ) = - -2 3

Now

A2
2 1

1 1

2 1

1 1

5 1

1 2
=

-
é

ë
ê

ù

û
ú -

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

Also

f A A A( ) = - - =
é

ë
ê

ù

û
ú -

-
é

ë
ê

ù

û
ú +

-
-

é

ë
ê

ù

û
ú

=
- - - +

2 3
5 1

1 2

2 1

1 1

3 0

0 3

5 2 3 1 1 0

11 1 0 2 1 3

0 0

0 0- + + -
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

Therefore, A satisfies its characteristic equation and 

A A I A A I2 13
1

3
- = Þ = -- ( ) 

A few more examples of this type are discussed in worked-out problems. It is better for the reader to know few more 
kinds of matrices as discussed next.

DEFINITION 8.33  A square matrix A is called idempotent matrix if A2 = A.

Example     8.37   

Show that the matrix A is idempotent

A =
- -

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 2 4

1 3 4

1 2 3

Solution: By definition, a matrix is idempotent if A2 = A.
Now

A2

2 2 4

1 3 4

1 2 3

2 2 4

1 3 4

1 2 3

=
- -

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

- -
-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+ - - - + - - +

- - + + - + -
+ - - - + - - +

é

ë

ê
ê

4 2 4 4 6 8 8 8 12

2 3 4 2 9 8 4 12 12

2 2 3 2 6 6 4 8 9êê

ù

û

ú
ú
ú

=
- -

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
2 2 4

1 3 4

1 2 3

A

Therefore, A is an idempotent matrix.

DEFINITION 8.34  A square matrix A is called nilpotent matrix if there exists a positive integer m such that Am 
is a zero matrix. Among such positive integers m, the least positive one is called the index of 
the nilpotent matrix.



Chapter 8  Matrices, Determinants and System of Equations412

(1) 
0 1

0 0

é

ë
ê

ù

û
ú  is a nilpotent matrix of index 2.

(2) Every zero square matrix is a nilpotent matrix of 
index 1.

Examples

DEFINITION 8.35  A square matrix A is called involutary if A2 is equal to unit matrix of same order. Note that 
a square matrix A is involutary if and only if A-1 = A.

(1) 
0 1

1 0

é

ë
ê

ù

û
ú  is an involutary matrix.

(2) Every unit matrix is involutary.

Examples

DEFINITION 8.36  A square matrix A is said to be periodic matrix, if A Ak+ =1  for some positive integer k. If k 
is the least positive integer such that A Ak+ =1 ,  then k is called the period of A.

Example     8.38   

Show that A is periodic matrix and find its period.

A
i

i
i=

-
é

ë
ê

ù

û
ú = -

0

0
1(where )

Solution: For the given matrix we have

A
i

i

i

i
I2

2

0

0

0

0

1 0

0 1
=

-
é

ë
ê

ù

û
ú -

é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú = -

Therefore A I A A4

2

5= =and . Hence A is a periodic matrix 
of period 4.

8.3 | Solutions of Linear Equations

In this section, we shall apply the results on matrices and determinants in solving systems of linear equations. In 
 particular, we derive certain conditions on the coefficients for the system of equations to have a unique solution.

DEFINITION 8.37  An equation of the form

a x a x a x bn n1 1 2 2+ + + =	

where a a a bn1 2, , ,… and  are real numbers and x x xn1 2, , ,…  are unknowns, is called linear 
 equation in n unknowns. Also n linear equations in n unknowns of the form

a x a x a x b

a x a x a x b

a x a x

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2

+ + + =

+ + + =

+

	

	

	 	 	 	

22 + + =	 a x bnn n n

is a called a system of linear equations in n unknowns. The above system of linear equations 
can be expressed in the form of a matrix equation as

AX B=
where A the n ´ n matrix and X and B are the n ´ 1 matrices given by
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A

a a a

a a a

a a a

X

n

n

n n nn

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

11 12 1

21 22 2

1 2

	
	

	 	 	 	
	 	 	 	

	

, ==

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

x

x

x

B

b

b

bn n

1

2

1

2

�
�

�
�

and

Recall that AX is the product of the square matrix A of order n ´ n and the matrix X of order n ´ 1. Therefore both 
AX and B are n ´ 1 matrices. The equation AX = B means that the corresponding entries in the matrices AX and B 
are equal; that is, for each 1 £ i £ n,

a x a x a x bi i in n i1 1 2 2+ + + =	

A and B are given matrices and we have to find X satisfying AX = B.  The matrix A is called the coefficient matrix.

DEFINITION 8.38  Let AX = B be a system of n linear equations in n unknowns given by

a x a x a x b

a x a x a x b

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

+ + + =

+ + + =

	

	

												

													

	a x a x a x bn n nn n n1 1 2 2+ + + =

If b b bn1 2 0= = = =	 , then the system is called a system of homogenous linear equations. If 
atleast one bi ¹ 0,  then the system is called a non-homogenous system of linear equations.
A solution of the system AX = B is defined to be an n-tuple ( , , , )a a a1 2 … n  of real numbers 
which satisfy each of the above equations; that is,

a a a b i ni i in n i1 1 2 2 1a a a+ + + = £ £	 for all

DEFINITION 8.39  A system AX = B of linear equations is said to be consistent if there exists a solution for the 
system; otherwise the system is called inconsistent.

8.3.1 Crammer’s Rule

THEOREM 8.46 
(CRAMMER’S 

RULE)

PROOF

Let AX = B be a system of n linear equations in n unknowns. If A is a non-singular matrix, then 
the system is consistent and has a unique solution.

Let

a x a x a x b

a x a x a x b

n n

n n

11 1 12 2 1 1

21 2 22 2 2 2

+ + + =

+ + + =

	

	

												

													

	a x a x a x bn nn n n0 1 2 2+ + + =

be a system of linear equations. Let
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A

a a a

a a a

a a a

X

x

x

x

n

n

n n nn n

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

11 12 1

21 22 2

1 2

1

2

…
…

… … … …
…

�
,

éé

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

and B

b

b

bn

1

2

�

Then AX = B represents the given system of linear equations in n unknowns x1, x2, ¼, xn. Suppose 
that A is non-singular; that is, A has a multiplicative inverse A-1. Now,

X I X A A X A AX A Bn= = = =- - -( ) ( )1 1 1

and hence (x1,  x2, ¼, xn)  is a solution of AX = B. Further,

 X A B
A

A
B

A

A A A A

A A A A
n

n= =
æ
èç

ö
ø÷

=-1

11 21 31 1

12 22 32 21adj 

| | | |

…
…

� � � … �
AA A A A

b

b

bn n n nn n1 2 3

1

2

…
�

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

where Aij is the ijth cofactor of the matrix A. This implies

x
b A

A
x

b A

A
x

b A

A
i i

i

n
i i

i

n

n
i in

i

n

1
1

1

2
2

1 1

= = =
= = =
å å å

| |
,

| |
, ,

| |
…

One can observe that b Ak ikk

n

=å 1
 is the determinant of the matrix obtained from the matrix A 

by replacing its kth column with B. If we denote this determinant obtained by replacing the kth 

column of A by B with Dk, then

x
Ak

k=
D
| |

Thus

x
A

x
A

x
An

n
1

1
2

2=
D

=
D

=
D

| |
,

| |
, ,

| |
…

which shows that the solution X is unique because X = A-1 B always satisfies the equation 
AX = B. ■

Example     8.39   

Find the solution of the system of equations x y+ +
z x y z x y z= - + = + - =6 2 2 1, ,  using Crammer’s rule.

Solution: Here the coefficient matrix is given by 

A B X

x

y

z

= -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

1 1 1

2 1 1

6

2

1

and ,

Now

| | ( ) ( ) ( )A = - - - - + + = ¹1 1 1 1 1 2 1 1 2 6 0

Hence A is non-singular and the system will have unique 
solution. Also

D = -
-

= - - - - + + =1

6 1 1

2 1 1

1 1 1

6 1 1 1 2 1 1 2 1 6( ) ( ) ( )

D =
-

= - - - - - + - =2

1 6 1

1 2 1

2 1 1

1 2 1 6 1 2 1 1 4 12( ) ( ) ( )

D = - = - - - - + + =3

1 1 6

1 1 2

2 1 1

1 1 2 1 1 4 6 1 2 18( ) ( ) ( )

Therefore by Crammer’s rule

x
A

y
A

z
A

=
D

= = =
D

= = =
D

= =1 2 36

6
1

12

6
2

18

6
3

| |
,

| | | |
and

is the solution.
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8.3.2 Gauss–Jordan Method
Now we are going to discuss another method of solving the equation AX = B by applying elementary row operations on A, 
where A is a non-singular matrix and B is a column matrix, and same operations on B. The equation will be reduced to the 
form IX = D, where I is the unit matrix of the same order as A and D is a column matrix whose elements are d d dn1 2, , , .…  So 
x d x d x dn n1 1 2 2= = =, , ,…  is the solution. This method of finding the solution of AX B A= ¹ (| | )0  is called Gauss–Jordan 
method. In this method, we use the following theorem which is stated and whose proof is beyond the scope of this book.

THEOREM 8.47 Solution of the equation AX = B will not be altered by applying elementary row operations on 
the equation.

Example     8.40   

Using Gauss–Jordan method, solve the equations

x z y z x y+ = + = + =2 2 3 2 1, and

Solution: The matrix equation is

1 0 2

0 1 1

2 1 0

2

3

1

1 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

X X

x

y

z

, where

∼
22

0 1 1

0 1 4

2

3

3

2

1 0 2

0 1 1

0 0 5

3 3 1

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-

-

é

X R R R( )∼

∼

ëë

ê
ê
ê

ù

û

ú
ú
ú

=
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-X R R R

2

3

6

3 3 2( )∼

∼ ∼

∼

1 0 2

0 1 1

0 0 1

2

3

6

5

1

5

1 0 0

3 3

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

-æ
èç

ö
ø÷

X R R

00 1 0

0 0 1

2
12

5

3
6

5

6

5

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

-

-

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

X

Therefore, the solution is

x y= - = - =2
12

5

2

5

9

5
,  and z =

6

5

(

)

R R R

R R R

1 1 3

2 2 3

2∼

∼

-

-

and

8.3.3 Consistent and Inconsistent Systems

Illustration

The discussion till now provides the reader the technique of solving the equation AX = B when A is non-singular 
matrix (i.e., | A| ¹ 0).

If | A| = 0, then the system may have or may not have solution.

1. If the system has no solution, then it is called inconsistent system. 

2. If it has solution, the system is called consistent system.

Let us consider the system

 AX = B (8.14)

where | A| = 0.
Applying series of elementary row operations simultaneously on both sides of Eq. (8.14), suppose at a stage, we 

obtain zero row (i.e., all elements of the row are zeros) in the transformed matrix of A and the corresponding element 
in the transformed form of B is non-zero, then the system is inconsistent otherwise it is consistent. When the system is 
consistent, then we rewrite the equivalent system and express x, y, z in terms of a parameter(s) which shows that the 
system has infinite number of solutions. This process will be explained by the following examples.

Example     8.41   

Check if the following system of equations is consistent 
or inconsistent. 

x y z x y z x y z+ + = + + = + + =1 2 4 3 4 10 9, and
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Solution: The matrix equation representing the system is

1 1 1

1 2 4

1 4 10

1

3

9

1 1 1

0 1 3

0 3 9

1

2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

X

X

88

2 2 1 3 3 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

- -( )R R R R R R∼ ∼and

 

1 1 1

0 1 3

0 0 0

1

2

2

33 3 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

-X R R R( )∼

The system is inconsistent because 0x + 0y + 0z = 2. Note 
that, here

| |
( ) ( ) ( )

A =
= - - - + -
= - + =

1 1 1

1 2 4

1 4 10

1 20 16 1 10 4 1 4 2

4 6 2 0

That is, in this case | A| = 0 and the system is inconsistent.

Example     8.42   

Consider the following system of equations. Check for 
consistency of this system x + y + z = 1, x + 2y + 4z = 2,
x y z+ + =4 10 4.

Solution: The matrix equation representing the system is

1 1 1

1 2 4

1 4 10

1

2

4

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

X

Proceeding in similar fashion as in Example 8. 41 we get

1 1 1

0 1 3

0 3 9

1

1

3

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

X

 

 

1 1 1

0 1 3

0 0 0

1

1

0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

X

1 0 2

0 1 3

0 0 0

0

1

0

1 1 2

-é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

-X R R R( )∼

Therefore we get

x z y z- = + =2 0 3 1,

This is a system of two equations in three variables. Let 
z = k, so that x k y k= = -2 1 3, .  Therefore x = 2k, y = 1 – 3k
and z = k is a solution for all real values of k. Hence the 
system has infinite number of solutions. Here also | A| = 0.

Examples 8. 41 and 8. 42 revealed that AX = B is inconsistent in one case whereas it is consistent in other case. In both 
cases, the coefficient matrix is singular.

8.3.4 Homogenous System of Equations

Now let us turn our attention to homogenous system of equations which are given below. If a i j nij ( , )1 £ £  are real, 
then the system of equations

a x a x a x

a x a x a x

a x a x

n n

n n

n n

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0

0

+ + + =
+ + + =

+ +

	
	

� � � �
		 + =a xnn n 0

is called a homogenous system of n equations in n variables x x xn1 2, , , .…  If

A

a a a

a a a

a a a

n

n

n n nn

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

11 12 1

21 22 2

1 2

…
…

� � … �
…
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then the matrix equation representing the above system of equations is AX = O, where

 X

x

x

xn

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1

2

�

and O is On ´ 1 zero matrix. Note that x x xn1 20 0 0= = =, , ,…  is always a solution of the system and this solution is 
called trivial solution of the system. Any solution in which at least one xi ¹ 0 is called non-trivial  solution or non-zero 
solution.

THEOREM 8.48

PROOF

If A is a non-singular matrix with real entries, then X = O is the only solution of AX = O. If X is a 
non-zero solution, then A is a singular matrix.

Suppose A is non-singular matrix so that A-1 exists.  Therefore 

AX O A AX O

A A X O

X O

= Þ =

Þ =

Þ =

-

-

1

1

( )

)(

Now suppose X = X1 is a non-zero solution. If A is non-singular, then A-1(AX1) = O and hence  
X1 = O which is a contradiction. Hence A must be singular matrix. ■

In solving AX = O, we employ the same technique as in the case of AX = B which is explained in illustration in 
Section 8.3.3.

Example     8.43   

Find the solution of the system of equations

x y z x y z x y z+ - = - + = - + =3 2 0 2 4 0 11 14 0, and

Solution: The matrix equation representing the given 
system is

1 3 2

2 1 4

1 11 14

-
-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=X O

1 3 2

0 7 8

0 14 16

2

1 3 2

0 7 8

0

2 2 1 3 3 1

-
-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= - -

-
-

X O R R R R R R( )∼ ∼and

00 0

2

1 3 2

0 1
8

7

0 0 0

3 3 2

2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -

-
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

= -

X O R R R

X O R

( )∼

∼
11

7
2Ræ

èç
ö
ø÷

1 0
10

7

0 1
8

7

0 0 0

31 1 2

-

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

= -X O R R R( )∼

Therefore 

x z y z+ = - =
10

7
0

8

7
0and

If we put z k= , then the solution is 

x k y k z k=
-

= =
10

7

8

7
, ,
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   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions

1. Let

A
ab b

a ab
=

- -
é

ë
ê

ù

û
ú

2

2

 where ab ¹ 0. Then

(A) A2 = A (B) A2 = O (C) A2 = I (D) A3 = A

Solution: We have

A
ab b

a ab

ab b

a ab

a b a b ab ab

a b a

2
2

2

2

2

2 2 2 2 3 3

3

=
- -

é

ë
ê

ù

û
ú - -

é

ë
ê

ù

û
ú

=
- -

- + 33 2 2 2 2

0 0

0 0

b a b a b

O

- +
é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú =

 Answer: (B)

2. Let

A n

B I

=
-é

ë
ê

ù

û
ú ¹

=
-é

ë
ê

ù

û
ú =

0 2

2 0

1

tan /

tan /
( )

cos sin

sin cos
,

q
q

q p

q q
q q

00

0 1

é

ë
ê

ù

û
ú

 Then the matrix I + A is equal to

(A) (I - A)B (B) (I - A)2B

(C) (I + A)2B (D) (I - A)2

Solution: Put tan( / )q 2 = a  so that 

B

a
a

a
a

a
a

a
a

=

-
+

-
+

+
-
+

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1

1

2

1

2

1

1

1

2

2 2

2

2

2

Therefore

( )I A B
a

a

a
a

a
a

a
a

a
a

- =
-

é

ë
ê

ù

û
ú

-
+

-
+

+
-
+

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú1

1

1

1

2

1

2

1

1

1

2

2 2

2

2

2

úú
ú
ú

=

-
+

+
+

-
+

+
-

+

- -
+

+
+

1

1

2

1

2

1

1

1

1

1

2

1

2

2

2

2 2

2

2

2

2

a
a

a
a

a
a

a a
a

a a
a

a
a

( )

( )
22

2

2

2

2

2

1

1

1

a
a

a
a+

+
-
+

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=
-é

ë
ê

ù

û
ú = +

1

1

a

a
I A

 Answer: (A)

3. If

3 4

1 2

3

11

-é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

x

y

 then

(A) x y= =3 5,  (B) x y= =4 3,

(C) x y= =4 5,  (D) x y= =5 3,

Solution: We have

3

11

3 4

1 2

3 4

2

é

ë
ê

ù

û
ú =

-é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

-
+

é

ë
ê

ù

û
ú

x

y

x y

x y

Therefore we get

3 4 3 2 11x y x y- = + =and

Solving these equations, we have x y= =5 3and .

 Answer: (D)

4. If

A f x x x=
-é

ë
ê

ù

û
ú = - +

4 1

3 2
2 32and ( )

 then f (A) is

(A) O (B) 
30 4

12 6-
é

ë
ê

ù

û
ú (C) 

30 4

12 6

-
-

é

ë
ê

ù

û
ú (D) 

30 4

12 6

-é

ë
ê

ù

û
ú

Solution: We have f A A A I( ) = - +2 2 3 where

 I =
é

ë
ê

ù

û
ú

1 0

0 1

Now

A

A

I

2
4 1

3 2

4 1

3 2

19 2

6 7

2
8 2

6 4

3

=
-é

ë
ê

ù

û
ú

-é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú

- =
-

- -
é

ë
ê

ù

û
ú

==
é

ë
ê

ù

û
ú

3 0

0 3
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Substituting these in the equation for f(A) we get

f A( ) =
-

-
é

ë
ê

ù

û
ú

30 4

12 6

 Answer: (C)

5. Let

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

1 1 1

1 1 1

 and n be a positive integer. Then

An

n n n

n n n

n n n

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

- - -

- - -

- - -

l l l
l l l
l l l

1 1 1

1 1 1

1 1 1

 where l equals

(A) 2 (B) 3 (C) 9 (D) 6

Solution: For the given matrix A we have

A2

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

3 3 3

3 3 3

3 3 3

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

úú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

- - -

- - -

- - -

3 3 3

3 3 3

3 3 3

2 1 2 1 2 1

2 1 2 1 2 1

2 1 2 1 2 1

Also

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

- - -

- - -

- - -

3 3 3

3 3 3

3 3 3

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Therefore for n = 1, 2

An

n n n

n n n

n n n

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

- - -

- - -

- - -

3 3 3

3 3 3

3 3 3

1 1 1

1 1 1

1 1 1

 

is true. Assume that

Am

m m m

m m m

m m m

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

- - -

- - -

- - -

3 3 3

3 3 3

3 3 3

1 1 1

1 1 1

1 1 1

Then

A A Am m

m m m

m m m

m m m

+

- - -

- - -

- - -

= × =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

1 1 1

1 1 1

1 1 1

3 3 3

3 3 3

3 3 3

1 1 11

1 1 1

1 1 1

3 3 3 3 3 3

3 3 3 3 3 3

3 3

1 1 1

1 1 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
× × ×
× × ×
×

- - -

- - -

m m m

m m m

mm m m- - -× ×

é

ë

ê
ê
ê

ù

û

ú
ú
ú1 1 13 3 3 3

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

3 3 3

3 3 3

3 3 3

m m m

m m m

m m m

Hence by induction,

An

n n n

n n n

n n n

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

- - -

- - -

- - -

3 3 3

3 3 3

3 3 3

1 1 1

1 1 1

1 1 1

 Answer: (B)

6. If 

[ ]1 1

1 3 2

2 5 1

15 3 2

1

2x

x

O
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

 then value of x is

(A) -2 or -14 (B) 2 or - 4

(C) 2 or -14 (D) 2 or 14

Solution: We have

[ ] [ ]1 1

1 3 2

2 5 1

15 3 2

1

2 1 1

1 6 2

2 10

15

x

x

x

x

x
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+ +
+ +
++ +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+

+
+

é

ë

ê
ê
ê

ù

û

ú
ú
ú

6 2

1 1

2 7

12

2 21

x

x

x

x

x

[ ]

By hypothesis ( ) ( ) ( )2 7 12 2 21 0x x x x+ + + + + =

( ) ( )

( )( )

2 7 12 2 21 0

16 28 0

2 14 0

2 14

2

2

x x x x

x x

x x

x

+ + + + + =

+ + =
+ + =

= - -or

 Answer: (A)

7. Let

A

x y

= -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

3

1 2 2

2 1 2

2

If AA IT = 3,  then

(A) x y= = -2 1,  (B) x y= =2 1,

(C) x y= - = -2 1,  (D) x y= - =2 1,

Solution: For the given matrix A we have

AA

x y

x

y

T = -
é

ë

ê
ê
ê

ù

û

ú
ú
ú -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

9

1 2 2

2 1 2

2

1 2

2 1 2

2 2
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=
+ + + - + +
+ - + + + -

+ + + - + +

é

ë

1

9

1 4 4 2 2 4 4 2

2 2 4 4 1 4 2 2 2

4 2 2 2 2 42 2

x y

x y

x y x y x y

êê
ê
ê

ù

û

ú
ú
ú

=
+ +
- +

+ + - + + +

é

ë

ê
ê
ê

ù

û

ú
ú

1

9

9 0 2 4

0 9 2 2 2

2 4 2 2 2 42 2

x y

x y

x y x y x y úú

Now

AA

x y

x y

x y x y x y

T =
+ +
- +

+ + - + + +

1 0 2 4 9

0 1 2 2 2 9

9 2 4 9 2 2 2 9 2 2

( )/

( )/

( )/ ( )/ ( 44 9

1 0 0

0 1 0

0 0 1

3

)/

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

I

Solving we get

 x y+ + =2 4 0 (8.15)

 2 2 2 0x y- + =  (8.16)

 x y2 2 4 9+ + =  (8.17)

From Eqs. (8.15) and (8.16), we get x = -2, y = -1. These 
values also satisfy Eq. (8.17).

 Answer: (C)

8. If x, y, z are real and 

A

y z

x y z

x y z

= -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 2

is such that AAT = I, then

(A) x + y + z = 1

(B) x2 + y2 + z2 = 1

(C) x + y + z = xyz

(D) x2 + y2 + z2 = 2xyz

Solution: For the given matrix A we have

A

x x

y y y

z z z

T = -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0

2

AA

y z

x y z

x y z

x x

y y y

z z z

T = -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 2 0

2

Therefore

=
+ + + - - +
+ - + + - -
- +

0 4 0 2 0 2

0 2

0 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2

y z y z y z

y z x y z x y z

y z x22 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

4 2 2

2

- - + +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+ - - +
- + +

y z x y z

y z y z y z

y z x y zz x y z

y z x y z x y z

2 2 2 2

2 2 2 2 2 2 2 22

- -
- + - - + +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

But it is given that AAT = I, therefore 

AAT =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0

0 1 0

0 0 1

Solving we get [taking (2-2)th entry]

x y z2 2 2 1+ + =
 Answer: (B)

 9. If 

A
a b

c a
=

-
é

ë
ê

ù

û
ú1

is idempotent matrix and bc = 1/4 then the value of a is

(A) 1 (B) -1 (C) 1/2 (D) -1/2

Solution: If A is idempotent matrix then A2 = A. This 
implies

a bc b

c bc a

a b

c a

2

21 1

+
+ -

é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
ú

( )

Solving we get

a bc a bc a a2 21 1+ = + - = -and ( )

Using bc = 1/4 we get

 

 

a a

a

a

2

2

1

4

2 1 0

1

2

+ =

- =

=

( )

 Answer: (C)

10. If

 
1 0

2 1

1 0

0 1

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú + B

 then

(A) B B2 =  (B) B I2 =

(C) B O2 =  (D) B2
1 0

2 0
=

é

ë
ê

ù

û
ú



Solution: Let

B
a b

c d
=

é

ë
ê

ù

û
ú

so that

1 0

2 1

1 0

0 1

1

1

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú =

+
+

é

ë
ê

ù

û
ú

a b

c d

a b

c d

Solving we get

a + 1 = 1

b = 0

c = 2

d + 1 = 1

So

 a = 0, b = 0, c = 2, d = 0

Therefore

B B O=
é

ë
ê

ù

û
ú =

0 0

2 0
2and

 Answer: (C)

Note: One can observe that

B =
é

ë
ê

ù

û
ú -

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

1 0

2 1

1 0

0 1

0 0

2 0

11. If

3 2

3 0

2 4

3 3

3 3

10 10

-é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë
ê

ù

û
ú =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

x x

y y
x x

then the integral part of x + y is

(A) 3 (B) 2 (C) 4 (D) 1

Solution: We have

3 2 3 2

3 3

2 4 2 4

3 3

3 3

10 10

x y x y

x x

x y x y

x x

- -

+ +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

Solving we get

 3x - 2y = 3 (8.18)

 2x + 4y = 10 (8.19)

Solving Eqs. (8.18) and (8.19), we get x = 2, y = 3/2. 
Therefore

x y+ = =
7

2
3

1

2

Hence, the integral part of x + y = 3.

 Answer: (A)

12.  If a non-zero square matrix of order 3 ´ 3 commutes 
with every square matrix of order 3 ´ 3, then the 
matrix is necessarily

(A) a scalar matrix (B) a unit matrix

(C) an idempotent matrix (D) a nilpotent matrix

Solution: Let 

A

a a a

a a a

a a a

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

11 12 13

21 22 23

31 32 33

and suppose A commutes with every matrix of 3 ´ 3 
order. Choose

B

b

b

b

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

2

3

0 0

0 0

0 0

 

where b1, b2 and b3 are distinct. The (i, j)th element of  
AB = bi aij, whereas (i, j)th element of BA = bi aij. Now

AB BA b a b a

a i j b b i j

j ij i ij

ij i j

= Þ =

Þ = ¹ ¹ ¹0 when for( )∵

Therefore

A

a

a

a

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

11

22

33

0 0

0 0

0 0

Again choose

D

d d d

d d d

d d d

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

11 12 13

21 22 23

31 32 33

where dij ¹ 0 for 1 £ i, j £ 3. Again

AD DA a d a d a a dii ij jj ij ii jj ij= Þ = Þ = ¹( )∵ 0

Therefore

a11 = a22 = a33

and hence A is a scalar matrix.

 Answer: (A)

Note: For more general case, the reader is advised to see 
Theorem 8.7.

13. If 

A B=
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

a 0

1 1

1 0

5 1
and

then the value of a for which A2 = B is

(A) 1 (B) -1 (C) no real value (D) 4
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Solution: We have from the hypothesis that

1 0

5 1

0

1 1

0

1 1

0

1 1

2
2é

ë
ê

ù

û
ú = = =

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

+
é

ë
ê

ù

û
úB A

a a a
a

Therefore a 2 = 1 and a + 1 = 5 which are inconsistent. 
Hence there is no real value of a.

 Answer: (C)

14.  If A is a square matrix such that A3 = O, then I + A + A2 
(I is the corresponding unit matrix) is

(A) I + A (B) (I + A)-1

(C) I - A (D) (I - A)-1

Solution: We have

(I - A) (I + A + A2) = I - A3 = I

Therefore

I + A + A2 = (I - A)-1

 Answer: (D)

15. If the product of the matrices

1 1

0 1

1 2

0 1

1 3

0 1

1

0 1

1 378

0 1

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú	

n

then n is equal to

(A) 27 (B) 26 (C) 376 (D) 378

Solution: We have

1 1

0 1

1 2

0 1

1 3

0 1

1 1 2

0 1

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú =

+é

ë
ê

ù

û
ú

Again

1 3

0 1

1 3

0 1

1 6

0 1

1 1 2 3

0 1

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú =

+ +é

ë
ê

ù

û
ú

By induction,

LHS =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë
ê

ù

û
ú=

å1

0 1

1 378

0 1
1

k
k

n

Therefore

n n
n n

( )
( )

+
= + = ´

1

2
378 1 27 28or

Hence n = 27.

 Answer: (A)

16. If P is a 2 ´ 2 matrix satisfying the relation

2 1

3 2

3 2

5 3

2 4

3 1

é

ë
ê

ù

û
ú -

é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
úP

then P is equal to

(A) 
1

19

48 25

70 42

-
-

é

ë
ê

ù

û
ú  (B) 

1

19

48 25

70 42

-
-

é

ë
ê

ù

û
ú

(C) 
- -

-
é

ë
ê

ù

û
ú

1

19

38 25

75 42
 (D) 

- é

ë
ê

ù

û
ú

1

19

48 25

70 42

Solution: Let

A B=
é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
ú

2 1

3 2

3 2

5 3
and  

so that 

A B- -=
-

-
é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
ú

1 1
2 1

3 2

1

19

3 2

5 3
and

Now by hypothesis

APB P A B=
-

é

ë
ê

ù

û
ú Þ =

-
é

ë
ê

ù

û
ú

=
-

-
é

ë
ê

ù

û
ú -

é

ë

- -2 4

3 1

2 4

3 1

1

19

2 1

3 2

2 4

3 1

1 1

êê
ù

û
ú -

é

ë
ê

ù

û
ú

=
-

-
é

ë
ê

ù

û
ú

-é

ë
ê

ù

û
ú

=
-

-

3 2

5 3

1

19

2 1

3 2

26 8

4 9

1

19

48 25

70 42

éé

ë
ê

ù

û
ú

 Answer: (B)

17. If 

A
x

x x
A=

é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
ú

-2 0 1 0

1 2
1and

then x is equal to

(A) 2 (B) 1/2 (C) 1 (D) 3

Solution: We know that AA-1 = I. Hence

2 0 1 0

1 2

1 0

0 1

x

x x
é

ë
ê

ù

û
ú -

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

2 0

0 2

1 0

0 1

x

x
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

This gives x = 1/2.

 Answer: (B)



18. Let w ¹ 1 be a cube root of unity and

A
w

w
=

é

ë
ê

ù

û
ú

0

0

Then A2010 is equal to

(A) A (B) A2 (C) A3 (D) 3A

Solution: For the given matrix, we have

A
w

w

w

w
w

w

A
w

w

w

w

2
2

2

3
2

2

0

0

0

0

0

0

0

0

0

0

=
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú

é

ë
ê

ùù

û
ú

=
é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú

= = = =

w

w

A A I I A

3

3

2010 3 670 670 3

0

0

1 0

0 1

( )

 Answer: (C)

19.  The number of idempotent diagonal matrices of 
3 ´ 3 order is

(A) 8 (B) 2 (C) 6 (D) infinite

Solution: Let

D

d

d

d

D D=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
1

2

3

2

0 0

0 0

0 0

and

Now

d

d

d

d

d

d

1

2

2

2

3

2

1

2

3

0 0

0 0

0 0

0 0

0 0

0 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

Solving we get

d d d d d d

d d d

1

2

1 2

2

2 3

2

3

1 2 30 1 0 1 0 1

= = =

= = =

; ;

, ; , ; ,

 Answer: (A)

20.  Let A be a non-singular square matrix. If B is a 
square matrix such that B = -A-1BA, then the matrix 
(A + B)2 is equal to

(A) A + B (B) A2 + B2 (C) O (D) I

Solution: We have

AB = -AA-1BA = -BA

 AB + BA = O

Now

( )A B A AB BA B A O B A B+ = + + + = + + = +2 2 2 2 2 2 2

 Answer: (B)

21.  If A and B are square matrices of same order such 
that A + B = AB, then

(A) A + B = -BA (B) A - B = BA

(C) AB = BA (D) A - B = 0

Solution: We have

A B AB AB A B I I

I A I B I

+ = Þ - - + =

Þ - - =( )( )

Þ I - A is invertible and its inverse is I - B

Therefore

( )( )I B I A I

I B A BA I

A B BA

AB A B BA

- - =
- - + =

+ =
= + =

 Answer: (C)

22. Let

A B C= -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

-

é

ë

ê
ê
ê

ù2 3

1 4

1 0

1 2

3 1

5 4

2 1

2 3

4 1

, and

ûû

ú
ú
ú

If

A B xC- + =
-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

7 1

0 9

12 2

then the value of x is

(A) -2 (B) 3 (C) -3 (D) 2

Solution: By hypothesis

7 1

0 9

12 2

3 2 1

4 2 3 3

4 4 4

-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= - + =
+ -

- + +
- - - +

é

ë

ê
ê
ê

A B xC

x x

x x

x x

ùù

û

ú
ú
ú

Therefore

3 2 7 1 1 4 2 0

3 3 9 4 4 12 4 2

+ = - = - - + =
+ = - - = - - + = -

x x x

x x x

; ;

; ;

Solving any one gives x = 2.

 Answer: (D)
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23.  If l, m and n are positive real numbers and the 
matrix

A

m n

l m n

l m n

= -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 2

is such that AAT = I (unit matrix), then the ordered 
triple (l, m, n) may be

(A) 
1

3

1

6

1

2
, ,

æ
èç

ö
ø÷

 (B) 
1

6

1

3

1

2
, ,

æ
èç

ö
ø÷

(C) 
1

2

1

3

1

6
, ,

æ
èç

ö
ø÷

 (D) 
1

2

1

6

1

3
, ,

æ
èç

ö
ø÷

Solution: We have for the given matrix that

AA

m n

l m n

l m n

l l

m m m

n n n

m n m

T = -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+

0 2 0

2

4 22 2 2 -- - +
- + + - -

- + - - + +

é

ë

n m n

m n l m n l m n

m n l m n l m n

2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2

2

2

êê
ê
ê

ù

û

ú
ú
ú

But AAT = I, that is

4 2 2

2

2

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

m n m n n n

m n l m n l m n

m n l m n l

+ - - +
- + + - -

- + - - ++ +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
úm n2 2

1 0 0

0 1 0

0 0 1

Solving this we get

 4m2 + n2 = 1 (8.18)

 2m2 - n2 = 0 (8.19)

 -2m2 + n2 = 0 (8.20)

 l2 + m2 + n2 = 1 (8.21)

 l2 - m2 - n2 = 0 (8.22)

Adding Eqs. (8.18) and (8.19) we get

6 1
1

6

2m m= Þ =
±

Adding Eqs. (8.21) and (8.22) we get

2 1
1

2

2l l= Þ =
±

Equation (8.18) - Eq. (8.19) + Eq. (8.20) gives

3 1
1

3

2n n= Þ =
±

 Answer: (D)

24.  Let A, B and C be square matrices of order 3 ´ 3. If 
A is invertible and (A - B)C = BA-1, then

(A) C(A - B) = A-1B (B) C(A - B) = BA-1

(C) (A - B)C = A-1B (D) all the above

Solution: We have

( )A B C BA AC BC BA- = Þ - =- -1 1

Þ - - + =- -AC BC BA AA I1 1  (unit

matrix)

 
Þ - + - =

Þ - + =

-

-

( ) ( )

( )( )

A B C A B A I

A B C A I

1

1

Therefore, C + A-1 is the inverse of A - B. This implies

( )( )

( )

( )

C A A B I

C A B I A A A B

C A B A B

+ - =

- = - +

- =

-

- -

-

1

1 1

1

 Answer: (A)

25. If

A A=
é

ë
ê

ù

û
ú =

a
a
2

2
1253and | |

then a is equal to

(A) ±3 (B) ±2 (C) ±5 (D) 0

Solution: By hypothesis

125 43 3 2 3= = = -| | | | ( )A A a

Hence a 
2 - 4 = 5 Þ a = ±3.

 Answer: (A)

26. If

A =
-
-

é

ë
ê

ù

û
ú

3 4

1 1

then | | | |A A2003 20024- =

(A) -3 (B) 0 (C) 9 (D) -9

Solution: We have that | | .A = - + =3 4 1  Therefore

| | | | | | | |A A A A2003 2002 2003 20024 4 1 4 3- = - = - = -

 Answer: (A)

27.  Let A be 3 ´ 3 matrix such that A3 = aA, where a ¹ 1. 
Then, the matrix A = I is

(A) non-singular

(B) idempotent

(C) nilpotent matrix

(D) symmetric matrix



Solution: Let B = A + I. Then

A B I

A B I B B B I

B B B I A B I

B B

3 3

3 3 2

3 2

3 2

3 3

3 3

3

= -

= - = - + -

- + - = = -

-

( )

( )

( )

 

a

a a

++ - = -

- + - = -

3 1

3 3 12

B B I

B B I B I

a a

a a

( )

( ) ) ( )(

This gives

det [ ( ) ]det ( )B B I B2 33 3 1 0- + - = - ¹a a

Hence det B ¹ 0. This implies B = A + I is non-singular.

 Answer: (A)

28.  A and B are different square matrices of same order 
such that A3 = B3 and A2B = B2A. Then

(A) A2 + B2 is singular matrix

(B) A2 + B2 is non-singular

(C) A2 + B2 is idempotent

(D) A2 - B2 is symmetric

Solution: We know that

(A2 + B2)(A - B) = A3 - A2B + B2A - B3 = O

If A2 + B2 is non-singular, then

(A2 + B2)-1(A2 + B2)(A - B) = 0

Therefore, A - B = O or A = B, which is a contradiction. 
Hence A2 + B2 must be singular matrix.

 Answer: (A)

29. If 

P A Q PAP=
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
é

ë
ê

ù

û
ú =

3

2

1

2

1

2

3

2

1 1

0 1
, and T

and X = PTQ2010 P, then X is equal to

(A) 
4 2010 3 8015

2010 4 2010 5

+

-

é

ë
ê
ê

ù

û
ú
ú

(B) 
2010 2 3

2 3 2010

-

+

é

ë
ê
ê

ù

û
ú
ú

(C) 
2 3 1

2 3 1

+

-

é

ë
ê
ê

ù

û
ú
ú

(D) 
1 2010

0 1

é

ë
ê

ù

û
ú

Solution: It can be seen that P PT = -1

Q PAP PAP P Q AP= = Þ =- - -T 1 1 1

Now

X P Q P P Q P

P Q Q P A P Q P

A P Q Q

= =

= =

=

-

- -

-

T 2010 1 2010

1 2009 1 2009

1 200

( ) ( )

( ) 88 2 1 2008× = -P A P Q P

Finally

 X A P P A= =-2010 1 2010  (8.23)

Now

A

A

2

3

1 1

0 1

1 1

0 1

1 2

0 1

1 1

0 1

1 2

0 1

=
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

11 3

0 1

é

ë
ê

ù

û
ú

By induction we can see that 

A
nn =

é

ë
ê

ù

û
ú

1

0 1
Therefore

X A= =
é

ë
ê

ù

û
ú

2010
1 2010

0 1

 Answer: (D)

30. The number of real roots of the equation

a a x

b x b

x x x

= 0

where a and b are distinct non-zero real numbers, is

(A) 2 (B) 3 (C) 1 (D) 0

Solution: Clearly x = 0 is a root. When x = a, first and 
third rows are identical and when x = b, the second and 
third rows are identical. Therefore x = 0, a, b are the 
roots.

 Answer: (B)

31. If n ³ 3 is even and

D = -
-

-
-

-
-

-

r

n
r

n
r

n
r

( ) ( ) ( )2

2

2

1

2

3 1 1

2 1 0

C C C

then ( )- D
=
å 2

2

r
r

r

n

 is

(A) 2n - 1 (B) 2n + 1 (C) 2n (D) 3n
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Solution: We have

D = + +

= + +

-
-

-
-

-

-
-

-
-

-
r

n
r

n
r

(n
r

n
r

n
r

n

( ) ( )

( ) ( ) ([ ] [

2

2

2

1

2

2

2

1

2C C C

C C

2)

22

1

2

1

1

1

) ( )

( ) ( )

]C C

C C

C

r
n

r

n
r

n
r

n
r

-
-

-
-

-

+

= +

=

Therefore we get

( ) ( )

( )

(

- D = -

= × - × + × - -

=

= =
å å2 2

2 2 2 2

2 2

2

2

3

3

4

4

r

r

n

r
r n

r
r

n

n n n n
n

C

C C C C	

11 2 1 2

1 1 2

2

1- - + ×

= - - +
=

)

( )

( )

n n

n n

n n

C

is even∵

 Answer: (C)

32. Let

D =
2

2

2

2 2

2 2

2 2

xy x y

x y xy

y xy x

Then D is equal to

(A) (x2 + y2)3 (B) (x3 + y3)2

(C) -(x2 + y2)3 (D) -(x3 + y3)2

Solution: Adding R2 and R3 to R1 and taking (x + y)2  
common from R1, we get

D = +

= + - -
-

( )

( )

x y x y xy

y xy x

x y x y x xy x

y xy y x

2 2 2

2 2

2 2 2 2 2

2 2 2

1 1 1

2

2

1 0 0

2

2 --

-
-

= + - - - - -

= -

y

C C

C C

x y x y xy y x x y

x

2

2 1

3 1

2 2 2 2 2 2

(

)

( ) [ ( ) ( )( )]

(

by

and

++ - + - + +

= - + + -

y x y x y xy x y x y

x y x y xy

) [( ) ( ) ]

( ) [( )

2 2 2 2 2 2 2 2 2 2

2 2 2 2

4 2

2 (( ) ]

( ) [( ) ]

( )

x y x y

x y x y xy

x y

2 2 2 2

2 2 2 2

3 3 2

+ +

= - + + -

= - +

 Answer: (D)

33. If 

a bc ac c

a ab b ac

ab b bc c

ma b cn n n

2 2

2 2

2 2

+
+

+
=

then m + n value is

(A) 4 (B) 6 (C) 8 (D) 7

Solution: Let D be the given determinant. Taking a, b, c 
common from C1, C2 and C3, respectively, we get

D =
+

+
+

abc

a c a c

a b b a

b b c c

Now the column operation C C C3 1 2- +( )gives

D = + -
+ -

= - +
+

= -

a c

a b b b

b b c b

abc

abc b

a c

a b b

b b c

b abc

0

2

2

2

0

1

1

2

 ( )

( )( )

( )[[ ( ) ( )]

( )( )

a b b c c a b b

b abc ac

a b c

- - - + -
= - -

=

2 2

4 2 2 2

 Answer: (B)

34. If

D =
- -

- -
- -

a b c a a

b b c a b

c c c a b

2 2

2 2

2 2

then D is equal to

(A) ( )a b c+ + 2

(B) ( )( )( )( )a b c a b b c c a+ + - - -
(C) ( )( )a b c ab bc ca2 2 2+ + + +
(D) ( )a b c+ + 3

Solution: By the operations C1 - C2 and C2 - C3 and 
taking a + b + c common from C1 and C2 we get

D = + +
-

-
- -

= + +( ) ( )a b c

a

b

c a b

a b c2 3

1 0 2

1 1 2

0 1

 Answer: (D)

35. Let A =
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0

0 1 1

0 2 4

If

A A xA yI- = + +1 21

6
( )



where x, y are scalars and I is 3 ´ 3 unit matrix, then 
x, y are, respectively,

(A) -11, 6 (B) -6, 11

(C) 6, 11 (D) -6, -11

Solution: We have det A = 4 + 2 = 6. Identify A with

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

é

ë

ê
ê
ê

ù

û

ú
ú
ú

and represent the cofactors of ai, bi, ci, respectively, with 
Ai, Bi and Ci. Therefore

A B C

A B C

A

1 1 1

2 2 2

3

4 2 6 0 0 0 0

0 0 0 4 2 0 2

0

= + = = - - = =
= - - = = = - - - =
=

, ( ) ,

( ) , , ( )

,, ,B C3 31 1= - =

Therefore

A
A

A- = = -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

6

6 0 0

0 4 1

0 2 1
det

( )adj

Also

A2

1 0 0

0 1 1

0 2 4

1 0 0

0 1 1

0 2 4

1 0 0

0 1 5

0 10 14

=
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
-

é

ëë

ê
ê
ê

ù

û

ú
ú
ú

So by hypothesis

1

6

6 0 0

0 4 1

0 2 1

1

6

1

6

1 0 0

0 1 5

1 2-
é

ë

ê
ê
ê

ù

û

ú
ú
ú

= = + +

=
+ +

- + + +

-A A xA yI

x y

x y

( )

xx

x x y0 10 2 14 4- - + +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Comparing the two sides we get

x y x x x y+ = + = - - - = + + =5 5 1 10 2 2 14 4 1; ; ;

From the first two equations, we get x = -6, y = 11, which 
also satisfy the other two equations.

 Answer: (B)

Second Method (Easy Method): Consider the character-
istic polynomial of the matrix A, which is

f x

x

x

x

x x x

( )

( )[( )( ) ]

=
-

-
- -

= - - - +

1 0 0

0 1 1

0 2 4

1 1 4 2

= - - +

= - + - +

( )[ ]1 5 6

6 11 6

2

3 2

x x x

x x x

By Caley–Hamilton theorem f (A) = O. Hence

- + - + =

- + =

= - +

= - =

-

A A A

A A I A I

A A A I

x y

3 2

2

1 2

6 11 6 0

1

6
6 11

1

6
6 11

6 11

( )

( )

,

36.  The parameter on which the determinant of the foll-
owing matrix does not depend is

A

a a

p d x px p d x

p d x px p d x

= - +
- +

é

ë

ê
ê
ê

ù1 2

cos( ) cos cos( )

sin( ) sin sin( ) ûû

ú
ú
ú

(A) a (B) p (C) d (D) x

Solution: Add C dx C C3 2 12- ( cos ) .to  Using

cos( ) cos( ) cos cosA B A B A B+ + - = 2

and sin( ) sin( ) sin cosA B A B A B+ + - = 2

we have

det

cos

cos cos( )

sin sin( )

(

A

a a dx a a

px p d x

px p d x

a

=
+ -

+
+

= + -

1 2

0

0

1 2

2 2

2 aa dx p d x px

p d x px

a a dx

cos ) [sin( ) cos

cos( ) sin ]

( cos )sin

 +

- +

= + -1 22 (( )

( cos )sin

p d p x

a a dx dx

+ -

= + -1 22

which does not contain the parameter p.

 Answer: (B)

37. Let

f x

ax ax ax b

b b

ax b ax b ax b

( )

( ) ( )

=
- + +

+ -
+ + + +

2 2 1 2 1

1 1

2 2 1 2

where a and b are real constants and a ¹ 0, then f -1(x) 
equals

(A) 
x b

a
+
2

 (B) 
x b

a
-

 (C) 
x b

a
-
2

 (D) 
2x b

a
+

Solution: Substracting R1 + 2R2 from R3 (i.e., R3 ® R3 - 
R1 - 2R2) we have
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f x

ax ax ax b

b b( ) =
- + +

+ -
2 2 1 2 1

1 1

0 0 1

Simplifying we get

f x ax b b ax ax b( ) ( ) ( )= + - - = +2 1 2 1 2

Therefore

f x
x b

a
a- =

-
¹1

2
0( ) ( )∵

 Answer: (C)

38. If

 f x

x x

x x x x x

x x x x x x x x

( ) ( ) ( )

( ) ( )( ) ( ) ( )

=
+

- +
- - - - +

1 1

2 1 1

3 1 1 2 1 1

Then f (2010) is equal to

(A) 1 (B) 2010 (C) 2009 (D) 0

Solution: Using the column operation C C C3 1 2- +( )  
we get

 f x

x

x x x

x x x x x

( ) ( )

( ) ( )( )

= -
- - -

1 0

2 1 0

3 1 1 2 0

Therefore f (x) = 0 for all real x. Hence

f(2010) = 0

 Answer: (D)

39.  The system of equations x - ky - z = 0, kx - y - z = 0, 
x + y - z = 0 has a non-zero solution. Then possible 
values of k are

(A) -1, 2 (B) 1, 2 (C) 0, 1 (D) -1, 1

Solution: If A is a square matrix and X is a column 
matrix, then the matrix equation AX = 0 has non-zero 
solution if det A is equal to zero. Therefore

 

1 1

1 1

1 1 1

0

1 1 1 1 1 1 0

- -
- -

-
=

+ + - + - + =

k

k

k k k( ) ( ) ( )

- + = Þ = ±k k2 1 0 1

 Answer: (D)

40.  The number of values of k for which the system of 
equations

( )

( )

k x y k

kx k y k

+ + =
+ + = -

1 8 4

3 3 1

has infinitely many solutions, is (are)

(A) 0 (B) 1 (C) 2 (D) ¥

Solution: For a system of non-homogenous equations 
to have infinitely many solution, the determinant of the 
coefficient matrix is necessarily be zero. That is

( )( )

( )( )

k k k

k k

k k

+ + - =

- + =
- - =

1 3 8 0

4 3 0

1 3 0

2

(1) When k = 1, the system reduces to one equation 
which is x + 4y = 2 and has infinitely many solutions. 

(2) When x = 3, the system will be x + 2y = 3 and x + 
2y = 3/8 and hence is inconsistent.

 Answer: (B)

41. Consider

2 2 2 2 4 4x y z x y z x y z- + = - + = - + + =, , l

Then the value of l such that the given system has 
no solution is:

(A) 3 (B) 1 (C) 0 (D) -3

Solution: The given system of equations is

2 1 2

1 2 1

1 1

2

4

4

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
é

ë

ê
ê
ê

ù

û

ú
ú
úl

x

y

z

Using row transformations R R R R1 2 3 22- -and  we get

0 3 0

1 2 1

0 3 1

10

4

8

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
é

ë

ê
ê
ê

ù

û

ú
ú
úl

x

y

z

Again using R R3 1-  we get 

0 3 0

1 2 1

0 0 1

10

4

2

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
-

é

ë

ê
ê
ê

ù

û

ú
ú
úl

x

y

z

If l = 1, then the system is equivalent to the system

3 10 2 4 0 0 0 2x x y z x y z= - + = - + + = -, and

which is impossible. Therefore when l = 1, the system 
has no solution.

 Answer: (B)

42.  The number of values of l for which the system of 
equation

3 3 3 2 3 2 6 5 3x y z x y z x y z- + = + - = - + + = -, , l

has unique solution is 

(A) 2 (B) 4 (C) 8 (D) infinite



Solution: System of non-homogenous equations AX = 
B (A is a square matrix) has unique solution if and only 
if A is non-singular. Here

A =
-

-
é

ë

ê
ê
ê

ù

û

ú
ú
ú

3 1 3

1 2 3

6 5 l

Therefore the determinant is

det ( ) ( ) ( )A = + + + + - = +3 2 15 1 18 3 5 12 7 42l l l

Now A is non-singular if det A ¹ 0,  that is l ¹ -6.

 Answer: (D)

43. If 

D = + + +
- + +

k

n n

k n n n n

k n n n

1

2 1

2 1 1

2 2

2 2

and D =
=å kk

n
56

1
,  then n is equal to

(A) 4 (B) 6 (C) 8 (D) 7

Solution: We have 

D = + + +

- + +
=

=

=

å

å
å

å

k
k

n

k

n

k

n

n n

k n n n n

k n n n

1

1

1

2 2

1

2 2

2 1

2 1 1( )

= + + + +
+ +

= +
+

= + =

n n n

n n n n n n

n n n n

n

n n

n n

n n

( )

( ) ( )

1 1

1

0 0

1 1 0

0 1

1 56

2 2

2 2 2

2

== ´7 8

 Answer: (D)

44.  If x, y, z are positive and none of them is 1, then the 
value of the following determinant is

1

1

1

log log

log log

log log

x x

y y

z z

y z

x z

x y

is

(A) 1 (B) 0 (C) 2 (D) -2

Solution: Let D be the given determinant. Then

D =

=

1

1

1

1

log

log

log

log

log

log

log

log

log

log

log

log

(lo

y
x

z
x

x
y

z
y

x
z

y
z

gg )(log )(log )

log log log

log log log

log log log

(

x y z

x y z

x y z

x y z

 

si

= 0

nnce all the three rows are the same)

 Answer: (B)

Multiple Correct Choice Type Questions

1. If 

A B
i

i
C

i

i
=

é

ë
ê

ù

û
ú =

-é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
ú

0 1

1 0

0

0

0

0
, and

where i2 = -1, then

(A) A2
1 0

0 1
=

é

ë
ê

ù

û
ú  (B) B2

1 0

0 1
=

é

ë
ê

ù

û
ú

(C) C2
1 0

0 1
=

-
-

é

ë
ê

ù

û
ú  (D) AB + BA = O

Solution: We have

A2
0 1

1 0

0 1

1 0

1 0

0 1
=

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

B
i

i

i

i
i

i

C
i

2
2

2

2

0

0

0

0

0

0

1 0

0 1

0

0

=
-é

ë
ê

ù

û
ú

-é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

=
-ii

i

i
i

i

AB

é

ë
ê

ù

û
ú -

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú

0

0

0

0

1 0

0 1

0 1

1 0

2

2

00

0

0

0

0

0

0 1

1 0

0

0

-é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
ú

=
-é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =

-é

ë
ê

ù

i

i

i

i

BA
i

i

i

i ûû
ú = -AB

Therefore, AB + BA = 0.

 Answers: (A), (B), (C), (D)
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2. Let

f x

x

x

x

( ) =
3 7

2 2

7 6

If x = -9 is a root of f (x) = 0, then the other roots are

(A) 2 (B) 3 (C) 7 (D) 6

Solution: Adding R2 and R3 to R1 we get

f x

x x x

x

x

x x

x

x x

x

x

( )

( )

( )

(

=
+ + +

= +

= + -
- -

=

9 9 9

2 2

7 6

9

1 1 1

2 2

7 6

9

1 0 0

2 2 0

7 1 7

++ - -9 2 7)( )( )x x

Therefore the other roots are 2 and 7.

 Answers: (A), (C)

3.  Let A, B, C be square matrices of same order and I 
the unit matrix of the same order such that A + B + 
C = AB + BC + CA. Consider the following three 
statements.

 (i) ABC = AC - CA

 (ii) BCA = BA - AB

 (iii) CAB = CB - BC

Then

(A) (i) and (ii) equivalent

(B) (ii) and (iii) are equivalent

(C) (iii) and (i) are equivalent

(D) all the three statements are equivalent

Solution: Assume (i). That is

 ABC = AC - CA (8.24)

Now

ABC A B C AC CA AB BC CA

AC AB BC

+ + + = + + +
= + +

( )-

Therefore

(A - I) (B - I)(C - I) = ABC - (AC + AB + BC)

 + A + B+ C - I

= ABC - (AC + AB + BC)

 + AB + BC + CA - I

= ABC + CA - AC - I

 = -I [by Eq. (8.24)]

This implies A - I, B - I, C - I are invertible matrices and 
the inverse of C - I is -(A - I) (B -I). This gives

 (C - I) (A - I )(B - I) = -I

 CAB - (CA + AB + CB) + A + B + C = 0

CAB - (CA + AB + CB) + AB + BC + CA= 0

 CAB = CB - BC

Therefore (i) Þ (iii).
Similarly, by permuting the letters A, B, C, we can 

show that (i), (ii) and (iii) are equivalent statements.

 Answers: (A), (B), (C), (D)

4. If x is real and 

D =
+ - +
+ + -

- +

= + + + +

( )x

x x x x

x x x

x x x

a x a x a x a x

2

2 3

2

0

7

1

6

2

5

6

2 1 3

3 1 2 3

3 4 2

	 ++ a7

then

(A) a7 = 21 (B) ak
k=
å =

0

6

111

(C) D - = -( )1 32 (D) D =( )1 121

Solution: We have

a7 0

0 1 3

1 2 3

3 4 0

1 0 9 3 4 6

9 30 21

= D =
-

-
-

= - + +
= - + =

( )

( ) ( )

Therefore (A) is true. Again

ak
k=
å = D = -

-
= + - - + + = - + =

0

7

1

2 1 4

4 3 2

2 5 2

2 6 10 1 8 4 4 20 6 32 4 104 1

( )

( ) ( ) ( ) 332

Therefore

a ak
k=
å = - = - =

0

6

7132 132 21 111

Therefore (B) is true. Now

D - =
-

- -
- -

= - + - +

= - + = -

( ) ( ) ( )1

0 3 2

2 3 4

4 5 2

3 4 16 2 10 12

36 4 32

Therefore (C) is true.

 Answers: (A), (B), (C)



5. Let a, b, c be real numbers and

D = D = + + +
+ + +

1

2 2 2

2

2 2 2 2 2 2

1 1 1 1 1 1

a b c

a b c

b c c a a b

b c c a a b

,

Then

(A) D + D =1 2 0

(B) D = D1 2

(C) D = + + D2 1( )ab bc ca

(D) D = D = - - -1 2 ( )( )( )b c c a a b

Solution: We have

D = - -
- -

= - - - - -

= -

1

2 2 2 2 2

2 2 2 2

1 0 0

a b a c a

a b a c a

b a c a c a b a

a b

( )( ) ( )( )

( )(cc a c a b a

a b b c c a

- - + + +

= - - -

)[ ( ) ( )]

( )( )( )

Also

 

D = + + +
+ + +

= + - -
+ - -

2

2 2 2 2 2 2

2 2 2 2 2 2

1 1 1

1 0 0

b c c a a b

b c c a a b

b c a b a c

b c a b a c

== - - - - -
= - - - + + +
= -

( )( ) ( )( )

( )( )[ ( ) ( )]

( )

a b a c a c a b

a b c a c a a b

a b

2 2 2 2

(( )( )b c c a- -

Therefore D = D = - - -1 2 ( )( )( ).a b b c c a  So (B) and (D) 
are true.

 Answers: (B), (D)

6. Let a, b, c be real numbers and

D

a a

b b

c c

D

a b c a

b c a b

c a b c

D a b c

a b c
1

2

2

2

2

2

2

2

3

3 3 3

1

1

1

1 1 1

= =
+
+
+

=, ,

Then

(A) D D a b c2 1= + +( )

(B) D D3 2= -
(C) - = + + =D a b c D D2 1 3( )

(D) D D ab bc ca D3 2 1= = + +( )

Solution: It is known that D1 = (a - b)(b - c) (c - a). 
Now

D

a b c b c a

a b c c a b

a b c a b c

C C

a b c a a

2

2

2

2

2 1=
+ + +
+ + +
+ + +

=
+ + -

( )by adding to

22

2

2

2 1

2

2

2

1

1

1

a b c b b

a b c c c

C C

a b c

a a

b b

c c

a b c

+ + -
+ + -

-

= - + + = - + +

( )

( ) (

by

))

( )

( )( )

D

D a b a c a

a b a c a

C C C C

b a c a

1

3

3 3 3 3 3

2 1 3 1

3 3

1 0 0

= - -
- -

- -

= - - -

and

(( )( )

( )( )[( ) ( )]

( )( )

c a b a

b a c a c ca a b ab a

b a c a

- -

= - - + + - + +
= - -

3 3

2 2 2 2

[[( )( ) ( )]

( )( )( )( )

( ) ( )(

c b c b a c b

b a c a c b a b c

a b b c c a

- + + -
= - - - + +
= - - - ))( )a b c

D

+ +
= - 2

This gives D3 = -D2 = (a + b + c)D1. Therefore (B) and 
(C) are true.

 Answers: (B), (C)

7.  If P is any square matrix, then the sum of its prin-
cipal diagonal elements is called trace of P and is 
denoted by tr(P). Let A and B be two square matri-
ces of same order and l a scalar. Which of the fol-
lowing are true?

(A) t A B t A t Br r r( ) ( ) ( )+ = +  (B) t A t Ar r( ) ( )l l=
(C) t AB t A t Br r r( ) ( ) ( )=  (D) t AB t BAr r( ) ( )=

Solution: Let A a B bij n n ij n n= =´ ´[ ] , [ ] . Therefore

t A B a b a b

t A t B

r ii ii ii ii
i

n

i

n

i

n

r r

( ) ( )

( ) ( )

+ = + = +

= +
===
ååå

111

This implies (A) is true. Again

t A a

a t A

r ii
i

n

ii r
i

n

( )

( )

l l

l l

=

= =

=

=

å

å
1

1

This implies (B) is true. Let AB = [cik]n ´ n where

cik = a bij jk
j

n

=
å

1

Worked-Out Problems 431



Chapter 8  Matrices, Determinants and System of Equations432

Therefore

c a b

b a

t BA

ii ij ji
j

n

i

n

ji
i

n

ij
j

n

r

=

=

=

==

==

ååå

åå
11

11

( )

Clearly t AB t A t Br r r( ) ( )( ).¹  Therefore (A), (B) and (D) 
are true.

 Answers: (A), (B), (D)

8.  Consider the system of equations 3x + my = m and 2x - 
5y = 20. Then

(A)  the system is inconsistent (i.e., has no solution) if 
m = 15/2

(B) the system has no solution, if 2m = -15

(C) has unique solution, if m ¹ -15/2

(D)  has solutions with x > 0, y > 0 if and only if 

m Î - ¥
-æ

èç
ö
ø÷

È ¥, ( , )
15

2
30

Solution: The given system is equivalent to the matrix 
equation

3

2 5 20

m
X

m

-
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

where

X
x

y
=

é

ë
ê

ù

û
ú

If

3

2 5
0

m

-
=

then m = -15/2 and hence the equations are

6x - 15y = - 15 and 2x - 5y = 20

which are inconsistent. Therefore (B) is true.
If m ¹ -15/2, by Crammer’s rule, the system has unique 

solution. Therefore (C) is true.
Now using row operations R1 ® R1 - R2 and R2 ® R2 - 

2R1, respectively, we get

 
1 5

2 5

20

20

m
X

m+
-

é

ë
ê

ù

û
ú =

-é

ë
ê

ù

û
ú

and 
1 5

0 2 15

20

2 60

+
- -

é

ë
ê

ù

û
ú =

-
- +

é

ë
ê

ù

û
úm

X
m

m

Therefore

and 

x m y m

m y m

+ + = -

- + = -

( )

( )

5 20

2 15 60 2

Therefore

y
m

x
m

m
=

-
+

=
+

2 60

2 15

25

2 15m
and

This gives

x y m> > Û Î - ¥
-æ

èç
ö
ø÷

È ¥0 0
15

2
30and , ( , )

Therefore (D) is true.

 Answers: (B), (C), (D)

9. It is given that

x x x x

x x x x

x x x x

xA B

2

2

2

1 2

2 3 1 3 3 3

2 3 2 1 2 1

+ + -
+ - -

+ + - -
= +

where A and B are determinants of order 3 not involv-
ing x. Then

(A) A = -
-

1 1 1

4 0 0

3 3 3

 (B)  B =
-

-
-

0 1 2

4 0 0

3 3 3

(C) A =
-

1 1 1

4 0 0

3 3 3

 (D) B =
-

-
0 1 2

4 0 0

3 3 3

Solution: Let

D =
+ + -

+ - -
+ + - -

D =
+ + -

-

x x x x

x x x x

x x x x

x x x x

x

2

2

2

2

1 2

2 3 1 3 3 3

2 3 2 1 2 1

1 2

4 0 0
22

2 2 1 3

2 3 2 1 2 1

1 2

4 0 0

2 3 2 1 2 1

+ + - -
® - +

D =
+ -

-
+ - -

x x x

R R R R

x x x

x x x

[ ( )]by

byy

b

R R
x

R

R R
x

R

x x x

1 1

2

2

3 3

2

2

4

4

1 2

4 0 0

3 3 3

® +
æ
èç

ö
ø÷

é

ë
ê

® +
ù

û
ú

D =
+ -

-
-

and

( yy R R R3 3 12® - )



= -
-

+
-

-
-

= +

x

xA B

1 1 1

4 0 0

3 3 3

0 1 2

4 0 0

3 3 3

 Answers: (A), (B)

10. Let

f x

x

x x

x x

( ) =
- -

- -
- +

6 1

2 3 3

3 2 2

and a < b < g  be the roots of f(x) = 0. Then

(A) g = 2

(B) f x x( ) < < <0 for a b

(C) f x x( ) > < <0 for b g

(D) f x x( ) > < <0 for a b

Solution: By the row operation R1 ® R1 - R2 and 
taking x - 2 common from R1, we get

f x x x x

x x

f x x x x

x x

( ) ( )

( ) ( )

= -
-

- -
- +

= -
-

- - -
+ -

2

1 3 1

2 3 3

3 2 2

2

1 3 1

0 3 6 1

0 2 9 11

2

1 0 0

0 3 6 1

0 2 9 1

3(

( ) ( )

(

by 2 , + 3 )

by

2 2 1 3 1R R R R R R

f x x x x

x x

® - ®

= - - - -
+ -

CC C C C C C2 2 1 3 3 13® - ® +, )

Therefore 

f x x x x

f x x x x

( ) ( )( )( )

( ) ( )( )( )

= - - - -
= - + - -

2 1 5 15

3 3 1 2

Hence we get

a b g= - = =3 1 2, ,

 Answers: (A), (B), (C)

Matrix-Match Type Questions

1.  Match the items of Column I with those of Column II.
Let

A B=
é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú

1 2

3 4

1 1

2 0
and

Column I Column II

(A) A + AT
(p) 

- -é

ë
ê

ù

û
ú

5 11

1 3

(B) (A + B)T (q) 
2 5

5 8

é

ë
ê

ù

û
ú

(C) (AB)T (r) 
0 1

3 4

é

ë
ê

ù

û
ú

(D) BTAT (s) 
4 1

3 0

é

ë
ê

ù

û
ú

Solution:

(A) A A+ =
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

T
1 2

3 4

1 3

2 4

2 5

5 8

 Answer: (A) Æ (q)

(B) A B+ =
é

ë
ê

ù

û
ú +

-
-

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú

1 2

3 4

1 1

2 0

0 3

1 4

Therefore 

( )A B+ =
é

ë
ê

ù

û
ú

T
0 1

3 4

 Answer: (B) Æ (r)

(C) AB =
é

ë
ê

ù

û
ú

-
-

é

ë
ê

ù

û
ú =

- - +
- - +

é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù1 2

3 4

1 1

2 0

1 4 1 0

3 8 3 0

5 1

11 3ûû
ú

Therefore

( )AB T =
- -é

ë
ê

ù

û
ú

5 11

1 3

 Answer: (C) Æ (p)

(D) ( )AB B AT T T=
 Answer: (D) Æ (p)
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2. Match the items of Column I with those of Column II.

Column I Column II

(A)

 

cos( ) cos( ) cos( )

cos( ) cos( ) cos( )

cos( ) co

A P A Q A R

B P B Q B R

C P

- - -
- - -
- ss( ) cos( )C Q C R- -

equals

(p) 1

(B)  If a, b, g are roots of x bx c3 0+ + = , 
then the value of the determinant 

a b g
b g a
g a b

is

(q) -1

(C) 

b c a

c a b

a b c

+
+
+

1

1

1

is equal to (r) 0

(D)  If the system of equations 

x y z x y z+ = + + + =3 1 2 8, ( ) ( )l l
x y- -( ) ( )1 2+ = +l l

has infinitely many solutions, then 
value of l is

(s) -5/3

Solution:

(A) Given determinant is

cos sin

cos sin

cos sin

cos sin

cos sin

cos sin

A A

B B

C C

P P

Q Q

R R

0

0

0

0

0

0

0´ = ´ 00 0=

 Answer: (A) Æ (r)

(B) a b g
b g a
g a b

a b g a b g a b g
b g a
g a b

b g a
g a b

a b g

=

+ + + + + +

=

0 0 0

( + + = 0)∵

= 0

 Answer: (B) Æ (r)

(C) b c a

c a b

a b c

a b c a

a b c b

a b c c

+
+
+

=
+ +
+ +
+ +

=
1

1

1

1

1

1

0

 Answer: (C) Æ (r)

(D) The system has infinitely many solutions

Þ
-

+ + -
- + +

=

Þ + -
- - +

=

1 1 3

1 2 8

1 1 2

0

1 0 0

1 1 3 5

1 2 5

0

l l
l l

l l
l l

( )

Therefore 3l2 + 2l - 5 = 0 and hence

l =
-

1
5

3
,

 Answer: (D) Æ (p), (s)

3.  Match the items of Column I with those of Column II. 
Let

S A=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 1

1 0 1

1 1 0

2 2 0

0 2 0

0 0 2

and

Column I Column II

(A) S2 = (p) 
-

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

1 1 1

1 1 1

(B) 2S -1 = (q) 

0 1 1

1 1 1

1 2 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(C) 1/2(SA) = (r) 

2 0 0

1 1 1

1 1 3-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(D) SAS -1 = (s) 

2 1 1

1 2 1

1 1 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Solution:

(A) S2

0 1 1

1 0 1

1 1 0

0 1 1

1 0 1

1 1 0

2 1 1

1 2 1

1 1 2

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

úú
ú
ú

 Answer: (A) Æ (s)

(B) adj S =
-

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

1 1 1

1 1 1



Therefore

S
S
S

S- = =1 1

2

adj
adj

det

 Answer: (B) Æ (p)

(C) 
1

2

1

2

0 1 1

1 0 1

1 1 0

2 2 0

0 2 0

0 0 2

0 1 1

1 0 1

1 1 0

SA =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
êê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 0

0 1 0

0 0 1

0 1 1

1 1 1

1 2 0

 Answer: (C) Æ (q)

(D) SAS- =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

´
-

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

0 2 2

2 2 2

2 4 0

1

2

1 1 1

1 1 1

1 1 1

 

=
0 1 1

1 1 1

1 22 0

1 1 1

1 1 1

1 1 1

2 0 0

1 1 1

1 1 3

é

ë

ê
ê
ê

ù

û

ú
ú
ú

´
-

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 Answer: (D) Æ (r)

4. Match the items of Column I with those of Column II.

Column I Column II

(A)  If w ¹ 1 is a cube root of unity, 
then the value of the determinant

1

1

1

3 2

3

2

w w

w w

w w

(p) 0

(B)   

a b b c c a

b c c a a b

c a a b b c

- - -
- - -
- - -

(q) 2

(C)   

1

1

1

2

2

2

a a bc

b b ca

c c ab

-
-
-

(r) 3

(D) If 

a b b c c a

b c c a a b

c a a b b c

k abc a b c

+ + +
+ + +
+ + +

= - - -( ),3 3 3 3 then isk

(s) -3

Solution:

(A) D = Given determinant = 

1 1

1 1

1

2

2

w

w

w w

D =
-

= - - -

= - - +

= - - +

0 1

0 1

1

2

2

2

2

2 2

2

4 3 2

w

w

w w w

w w w w C C

w w w

w w

( )( ) ( )

( )

[

by 1

22

1 2 3

]

[ ]= - - - =

 Answer: (A) Æ (r)
(B)  Given

determinant = - - -
- - -

0 0 0

b c c a a b

c a a b b c

 (on adding R2 + R3

 to R1) = 0

 Answer: (B) Æ (p)

(C) Given

determinant = -
1

1

1

1

1

1

2

2

2

a a

b b

c c

a bc

b ca

c ab

= -

= -

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

a a

b b

c c
abc

a a abc

b b abc

c c abc

a a

b b

c c

a a

b b

cc c2 1

0=

 Answer: (C) Æ (p)

(D)  Given determinant equals

2

a b c b c c a

a b c c a a b

a b c a b b c

+ + + +
+ + + +
+ + + +

 (by C1 + C2 + C3)

=
+ + - -
+ + - -
+ + - -

= + +

= + +

2 2

1

1

1

2

1

a b c a b

a b c b c

a b c c a

a b c

a b

b c

c a

a b c

a

( )

( )

bb

b a c b

c a a b

0

0

- -
- -
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a b c a b c a c b

a b c a

2

2

2

2

= + + - - - - -

= - + +

( )[ ( ) ( )( )]

( )[ ++ + - - -

= - - -

b c ab bc ca

abc a b c

2 2

3 3 32 3

]

[ ]

 Answer: (D) Æ (q)

5. Match the items of Column I with those of Column II.

Column I Column II

(A)  Let A
a b

c d
=

é

ë
ê

ù

û
ú .  If A3 = O, then 

A2 is

(p)  orthogonal 
matrix

(B) The matrix 
cos sin

sin cos

q q
q q-

é

ë
ê

ù

û
ú  is (q) zero matrix

(C)  If A and B are symmetric 
matrices, then AB + BA is

(r)  idempotent 
matrix

(D) The matrix 

2 2 4

1 3 4

1 2 3

- -
-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 is

(s)  symmetric 
matrix

Solution:
(A) A O A ad bc ad bc3 0 0= Þ = Þ - = Þ =det

Now A satisfies its characteristic equation | |A xI= = 0 
where I is a 2 ´ 2 unit matrix. This implies

A a d A ad bc

A a d A

2

2

0- + = =

= +

( ) ( )

( )

∵

(1) If a + d = 0, then A2 = 0.
(2) If a + d ¹ 0, then

0 3 2 2= = + =A a d A A O( ) and hence

 Answer: (A) Æ (q), (r), (s)

(B) Let

P =
-

é

ë
ê

ù

û
ú

cos sin

sin cos

q q
q q

Therefore

PPT =
-

é

ë
ê

ù

û
ú

-é

ë
ê

ù

û
ú =

é

ë
ê

cos sin

sin cos

cos sin

sin cos

q q
q q

q q
q q

1 0

0 1

ùù

û
ú

Therefore P is orthogonal. 

 Answer: (B) Æ (p)

(C) By hypothesis A A B BT T= =and . Then

( ) ( ) ( )AB BA AB BA

B A A B BA AB AB BA

+ = +

= + = + = +

T T T

T T T T

Hence AB + BA is symmetric.

 Answer: (C) Æ (s)

(D) Let Q =
- -

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 2 4

1 3 4

1 2 3

Now

Q2

2 2 4

1 3 4

1 2 3

2 2 4

1 3 4

1 2 3

4 2 4

=
- -

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

- -
-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+ - - 44 6 8 8 8 12

2 3 4 2 9 8 4 12 12

2 2 3 2 6 6 4 8 9

- + - - +
- - + + - + -

+ - - - + - - +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

== Q

 Answer: (D) Æ (r)

6. Match the items of Column I with those of Column II.

Column I Column II

(A)  The system of equations 
l lx y z x y z+ + = - + + =0 0, ,  
- - + =x y zl 0  will have non-zero 
solution, if real value of l is

(p) 1

(B)  In the system of equations given 
in (A) if l = 1, then the number of 
solutions is

(q) -1

(C)  If the system of equations 

x cy bz y az cx z bx ay= + = + = +, ,  
has non-zero solution in x, y and z, 
then a b c abc2 2 2 2+ + +  is equal to

(r) ±1

(D)  If P is a matrix of order 3 ´ 3 such that 
P P IT =  (unit matrix of order 3 ´ 3) 
and det P = 1 then det (P – I) equals

(s) 0

Solution:

(A) The system has non-zero solution, if

l
l

l

1 1

1 1

1 1

0-
- -

=

Solving this we get

l l l( )2 3 0 0+ = Þ =
 Answer: (A) Æ (s)

(B) In the above system, if l = 1, then the matrix

l
l

l

1 1

1 1

1 1

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

is non-singular and hence x = 0, y = 0, z = 0 is the only 
solution. This is called trivial solution.

 Answer: (B) Æ (p)



(C) The system has non-zero solution. This implies

-
-

-
=

1

1

1

c b

c a

b a

c

- - - - - + + =

+ + + =

1 1 0

2 1

2

2 2 2

( ) ( ) ( )a c c ab b ca b

a b c abc

 Answer: (C) Æ (p)

(D) | | | ( )| | | | |

|( ) | | | | |

P I P P I P P P I P

I P I P P I

- = - = - = -

= - + - = - -

T T T T

T

Therefore | | .P I- = 0

 Answer: (D) Æ (s)

Comprehension-Type Questions

1.  Passage: If A is a square matrix, then the  polynomial 
equation f(x) º |A - xI| = 0 is called characteristic equa-
tion of the matrix A. It is given that every square matrix 
satisfies its characteristic equation, that is f(A) = O. If 

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 2

1 2 3

3 1 1

then answer the following questions:

(i) The characteristic equation of the matrix A is

(A) x x x3 23 8 2 0- - + =  (B) x x x3 23 8 2 0+ - + =
(C) x x x3 23 8 2 0+ - - =  (D) x x x3 23 8 2 0+ + + =

(ii) A-1 is equal to

(A) 
1

2

1

8
1 1

8 6 2

5 3 1

-
-

-
- -

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 (B) -
- -

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

2

1 1 1

8 6 2

5 3 1

(C) 

- - -
-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

8 6 2

3 3 1

 (D) 

- -
-

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

8 6 2

5 3 1

(iii) (A-1)2 equals

(A) 4
1

2

3

2

1I A I+ +-  (B) - - --1

2
8 31( )A A I

(C) 
1

2
8 31( )A A I+ +-  (D) 

1

2
8 31( )A A I+ --

Solution:

(i) Characteristic equation of A is 

-
-

-
=

x

x

x

1 2

1 2 3

3 1 1

0

Solving we get

- - - - - - - + - + =

- - + - + + + -

x x x x x

x x x x x

[( )( ) ] ( ) ( )

[ ]

2 1 3 1 1 9 2 1 6 3 0

2 3 3 8 62 110 0=

- + + + + + - =

- - + =

x x x x x

x x x

3 2

3 2

3 8 6 10 0

3 8 2 0

 Answer: (A)
(ii) From the given information

A A A I O

A A I A I

A A A I

3 2

2

1 2

3 8 2

1

2
3 8

1

2
3 8

- - + =

- - - =

= - - --

( )

( )

 Answer: (B)

(iii) ( ) ( )

( )

A A A A A I A

A I A

- - - -

-

= = - - -

= - - -

1 2 1 1 2 1

1

1

2
3 8

1

2
3 8

 Answer: (B)

2. Passage: Let A be a 3 ´ 3 matrix,

X

x

y

z

b

b

b

b

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

and

1

2

3

Using elementary row operations on the matrix equa-
tion AX = B, we obtain an equation of the form A¢X = 
B¢ which is equivalent to the system AX = B. That is 
either both systems are inconsistent or both have the 
same set of solutions in x, y and z. Consider the fol-
lowing system of equations

x y z x y z x y z+ + = + + = + + =6 2 2 10 2, and l m

Answer the following questions

(i)  The number of values of l for which the system 
has unique solution is

(A) only one value

(B) all real values except two values

(C) only two real values

(D) all real values except one value
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(ii) The system has no solution if

(A) l m= ¹2 10,

(B) l m= =3 10,

(C) l m= - =3 10,

(D) l m= - = -3 10,

(iii) The system has infinitely many solutions, if

(A) l m¹ ¹3 10,

(B) l m= =2 10,

(C) l m¹ =3 10,

(D) l m= =0 10,

Solution:

(i) The given system is

1 1 1

1 2 2

1 2

6

10

1 1 1

0 1 1

0 1 1

l m

l

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

X

X

66

4

6

2 2 1

3 3 1m -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

® -
® -

( ,

)

by R R R

R R R

1 0 0

0 1 1

0 0 2

2

4

10
3 3l m-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

® -
® -

X
R R R

R R R

(by ,1 1 2

22 )

Let

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

1 2 2

1 2 l

then det A = l - 2. Therefore l ¹ 2 Þ A is non-
singular matrix and hence

AX B X A B= Þ = -1

is the unique solution.
 Answer: (D)

(ii) If l m= ¹2 10and ,  then the system reduces to 

x y z x y z= + = + + = - ¹6 4 0 0 0 10 0, , m

Hence, no solution, if l m= ¹2 10and .

 Answer: (A)

(iii)  For l m= =2 10, ; the system has infinite number of 
solutions

 Answer: (B)

3.  Passage: Suppose A is a square matrix of order 3 3´ , 

X

x

y

z

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
 and B is column matrix of 3 1´  order. It is 

given that, applying elementary row operations on the 
equation AX = B, we get a system of the form A¢X = B¢ 
such that both systems are equivalent. Based on this 
information, answer the following questions for the 
equations

and 

x y z

x y z

x y z

+ + =
+ + =

+ + =

1

2 4

4 10 2

l

l  

(i) The system is consistent for

(A) only one value of l
(B) only two values of l
(C) all real values except two values

(D) infinite number of values

(ii) The system is inconsistent for
(A) only one value of l
(B) only two values of l
(C) only three values of l
(D) infinite number of values of l

(iii) When l = 1, solution of the given system is given by

(A) x k y k z k= + = - =2 1 3, ,

(B) x k y k z k= = - + =2 3 1, ,

(C) x k y k z k= = - =, ,3

(D) x k y k z k= - = - =2 1 3, ,

where k is any real number.

Solution: Given system is

1 1 1

1 2 4

1 4 10

1

2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

X l
l

1 1 1

0 1 3

0 3 9

1

1

12

2 2 1

3 3

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

® -
® -

X
R R R

R R R
l
l

( ,by

11)

1 0 2

0 1 3

0 0 0

2

1

3 22

1 1 2

-é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-
-

- +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

® -
X

R R R

R

l
l

l l

( ,by

33 3 23® -R R )

(i) The system is inconsistent if l ¹ 1 2and .
 Answer: (B)

(ii) The system is consistent, if l = 1 2, .

 Answer: (D)
(iii)  If l = 1, the given system is equivalent to the system 

x - 2z = 1, y + 3z = 0 whose solution is x = 2k + 1, 
y = -3k and z = k.

 Answer: (A)



Assertion–Reasoning Type Questions
In each of the following, two statements, I and II, are 
given and one of the following four alternatives has to 
be chosen.

(A)  Both I and II are correct and II is a correct reason-
ing for I.

(B)  Both I and II are correct but II is not a correct rea-
soning for I.

(C) I is true, but II is not true.

(D) I is not true, but II is true.

1.  Statement I: There exit matrices B and C of order 

2 2´  with integer elements such that

B C3 3
1 1

0 2
+ =

-
-

é

ë
ê

ù

û
ú

     Statement II: Every square matrix satisfies its charac-
teristic equation. That is, if A is a square matrix, then 
A satisfies the polynomial equation det (A - xI) = 0 
where I is a unit matrix of same order as that of A.

Solution: Let 

A =
-

-
é

ë
ê

ù

û
ú

1 1

0 2

Therefore

| | ( )( )A xI
x

x
x x- =

- -
- -

= + +
1 1

0 2
1 2

The characteristic equation is

f x x x( ) ( )( )º + + =1 2 0

that is

f x x x( ) º + + =2 3 2 0

Statement II is true by Cayley–Hamilton theorem.

f A A A I

A A A

A I A

( )

)

= Þ + + =

Þ + + =

Þ + - =

0 3 2 0

3 2 0

1

2

3 2

3(

Take
B A I= + =

-
é

ë
ê

ù

û
ú

0 1

0 1
 and C = -I

We get A B C= +3 3.

2. Statement I: If

2 1

3 2

3 2

5 3

1 0

0 1

é

ë
ê

ù

û
ú

-
-

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
úA

then A is equal to

1 1

1 0

-é

ë
ê

ù

û
ú

    Statement II: If A and B are square matrices of the 
same order and P, Q are non-singular matrices compat-
ible for multiplication with A such that PAQ = B, then 
A P BQ= - -1 1.

Solution: Clearly Statement II is true. Now let

P Q=
é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú

2 1

3 2

3 2

5 3
, and

P Q

A P Q P Q

- -

- - - -

=
-

-
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú =

1 1

1 1 1 1

2 1

3 2

3 2

5 3

1 0

0 1

and

==
-

-
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú ¹

-é

ë
ê

ù

û
ú

2 1

3 2

3 2

5 3

1 1

1 0

1 1

1 0

Therefore statement I is false.

3.  Statement I: If A and B are square matrices of order 
3 3´  then adj (AB) = (adj B)(adj A).

    Statement II: For a square matrix of order 3 3´ ,

P P P P P I( ) ( ) (det )adj adj= =

where I is the third order unit matrix.

Solution: P P P P P I( ) ( ) (det )adj adj= =
Therefore Statement II is true. Now

AB B A A B B A

A B I A

( ) ( ) ( )( )

(det ) ( )

adj adj adj adj

adj

× =
=

 

=
=
=

(det ) ( )

(det )(det )

[det( )]

B A A

B A I

AB I

adj

Similarly (adj B)(adj A)AB = [det (AB)]I

Therefore adj (AB) = (adj B)(adjA).

 Answer: (A)

4.  Statement I: If A is a nonsingular matrix, then adj
(A-1) = (adj A)-1.

     Statement II: If P and Q are square matrices then
adj (PQ) = (adj Q)(adj P).

Solution: Statement II is clear from Q3 above.

Now ( )( ) ( )

( )

adj adj adj

adj

A A A A

I I

- -=
= =

1 1

Also
( )( ) ( )adj adj adj adjA A AA I I- -= = =1 1

Therefore ( ) ( ).adj adjA A- -=1 1

 Answer: (A)
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5.  Statement I: Let B be a matrix of 3 ́  3 order and
adj B = A. If P and Q are matrices of 3 ́  3 order such 
that | | | |P Q= =1  then adj ( ) .Q BP PAQ- - =1 1

     Statement II: If M is non-singular square matrix of 

order 3 ´ 3, then adj adj( ) ( ) .M M- -=1 1

Solution: Statement II is true is clear from Q4 above.

adj adj adj adj

adj adj adj

( ) ( )( )( )

( )( )( )

Q BP P B Q

P B Q

- - - -

- -

=

=

1 1 1 1

1 1

==
=

P B Q

PAQ

( )adj

since adj and adj| | | | ( ) ( ) .P Q P P Q Q= = Þ = =- -1 1 1

 Answer: (A)

6. Statement I: If 

A = -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 0

2 1 0

0 0 1

then

( ) [ ]A A I- -= + -1 2 11

5
5A

     Statement II: If P is a square matrix of order 3 ́  3, 
then P satisfies the polynomial equation | | .P xI- = 0

Solution: Statement II is Cayley–Hamilton theorem.

| |A xI

x

x

x

x x x- =
-

- -
- -

= - - + +
1 2 0

2 1 0

0 0 1

5 53 2

Since A satisfies its characteristic equation we get

- - + + =

+ - - =

+ - =

= + --

A A A I O

A A A I O

A A A I I

A A A I

A

3 2

3 2

2

1 2

5 5

5 5

1

5
5

1

5
5

( )

( )

( -- -= + -1 2 11

5
5) ( )A I A

 Answer: (A)

7. Statement I: If 2s a b c= + + , then

a s a s a

s b b s b

s c s c c

s s a s b s

2 2 2

2 2 2

2 2 2

32

( ) ( )

( ) ( )

( ) ( )

( )( )(

- -
- -
- -

= - - -- c)

    Statement II:

( )

( )

( )

( )

b c a a

b c a b

c c a b

abc a b c

+
+

+
= + +

2 2 2

2 2 2

2 2 2

32

Solution: Let

D =
+

+
+

D =
+ - + - +

( )

( )

( )

( ) ( ) ( )

b c a a

b c a b

c c a b

b c a b c a b c

2 2 2

2 2 2

2 2 2

2 2 2 2 2

bb c a b

c a b c

C C C C C C

2 2 2

2 2 2

2 2 1 3 3 1

0

0

( )

( )

( , )

+ -
+ -

- -by ® ®

Taking a + b + c common from C2 and C3 we get

D = + +
+ - - - -

+ -
+ -

D = + +
-

( )

( )

( )

a b c

b c a b c a b c

b c a b

c a b c

a b c

bc c

2

2

2

2

2

0

0

2 2 --
+ -

+ -

® - +

2

0

0

2

2

1 1 2 3

b

b c a b

c a b c

R R R R[ ( )]by

D = +

+

+ +

® + ® +æ
èç

ö

2 0 0

1 1

2
2

2
2

2

2 2 1 3 3 1

bc

b c a
b
c

c
c
b

a b

a b c

C C
b

C C C
c

C

( )

,by
øø÷

 

= + + - + +

= + +

2

2

2

3

bc c a a b bc a b c

abc a b c

[( )( ) ]( )

( )

Therefore Statement II is true. Now put s – a = x, s – b = y,
s – c = z so that 

x + y + z = s, y + z = a, z + x = b, x + y = c

Therefore

a s a s a

s b b s b

s c s c c

y z x x

y z

2 2 2

2 2 2

2 2 2

2 2 2

2

( ) ( )

( ) ( )

( ) ( )

( )

(

- -
- -
- -

=
+

+ xx y

z z x y

)

( )

2 2

2 2 2+

Use Statement II. Hence, Statement I is correct.

 Answer: (A)



1.  If A is a square matrix, then the number of ordered 
pairs of matrices (P, Q) where P is a symmetric matrix 
and Q is a skew-symmetric matrix such that A = P + Q 
is .

Solution: If A is any square matrix, then 1 2/ ( )A A+ T  
is symmetric and 1 2/ ( )A A- T  is skew-symmetric and 

A A A A A= + + -
1

2

1

2
( ) ( )T T

Suppose A = P + Q where P is symmetric matrix and Q is 
skew-symmetric matrix. Then

A P Q P QT T T= + = -

But

P A A Q A A= + = -
1

2

1

2
( ) ( )T T

Therefore (P, Q) is a unique pair.

 Answer: 1

2. If 

x x x x

x x x

x x x

a x a x a x a x a

2

0

4

1

3

2

2

3 4

3 1 3

1 2 4

3 4 3

+ - +
+ - -
- +

= + + + +

then the value of a4
 is .

Solution: Forx = 0  we get

a4

0 1 3

1 0 4

3 4 0

1 0 12 3 4 0 0

=
-

-
-

= - + - =( ) ( )

 Answer: 0

3. If

6 3 1

4 3 1

20 3

i i

i

i

x iy

-
- = +

where i = -1, given x y2 2+  is equal to .

Solution: The given determinant is equal to

6 3 3 3 4 20 1 12 60

12 60 12 60 0 0 0

i i i i

i i i

( ) ( ) ( )- + + + + - =

- + + - = = +

Therefore x y= =0 0, .

 Answer: 0

4.  The number of pairs (A, B) where A and B are 3 3´  
 matrices such that AB BA I- =  (I is the unit matrix 
of 3 3´  order) is .

Solution: Let

A

a b c

a b c

a b c

B

a b c

a b c

a b

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
1 1 1

2 2 2

3 3 3

1

1

1

1

1

1

2

1

2

1

2

1

3

1

3

and
11

3

1c

é

ë

ê
ê
ê

ù

û

ú
ú
ú

such that AB BA I- = . Principal diagonal elements of 

AB BA-  are equal to 1.

 ( ) ( )a b a b c a c a2

1

1 2 1

1

1 3

1

1

1

3 1- + - =  (8.25)

 ( ) ( )a b a b c b c b2 1

1

2

1

1 2 3

1

2

1

3 1- + - =  (8.26)

 ( ) ( )a c a c b c b c3 1

1

3

1

1 3 2

1

3

1

2 1- + - =  (8.27)

Adding Eqs. (8.26) and (8.27) we get

( ) ( )a b a b a c a c2 1

1

2

1

1 3 1

1

3

1

1 2- + - =

which is impossible according to Eq. (8.25). Hence, there 
exist no such matrices.

 Answer: 0

5.  Let S be the set of all symmetric matrices of order 
3 3´ , all of whose elements are either 0 or 1. If five of 
these elements are 1 and four of them are 0, then the 
number of matrices in S is .

Solution: Let A SÎ . In a symmetric matrix the (i, j)
th element is same as (j, i)th element for i j¹ . That is, 
upper and lower parts of the principal diagonal are 
reflections of each other through the principal diago-
nal. Hence the principal diagonal of A must have three 
1’s or two 0’s and a single because A has five 1’s and 
four 0’s. If all the three diagonal elements are 1, the 
number of such matrices is 3C1. If two diagonal elements 
are zeros and one is 1, then the number of such matri-
ces is 3C1 ´ 3C1. Therefore, total number of matrices in 
S C C C= + ´ = + ´ =3

1

3

1

3

1 3 3 3 12.

 Answer: 12

6.  Let a, b, c be real positive numbers such that abc = 1 
and 

A

a b c

b c a

c a b

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

Let S be the set of all such matrices A such that 
A A IT = . Then, the number of matrices in S is .

Integer Answer Type Questions
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Solution:

A A I

a b c ab ab

ab a b c ab

ab ab a b c

T = Þ
+ + å å
å + + å
å å + +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 2 2

2 2 2

2 2 2

==
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0

0 1 0

0 0 1

Now å =ab 0 which is not possible as a, b, c are positive. 
Hence S is an empty set.

Note: In 2003 (JEE), under the same hypothesis, it was 
asked to find the value of a3 + b3 + c3 for which many 
authors gave a3 + b3 + c3 value as 4, without verifying the 
fact whether such matrices exist or not.

 Answer: 0

7.  Consider the 8 × 8 square matrix filled with the  natural 
numbers from 1 to 64 as is given below.

1 2 3 4 8

9 10 11 12 16

17 18 19 13 24

57 58 59 60 64

	
	
	

� � � � � �
	

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
úú
ú

A number is selected from the board and the cor-
responding row and column are deleted. Again 
another number is selected and the row and column 
are deleted. The process is continued upto 8 times so 
that no row and no column is left. Then the sum of the 
numbers so selected is .

Solution: Observe that the element in the ith row and jth 

column is ( ) .i j- +1 8  Let a a aj j j1 2 81 2 8
, , ,…  be the numbers 

so selected where j j j1 2 8, , , …  are different. Therefore

a i jij
i

i
i

i
= =
å å= - +

= + + + + + + + + + +
= ´

1

8

1

8

1 8

8 0 1 2 3 7 1 2 3 8

8 28

[( ) ]

( ) ( )	 	
++

= +
=

36

224 36

260

 Answer: 260

8. Let

A kk
k k k

k k k

=
é

ë
ê

ù

û
ú =

cos cos sin

cos sin sin
( , )

2

2
1 2

a a a
a a a

If the difference between a a1 2and  is an odd multiple 
of p /2, then A A1 2

 is a matrix whose sum of all its ele-
ments is equal to

Solution: We have

A A1 2

1 2 1 2

1 2 1 2

1=
é

ë
ê

ù

û
ú -

cos cos cos sin

sin cos sin sin
cos(

a a a a
a a a a

a aa

a a

p a a

2

1 2

1 2

0 0

0 0 2 0

)

/ , )
=

é

ë
ê

ù

û
ú

-

- =

é

ë
ê
ê

ù∵ is an odd mutiple

of cos( ûû
ú
ú

Sum of the elements of A A1 2  is 0.

 Answer: 0

 9. If x, y, z are non-zero real numbers and 

1 1 1

1 1 2 1

1 1 1 3

0

+
+ +
+ + +

=
x

y y

z z z

then - + +
æ
èç

ö
ø÷

1 1 1

x y z
 is equal to  .

Solution: Let Δ be the given determinant. Then apply 
row transformation R R R R R R1 1 3 2 2 3® - ® -,  we get

D =
- - +

=

D = -

- - + +

= ® -

x

y y

z z z

x

y y
y
x

z z z
z

x

C C

0 1

2 0

2 2 1 3

0

0 0

2 1

2 2 1 3
2

0
1

3 3by
xx

C1

æ
èç

ö
ø÷

Solving we get

x y z
z

x
z

y
x

xy zxy yz zx y

2 1 3
2

2 1 0

2 6 4 2 2

+ +æ
èç

ö
ø÷ + -æ

èç
ö
ø÷

é
ëê

ù
ûú

=

+ + + -[ zz

xyz
x y z

x y z

]

( )

=

+ + +
é

ë
ê

ù

û
ú =

- + +
æ
èç

ö
ø÷

=

0

2
1 1 1

3 0

1 1 1
3

 Answer: 3

10. If

f x

x x

x x

x x

ax bx cx dx e( ) = = + + + +
2

6

6

2 4 3 2

then the absolute value of 5 4 3 2a b c d e+ + + +  is 
.
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8.1  Matrix: Let aij (l £ i £ m and l £ j £ n; m and n are 
positive integers) be real numbers or complex num-
bers or functions or any kind of expressions. Then 
the arrangement of these aij in the shape of a rectan-
gle enclosed by two brackets is called a rectangular 
matrix of order m ´ n.

a a a a
a a a a

a a a a

n

n

m m m mn

11 12 13 1

21 22 23 2

1 2 3

	
	
	
	
	

× ×
× ×

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
úú

is an m ´ n matrix

An m ´ n matrix in which the (i, j)th element is 
aij will be written as [ ] [ ] .a aij m n ij m n´ ´or

Horizontal lines are called rows and vertical 
lines are called columns aij is the element in the ith 
row and jth column position.

8.2  Vertical and horizontal matrices: If the number 
of rows is greater than the number of  columns, it is 
called vertical matrix.

If the number of rows is less than the number of 
columns, it is called horizontal matrix.

QUICK LOOK 

Rectangular matrix means either vertical or  horizontal 
matrix.

8.3  Square matrix: If the number of rows is same as 
the number of columns, then the matrix is called a 
square matrix.

8.4  Principal diagonal and trace: In a square matrix 
[ ] ,aij n n´  the elements a11, a22, a33, ¼, ann are called 
 principal diagonal elements and their sum is called 
Trace of the matrix and is denoted by Trace A where 
A is a given square matrix.

8.5  Zero (null ) matrix and unit matrix: In a matrix, if all 
the elements are zeros, then it is called zero matrix.

In a square matrix, if the principal diagonal ele-
ments are equal to 1 and the rest are zeros, it is called 
unit matrix.

 8.6  Upper and lower triangular matrices: A square 
matrix A aij n n= ´[ ] is called upper triangular matrix, 
if aij = 0 for i > j (i.e., the elements below the princi-
pal diagonal are zeros).

It is called lower triangular, if aij = 0 for i < j 
(i.e., the  elements above the principal diagonal are 
zeros).

 8.7  Diagonal matrix: A matrix which is both upper and 
lower triangular is a diagonal matrix or a square 
matrix A aij n n= ´[ ]  is called diagonal matrix, if aij = 0 
for i ≠ j.

 8.8  Scalar matrix: In a diagonal matrix, if all the  principal 
diagonal elements are equal, it is called scalar matrix. 
That is in a square matrixA aij n n= ´[ ] , if

a
i j

i jij

0 for

real or complex for

¹
=

ì
í
îl ( )

then A is called scalar matrix.

 8.9  Transpose of a matrix: The matrix obtained from a 
given matrix by changing its rows in to columns is 
called transpose of the given matrix. If A is a matrix, 
its  transpose is denoted by AT or A1.
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About transpose:

1. If A is of order m ´ n, then AT is of order n ´ m.
2.  The (i-j)th element of A is equal to ( j-i)th element 

of AT.
3. (AT)T = A.

8.10  Addition of matrices: If A aij m n= ´[ ]  and B = [ ]bij m n´  
are two matrices of same order m ´ n, then the 
matrix whose (i-j)th element is aij + bij called sum of
A and B and is denoted by A B a bij ij m n+ = +[ ] .´

8.11  Scalar multiplication: If A aij m n= ´[ ]  is a matrix and 
k is a scalar (i.e., real or  complex) then kA is the
matrix [kaij]m ´ n.

In particular, if k = −1, then (−1) A is denoted 
by −A.

   SUMMARY

Solution: We have

f x x x x x x x x x

x x x x

( ) ( ) ( ) ( )= - - - + -

= - - +

6 6 2 6 6

12 12

2 3 2

4 3 2

Therefore a b c d e= = - = - = =1 1 12 12 0, , , , . Also

5 4 3 2 5 4 36 24 0 11a b c d e+ + + + = - - + + = -

So that absolute value is 11.

 Answer: 11
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8.12  Difference of matrices: If A and B are two  matrices 
of same order, then A - B is defined as A + (−B).
That is, if A a B bij m n ij m n= =[ ] [ ] ,´ ´and  then A − B = 
[aij − bij]m´n.

8.13  Theorem: The following hold for any matrices of 
same order.

(1) If A and B are matrices of same order, then 
A + B = B + A. (commutative law)

(2) If A, B and C are matrices of same order, then 
(A + B) + C = A + (B + C) (Associative law).

(3) A + O = O + A = A for any matrix of order 
m ´ n where O is a zero matrix of m ´ n order.

(4) A + (-A) = (-A) + A = O.

(5) If A and B are of same order, and l is a scalar, 
then l(A + B) = lA + lB.

(6) If l and μ are any two scalars, then (l + μ)A = 
lA + μA for any matrix A.

(7) If A is an m ´ n matrix and l = 0 is the usual zero 
scalar and 0 is the m ´ n zero matrix, then 0A = 0.

(8) (AT)T = A.

(9) (A ± B)T = AT ± BT.

(10) (lA)T = lAT where l is a scalar.

8.14  Matrix multiplication: Let A = [aij]m´n and B = [bjk]n´p 
be two matrices of orders m ́  n and n ́  p respectively.
Let

C a b a b a b a b a bik ij jk i k
j

n

i k i k in r= = + + + +
=

å ( ) 1 1

1

2 2 3 3 	

Then the matrix [cik]m´p (order m ´ p) is the prod-
uct AB.

1.  For convenience and easy to remember, the 
 general element of A is taken as (i-j)th element 
aij and that of B as (j-k)th element bjk and writ-
ten (i-k)th element as the general element of the 
product AB. In fact to write some rth row and 
sth column element of the product AB, take the 
rth row of A and sth column of B, multiply the 
 corresponding elements and add.

2.  The product AB is defined only when the number 
of columns of A is same as the number of rows of B.

3.  In general AB and BA are not equal, even though 
when both products are defined.
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8.15  Theorem: Let A, B, C be m ´ n, n ´ p and p ´ q 
matrices and l, any scalar. Then, the following hold.

(1) (AB)C = A(BC) (Associative law).

(2) (lA)B = l(AB) = A(lB).

(3) 0A = A0 = 0 where 0 is the zero matrices of 
 appropriate orders.

(4) If Im and In are unit matrices of orders m and n 
respectively, then Im A = A = AIn.

8.16 Distributive laws:

(1) Let A, B be matrices of same order m ´ n and C 
be any matrix of order n ´ p. Then

(A + B)C = AC + BC 

(2) Let A be of order m ´ n and B, C be of order 
n ´ p. Then

A(B + C) = AB + AC

8.17  Important feature of a scalar matrix: Square matrix 
A is a scalar matrix if and only if A  commutes with 
every matrix of the same order.

8.18  Transpose of a product: Let A and B be two  matrices 
of m ´ n and n ´ p orders , respectively. Then

(AB)T = BTAT

8.19  Inverse of a matrix: Let A be a square matrix of 
order n ´ n. If B is a square matrix of the same order 
n × n such that AB = BA = In (unit matrix of order n), 
then B is called inverse of A and is denoted by A−1. 
If a matrix has inverse, then it is called invertible 
matrix.

8.20 Inverse

(1) (A−1)−1 = A.

(2) If A and B are square matrices of same order 
having inverses, then AB has also inverse and 
(AB)−1 = B−1A−1.

(3) If A is an invertible matrix, then

(A−1)T = (AT)−1

8.21 Some kinds of matrices:

(1) Symetric matrix: A square matrix A is called 
 symmetric matrix, if AT = A.

(2) Skew-symmetric matrix: A square matrix A is 
called skew-symmetric if AT = −A.

(3) Orthogonal matrix: Square matrix A is called 

orthogonal matrix, if ATA = I.

(4) Idempotent matrix: Square matrix A is called 
idempotent matrix if A2 = A.
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In a skew-symmetric matrix, all the principal diagonal 
elements must be zeros. The converse is not true.



(5) Nilpotent matrix: Square matrix A is called 
 nilpotent matrix, if Am = O for some positive 
integer m. The least positive integer m such 
that Am = O is called the index of the nilpotent 
matrix A.

(6) Periodic matrix: Square matrix A is called 
 periodic matrix, if Ap+1 = A for some positive 
integer p. The least such positive integer p is 
called the period of A.

QUICK LOOK 

An idempotent matrix is a periodic matrix of period 1.

(7) Involutary matrix: Square matrix A is called 
 involuntary matrix, if A2 = I.

QUICK LOOK 

Every involuntary matrix is a periodic matrix of 
period 2.

8.22  Theorem: Let A and B be square matrices of order 
n ´ n. Then the following hold.

(1) If A and B are symmetric matrices then so is 
A ± B.

(2) If A and B are skew-symmetric matrices, then so is 
A ± B.

(3) If AB = BA and A and B are symmetric (skew-
symmetric) then AB is symmetric.

(4) If A is symmetric, then for any scalar l, lA is 
also symmetric. If A is skew-symmetric, then 
lA is also skew-symmetric.

(5) If AB = BA, then AB is skew-symmetric prov-
ided one of A and B is symmetric and the other 
is skew-symmetric.

8.23  Theorem: If A is any square matrix, then A + AT is 
symmetric and A − AT is skew-symmetric.

8.24  Representing square matrix in terms of symmetric 
and skew-symmetric matrices: Every square matrix A 
can be expressed as a sum of  symmetric and skew- 
symmetric matrices uniquely and the representation is

A A A A A= + + -
1

2

1

2
( ) ( )T T

8.25  Conjugate of a matrix: It A is a matrix whose 
 elements (i.e., entries) are complex numbers, then 
the matrix obtained from A by replacing its elements 
with their corresponding complex conjugates is called 
 conjugate of A and is denoted byA.

For example, if 

A
i i

i i a ib
=

+ -

- +

é

ë

ê
ê

ù

û

ú
ú

1 2

1

2
2

then

A
i i

i i a ib
=

-

+ - -

é

ë

ê
ê

ù

û

ú
ú

1 2

1

2
2

8.26 Some properties of conjugate:

(1) ( ) .A A=
(2) ( )l lA A=  for any scalar l.

(3) ( ) .A B A B± = ±
(4) AB A B= .

8.27 Theorem: If A is any matrix, then

( ) ( )A AT T=

8.28 Notation: ( )A T  is denoted by A*.

8.29  Hermitian and skew-Hermitian matrices: Square 
matrix A is called Hermitian or skew-Hermitian 
according as A* = A [i.e., ( )A AT = ] or

A A A A* [ ]= - -i.e., ( ) =T

8.30  Theorem: Let A and B be matrices. Then the 
 following hold.

(1) (A*)* = A.

(2) ( )* *l lA A=  for any scalar l where l  is the 
complex conjugate of l.

(3) ( )* * *.A B A B± ±=
(4) (AB)* = B*A* when A and B are compatible 

for multiplication.

8.31 On Hermitian and skew-Hermitian matrices:

(1) If A is any square matrix, then A + A* is 
Hermitian and A − A* is skew-Hermitian.

(2) If l is real and A is Hermitian (skew-Hermi-
tian) then lA is Hermitian (skew-Hermitian).

(3) If A is Hermitian, then iA is skew-Hermitian 
and iA is Hermitian, if A is skew-Hermitian.

(4) If A and B are Hermitian, then so is A ± B.

(5) If A and B are skew-Hermitian, then so is A ± B.

(6) If AB = BA and A, B are Hermitian, then AB is 
also Hermitian.

(7) If A and B are skew-Hermitian and AB = BA, 
then AB is Hermitian.

Summary 445
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(8) If AB = BA and one of A and B is Hermitian 
while the other is skew-Hermitian, then AB is 
skew-Hermitian.

8.32  Decomposition of a square matrix in terms of 
Hermitian and skew-Hermitian matrices: Let A 
be a square matrix. Then A can be expressed as sum 
of Hermitian and skew-Hermitian matrices in one 
and only one way and the representation is

A A A A A= + + -1

2

1

2
( ) ( )* *
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In the above, if we take 

P A A= +1

2
( )*  and Q

i A A
=

-( )*

2

where i = -1,  then A = P + iQ, where both P and Q 
are Hermitian matrices.

Determinants
Even though the determinant of any square matrix whose 
elements are real (complex) numbers may be defined, 
our main focus is on determinants of 2 ´ 2 matrix or 3 ´ 3 
matrix. We begin with minor and cofactors of the elements 
of a matrix.

Throughout this summary on determinants our matri-
ces are 3 ´ 3 matrices and in some cases 2 ´ 2 matrices.

8.33 Let

A
a b

c d
=

é

ë
ê

ù

û
ú

Then the number ad − bc is called the determinant 
of A and is denoted by det A or | |.A

8.34  Minor: Let A be a 3 ´ 3 matrix. Then, the determi-
nant of the 2 ´ 2 matrix obtained from A, by delet-
ing the ith row and jth column of A is called minor 
of A with respect to (i−j)th element (i = 1, 2, 3 and 
j = 1, 2, 3). (i−j)th minor is denoted by Mij.

8.35  Cofactor: (−1)i+j Mij is called the cofactor of the ele-
ment aij with respect to the matrix A. The cofactor 
of the element aij is denoted by Aij (capital letter).
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In the formation of Aij, the ith row and jth column will 
not participate.

8.36 Determinant of 3 ´ 3 matrix:
Let

A

a b c

a b c

a b c

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

2 2 2

3 3 3

Then det A (or | |A ) = a1A1 + b1B1 + c1C1, where 
A1, B1 and C1 are the cofactors of a1, b1 and c1, 
respectively.

Expansion:

det ( ) ( )

( )

A a b c b c b a c a c

c a b a b a
b c

b c

= - - -

+ - = -

1 2 3 3 2 1 2 3 3 2

1 2 3 3 2 1

2 2

3 3

bb
a c

a c
c

a c

a c1

2 2

3 3

1

2 2

3 3

+

8.37 Properties of determinants:
Let

A

a b c

a b c

a b c

=
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ê
ê
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û

ú
ú
ú

1 1 1

2 2 2

3 3 3

and capital letters Ai, Bi and Ci respectively denote 
 cofactors of ai, bi and ci for i = 1, 2, 3. Then

(1)  a2A2 + b2B2 + c2C2 = a3A3 + b3B3 + c3C3 = a1A1 + 
a2A2 + a3A3 = b1B1 + b2B2 + b3B3 = c1C1 + c2C2 + 
c3C3 = det A

That is, we can expand the determinant in 
any row or any column.

(2) In a matrix A, if any two rows (columns), are 
 interchanged, then the sign of the determinant 
will change.

(3) In a matrix, if two rows (columns) are identical, 
then the value of the determinant is zero.

(4) det A = det (AT).

(5) The elements of a row (column) are multiplied by 
some non-zero constant l amounts that, the deter-
minant is multiplied with the same constant l.

In other words, if l is a common factor of 
all the  elements of a row (column), then the 
determinant of the matrix is equal to l times the 
determinant of the matrix obtained after taking 
away l from the elements of that row (column).

For example

l l l
l

a b c

a b c

a b c

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

=

(6)  det (lA) = l3 det A. In general, if A is a square 
matrix of order n, then det (lA) = ln det A.



  (7) aiAj + biBj + ciCj = 0 for i ≠ j.

That is, the sum of the products of the 
elements of a row with cofactors of the cor-
responding elements of another row is always 
zero. The same is true for  columns also.

  (8)  The determinant of a matrix is unaltered by 
adding constant times the elements of a row 
to the  corresponding elements of another row. 
The same is true for columns also.

  (9)  If each element of a row (column) is sum of two 
 elements, then the determinant of the matrix 
can be expressed as sum of two determinants.

(10)  If A and B are two square matrices of same 
order, then det (AB) = (det A) (det B).

8.38  Adjoint of a matrix: Let A be a square matrix and 
B is the matrix obtained from A, by replacing its 
elements with their corresponding cofactors. Then 
BT is called adjoint of A. Adjoint of A is written as 
adj A.

For example, let 

A

a b c

a b c

a b c

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

2 2 2

3 3 3

and A1, B1, C1, etc. denote the cofactors of a1, b1, c1 
etc. Then

adj A

A A A

B B B

C C C

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 3

1 2 3

1 2 3

8.39  Theorem: If A is a square matrix, then A(adj 
A) = (det A) I = (adj A) A, where I is the  corresponding 
unit matrix.

8.40  Existence of inverse and formula for inverse: If 
A is a square matrix, then A−1 exists if and only if 
det A ≠ 0 and in such a case

A
A
A

- =1 adj

det

8.41  Non-singular and singular matrices: Square matrix 
A is called non-singular or singular according as 
det A ≠ 0 or det A = 0.
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A−1 exists if and only if A is a non-singular matrix. That 
is, non-singular matrices only, will have inverses.

Elementary Row (Column) Operations

8.42  The following are called elementary row (column) 
operations on a matrix.

(1) Interchanging of two rows (columns) denoted 
by Rij(Cij). That is, interchanging of ith and jth 
rows (ith and jth columns).

(2) Multiplication of the elements of a row 
(column) by a non-zero constant k denoted by 
Ri(k)(Ci(k)).

(3) Multiplying the elements of a row (column) 
with a non-zero constant k and adding to 
the  corresponding elements of another row 
(column) denoted by Rs + Rr(k) or Rs: Rs + Rr(k).

That is multiplying the elements of rth row 
by k and adding to the corresponding elements 
of sth row. Same is Cs : Cs + Cr(k).

Elementary transformation means either row 
or column transformation.

8.43  Elementary matrix: Matrix obtained from unit 
matrix by applying elementary transformations. 
Every elementary matrix is invertible.

8.44  Theorem: Every non-singular matrix can be expre-
ssed as a product of elementary matrices.

Systems of Linear Equations

8.45  Homogeneous system: Let aij (l £ i £ m, l £ j £ n) be 
mn real numbers. Then the system of equations

a x a x a x

a x a x a x

a x a

n n

n n

m m

11 1 12 2 1

21 1 22 2 2

1 1

0

0

+ + + =
+ + + =

+

	
	

� � � �
� � � �

22 2 0x a xmn n+ + =	

is called homogeneous system of m equations in n 
unknowns.

Matrix equation: If

A a X

x

x

x

ij m n

n n

= =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

´

´

[ ] ,

1

2

1

�
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and O is m ´ 1 zero matrix, then the above homoge-
neous system of equations can be represented by the 
matrix equation AX = O.

Non-homogeneous system: AX = B where

B

b

b

bm

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

1

2

�
�

is an m ´ 1 matrix and atleast one bi ≠ 0.
In both systems A is called coefficient matrix.

8.46  Zero solution or trivial solution: For AX = O,  t1 = x2 =
x3 = 	 = xn = 0 is always solution and this solution is 
called zero solution or trivial solution.

8.47 Non-zero solution (non-trivial solution) 

X

x

x

xn

=

é

ë

ê
ê
ê
ê
ê
ê

ù

û
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ú
ú
ú
ú
ú

1

2

�
�

is called a non-zero solution, if atleast one xi ≠ 0 and 
satisfies the equation AX = O.

8.48  Existence of non-zero solution: Suppose A is a non-
zero square matrix. A is non-singular if and only if 
X = O is the only solution of AX = O and hence
AX = O has non-zero solution if and only if A is a 
 singular matrix (i.e., det A = O) and in such a case, 
the system has infinitely many solutions.

8.49  About AX = B (unique solution): If A is non- 
singular matrix and B is non-zero column matrix, 
then AX = B has unique solution, viz., X = A−1B.

8.50  Crammer’s rule: Consider the system of simultane-
ous equations a1x + b1y + c1z = d1, a2x + b2y + c2z = d2 
and a3x + b3y + c3z = d2 where atleast one di ≠ 0. Let

D =
a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

and Δk is the determinant obtained from Δ by 
replacing its kth column with 

d

d

d

1

2

3

é
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Then

x x x1
1

2
2

3
3= D

D
= D

D
= D

D
, ,

is the solution for the given simultaneous system 
of equations.

8.51  Consistency and inconsistency system: If AX = B 
has a solution, then it is called consistent system, 
otherwise inconsistent system.

8.52  Geometrical interpretation: Consider the system 
of three simultaneous equations a1x + b1y + c1z = d1, 
a2x + b2y + c2z = d2, a3x + b3y + c3z = d3 which rep-
resent planes in the three dimensional space. Then

(1) Unique solution means, all the three planes are 
 concurrent at a single point.

III

III

(2) Infinite number of solutions means, all the three 
planes pass through a single straight line.

III

II

I

(3) Inconsistent means either all the three planes are 
parallel to each other or form a triangular prism.

III

III

III

II

I



8.53  Let f(x) º a0x
m + a1x

m–1 + 	 + am where a0, a1, 
a2, ¼, am are real (complex) numbers. If A is a 
square matrix, then f(A) means, the matrix a0A

m + 
a1A

m–1 + a2A
m–2 + 	 + am–1A + amI where I is the 

unit matrix of order same as A.

8.54  Characteristic polynomial (equation of a matrix):
If A is a square matrix, then | |A xI- which is a poly-
nomial with real or complex coefficients is called 
 characteristic polynomial of the matrix A and the 
equation | |A xI- = 0 is called characteristic equa-
tion of the matrix A.

8.55  Cayley–Hamilton theorem: Every square matrix 
statisfies its characteristic equation. That is, if A is 
a square matrix and f x A xI( ) | |,= -  then f (A) = O 
(zero matrix).

8.56  Condition for a non-singular matrix: Let A be 
square matrix of order n f(x) = |A - xI| = a0x

n + 
a1x

n-1 + a1x
n-2 + 	 + an. Then A is non-singular if 

and only if an ≠ 0.

   EXERCISES

Single Correct Choice Type Questions

1.  The number of 2 ´ 2 matrices with real entries which 

 commute with the matrix 
1 2

1 1- -
é

ë
ê

ù

û
ú is

(A) 1 (B) 2 (C) 4 (D) infinite

2.  If A
a b

c d
=

é

ë
ê

ù

û
ú  where abcd ¹ 0, then AAT - ATA is 

equal to

(A) ( )c b
b c d a

d a b c
-

+ -
- - -
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(B) ( )b c
b c d a

d a b c
-

+ -
- - -
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û
ú

(C) ( )c d
d a b c

b c d a
-

- - -
+ -
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ê
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ú

(D) ( )a b c d
a d b c

b c a d
+ - -

- +
+ -

é
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û
ú

3. If A Ak

k

n
=

é

ë
ê

ù

û
ú =å

1 1

0 1 1
, then  is equal to

(A) 
n n

n

+é
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ê
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ú

1

0

(B) 
n n

n

-
-
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ú

1

0 1

(C) 
n

n n

n

( )+é
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ú

1

2

0

(D) 
n

n n

n

+
+ +

+
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ê

ù

û
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ú

1
1 2

2

0 1

( )( )

 4. If

F x

x x

x x( )

cos sin

sin cos=
-é

ë

ê
ê
ê

ù

û

ú
ú
ú

0

0

0 0 1

then F x F y( ) ( ) is equal to

(A) F xy( )  (B) F
x
y

æ
èç

ö
ø÷

(C) F x y( )+  (D) F x y( )-

 5.  Let a ¹ -1, b ¹ -1, c ¹ -1, be real numbers. If the equa-
tions a(y + z) = x, b(z + x) = y, and c(x + y) = z has 
non-zero solution, then the value of 

1

1

1

1

1

1+
+

+
+

+a b c  is

(A) 2  (B) 1 (C) 1/2 (D) -2

 6. The value of x Î[ , / ]0 2p  such that the matrix

2 1

2 3

0

sin sin cos

sin cos tan

cos tan

x x x

x x

x x

-

- -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

is skew-symmetric is

(A) p/2 (B) p/3 (C) p/4 (D) p/6

 7.  If w is a non-real cube root of unity and i = -1,  then 
the value of the determinant

1 1

1 1

1 1 1

2 2

2

w i w

i i w

i w

+ +
- - - - +
- - -

is

(A) 1 (B) i (C) w (D) 0
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 8.  Let a, b, c be positive and x any real number. Then, 
the value of the determinant

1 1 1
2 2 2

2 2 2

( ) ( ) ( )

( ) ( ) ( )

a a b b c c

a a b b c c

x x x x x x

x x x x x x

+ + +
- - -

- - -

- - -

is

(A) 0  (B) ( )a b c+ + 2

(C) ( )a b c x+ +  (D) ( )a b c x+ + -

 9. If 

a a d a d

a a d a d

a d a d a d

+ +
+ +

+ + +
=

2

2

2 3 2 2 2

02 2 2( ) ( ) ,

then

(A) d = 0 (B) d a= -
(C) a d a= = -0 or  (D) d d a= = -0 or

10.  Let 1 9£ £x y z, ,  be integers which are in AP. If x51, 
y41 and z31 are three digit numbers, then the value 
of the determinant

5 4 3

51 41 31x y z

x y z

is equal to

(A) x y z+ +  (B) x y z- +  (C) xyz  (D) 0

11.  Which one of the following systems of equations has 
unique solution?

(A) 3 4 3

2 3 2

6 5 5 3

x y z

x y z

x y z

- + =
+ - = -
+ - = -

 (B) x y z

x y z

x y z

+ - =
- + =

- + =

2 0

2 3 0

5 4 1

(C) x y z

x y z

x y z

+ + =
+ + =

+ - =

9

2 5 7 52

2 0

 (D) y z

z x

x y

+ =
- =
+ =

1

1

1

12. The value of the determinant

11

4

11

5

12

12

6

12

7

13

2

13

8

13

9

14

4

C C C

C C C

C C C

m

m

m

+

+

is equal to zero when the value of m is

(A) 6 (B) 5 (C) 4 (D) 1

13. The determinant 

bc ab ca

ab ca bc

ca bc ab

 is equal to

(A) 

bc a a

b ca b

c c ab

2 2

2 2

2 2

 (B) 

1

1

1

2

2

2

a a

b b

c c

(C) 

a b c

b c a

c a b

 (D) 

a a a

b b b

c c c

2 3

2 3

2 3

14. 

29 26 22

25 31 27

63 54 46

 equals

(A) 122 (B) 132 (C) 0 (D) 1

15. 

a b c a a

b b c a b

c c c a b

- -
- -

- -

2 2

2 2

2 2

 is equal to

(A) abc a b c( )+ + 3  (B) ( )( )ab bc ca a b c+ + + + 2

(C) ( )a b c+ + 3  (D) ( )( )ab bc ca a b c+ + + +

16. If the system of equations

ax y z bx y z cx y z+ + = + + = + + =4 0 3 0 2 0, ,

has non-zero solution, then a, b, c are in

(A) AP (B) GP (C) HP (D) AGP

17. For a fixed positive integer n, let

D

n n n

n n n

n n n

=
+ +

+ + +
+ + +

! ( )! ( )!

( )! ( )! ( )!

( )! ( )! ( )!

1 2

1 2 3

2 3 4

Then ( /( !) )D n 3 4-  is divisible by

(A) n (B) ( !)n 2 4+  (C) n! + 4 (D) n + 4

18.  If A and B are symmetric matrices of same order, 
then the matrix AB BA-  is 

(A) symmetric matrix (B) skew-symmetric matrix

(C) diagonal matrix (D) null matrix

19. 

0

0

0

2 2

2 2

2 2

ab ac

a b bc

a c b c
 is equal to

(A) a b c3 3 3  (B) 2 3 3 3a b c
(C) 2 2 2 2( )( )a b c a b c+ + + +  (D) 4 2 2 2a b c

20. Which one of the following matrices is non-singular?

(A) 

1 1 1

1 1 5

1 2 4

- -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

 (B) 

4 5 2

5 4 2

2 2 8

- -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú



(C) 
2 5

6 15

é

ë
ê

ù

û
ú  (D) 

2 7 6

3 5 2

4 2 7

- -
-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

21. If A A=
-é

ë

ê
ê
ê

ù

û

ú
ú
ú

-

2 0 1

5 1 0

0 1 3

1, then  equals

(A) A A I2 6 11+ -  (B) A A I2 6 11+ +
(C) A A I2 6 11- +  (D) A A I2 6 6- -

22. Let w ¹ 1 be a cube root of unity and

A

w w

w w

w w

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

1

1

2

2

2

Then A- =1

(A) 

1

1

1

2

2

2

w w

w w

w w

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 (B) 

1 1 0

0 1 1

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(C) 

1 0 1

0 1 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 (D) does not exist

23. If A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

5 3 1

2 1 3

1 2 4

,  then adj A is equal to

(A) 

- -
- -

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 10 8

5 19 13

3 7 1

 (B) 

2 10 8

5 19 13

3 7 1

-
- -

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(C) 

2 10 8

5 19 13

3 7 1

-
- -

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 (D) 

- -
-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 10 8

5 19 13

3 7 1

24. Value of the determinant

1 2 2

2 1 2

2 2 1

2 2

2 2

2 2

+ - -
- +

- - -

a b ab b

ab a b a

b a a b

is

(A) ( )1 2 2 3+ +a b  (B) ( )1 3 3 2+ +a b

(C) ( )( )a b a b2 2 2 2 21+ + +  (D) 2 1 2 2 3( )+ +a b

25. Let

A

b c

b

x b c

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

13

5 15

1 1

2

3 3

If the sum of the elements of each row, each column 
and each of the diagonals of A are equal, then value 
of x is

(A) 9 (B) 10

(C) 12 (D) cannot be determined

Multiple Correct Answer Type Questions

1. Consider the following system of equations:

x y z x y z x y z- + = - + + = - + =2 4 4 2 2 2, ,l

Which of the following statements are true?

(A) System has infinitely many solutions when l = 2

(B) Unique solution when l ¹ 1

(C) Has no solution when l = 1

(D) Unique solution when l = 1

2. If the determinant

a b a b

b c b c

a b b c

a
a

a a

+
+

+ +
=

0

0

then which of the following may be true?

(A) a, b, c are in AP

(B) a, b, c are in GP

(C) a, b, c are in HP

(D) x - a  is a factor of ax bx c2 2+ +

3. Let A =
- -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

4 5 2

5 4 2

2 2 8

,  then

(A) A is non-singular (B) A-1  does not exist

(C) det (adj A) = 0 (D) A is idempotent

4. Consider the matrix

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 2

1 2 3

3 1 1

and the system of equations

and 

y z x y z

x y z

+ + = + + + =

+ + + =

2 8 0 2 3 14 0

3 8 0

,
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Then

(A) A is non-singular

(B) The system has unique solution

(C) A is singular

(D) The system has infinitely many solutions

 5. Let A =
-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

2 1 0

1 0 0

.  Then

(A) A A2 =  (B) A I3 =
(C) A I2 =  (D) A A2 1= -

 6. Let A =
é

ë
ê

ù

û
ú

3 8

2 1
. Then

(A) 13 41A A I- = -  (B) adj A =
-

-
é

ë
ê

ù

û
ú

1 8

2 3

(C) |adj A| = 13 (D) A A3 =

 7.  Let A be a matrix whose elements are real or complex.
A matrix is obtained from A whose elements are the 
complex conjugates of the corresponding elements 
of A is denoted by A. That is, if A = [aij]m´n, then 
A aij m n= ´[ ] . In such case

(A) ( )A A=
(B) If l  is a scalar, then ( )l lA A=
(C) AB AB=
(D) ( ) ( )( )AB B AT T T=

 8.  If A is any matrix, then ( ) ( )A AT T=  and we denote 
( )A T  by A*. Which of the following are true?

(A) (A*)* = A

(B) (A + B)* = A* + B*

(C) (AB)* = B*A*

(D) If l is a scalar, then (lA)* = lA*

 9.  A square matrix A is called Hermitian or skew-
Hermitian according as A A A A* *= = -or  where 
A A* ( ) .is T  Which of the following are true?

(A)  In a skew-Hermitian matrix, each principal diag-
onal element is either zero or pure imaginary.

(B)  If A and B are Hermitian matrices and AB BA= , 
then AB is also Hermitian matrix.

(C)  If A and B are Hermitian matrices, then AB BA-  
is skew-Hermitian.

(D)  If A is Hermitian and i = -1, then iA is skew-
Hermitian.

10. If A
x

x
A=

é

ë
ê

ù

û
ú =

2

2
1253and | | , then x may be

(A) 5 (B) 3 (C) –5 (D) –3

11.  Let D

d

d

d

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

2

3

0 0

0 0

0 0

 which of the following are true?

(A) D is a symmetric matrix

(B) If d1, d2, d3 ¹ 0, then

D

d

d

d

- =

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

1

1

2

3

1
0 0

0
1

0

0 0
1

(C) Trace of D d d d= + +1 2 3

(D) D commutes with every 3 ´ 3 order matrix

12.  Let A
i

i
B C

i

i
=

-
é

ë
ê

ù

û
ú =

-é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

0

0

0 1

1 0

0

0
, , and  where 

i = -1. Then

(A) A B C I2 2 2= = = -  (B) - = -B A BA1

(C) A CB= - -1  (D) C B A- - -= -1 1 1

13.  Let a b c> > . If the system of equations ax + by + cz = 0, 
bx + cy + az = 0 and cx + ay + bz = 0 has non-zero solu-
tion, then the quadratic equation at bt c2 0+ + =  has

(A) real roots

(B) one positive root

(C) one positive and one negative root

(D) non-real roots

14. Let A =
-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 1

2 1 0

1 0 0

.  Then

(A) A In3 =  for all positive integers n

(B) A A- =1 2

(C) A is a periodic matrix with least period 3

(D) |adj A| = 1

15.  If A and B are square matrices of same order such 
that AB A BA B= =and , then

(A) A A B B2 2= =and
(B) A B B A2 2= =and
(C) AB BA=
(D) A and B are periodic matrices



Matrix-Match Type Questions
In each of the following questions, statements are given 
in two columns, which have to be matched. The state-
ments in Column I are labeled as (A), (B), (C) and (D), 
while those in Column II are labeled as (p), (q), (r), (s) 
and (t). Any given statement in Column I can have cor-
rect matching with one or more statements in Column II.
The appropriate bubbles corresponding to the answers 
to these questions have to be darkened as illustrated in 
the following example.

Example: If the correct matches are (A) ® (p), (s); (B) ® 
(q), (s), (t); (C) ® (r); (D) ® (r), (t); that is if the matches 
are (A) ® (p) and (s); (B) ® (q), (s) and (t); (C) ® (r); 
and (D) ® (r), (t); then the correct darkening of bubbles 
will look as follows:

A

B

C

D

p q r s t

1.  Column I contains some matrices while Column II 
contains their corresponding determinants values. 
Match them.

Column I Column II

(A) 

a b c

a b b c c a

b c c a a b

- - -
+ + +

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(p) a b c abc3 3 3 3+ + -

(B) 

b c a

a b c

c a b

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(q) 3 3 3 3abc a b c- - -

(C) 

a bc ac c

a ab b ac

ab b bc c

2 2

2 2

2 2

+
+

+

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(r) 4 2 2 2a b c

(D) 

b c a a

b c a b

c c a b

2 2 2 2

2 2 2 2

2 2 2 2

+
+

+

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(s) ( )a b c+ + 3

2.  Let w ¹ 1 be a cube root of unity and

A
w

w
=

é

ë
ê

ù

û
ú

0

0

Match the items of Column I with the items of Column II.

Column I Column II

(A) A2

(p) 
w

w

2

2

0

0

é

ë
ê

ù

û
ú

(B) A3

(q) 
1 0

0 1

é

ë
ê

ù

û
ú

(C) A-1

(r) 
0 1

1 0

é

ë
ê

ù

û
ú

(D) A2010

(s) 
w

w

0

0

é

ë
ê

ù

û
ú

3.  w ¹ 1 is a cube root of unity. Column I consists of 
some matrices and Column II consists of their corre-
sponding determinant values. Match them.

Column I Column II

(A) 

1

1

1

2

2

2

w w

w w

w w

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(p) -3 2w

(B) 

1 1 1

1 1

1

2 2

2 4

- -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

w w

w w
(q) 0

(C) 

1

1

2

2 2

2 2

+ -
+ -
+ -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

w w w

w w w

w w w w
(r) –3

(D) 

1 1

1 1

1

2

2

w

w

w w

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(s) 3 1w w( )-
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4. Match the items of Column II with those of Column II.

Column I Column II

(A) 

1

1

1

yz y z

zx z x

xy x y

+
+
+

= (p)  (x – y)(y – z)(z – x)
(xy + yz + zx)

(B) 

1

1

1

2

2

2

x x

y y

z z

= (q)  –(x + y + z)(x – y)(y – z)
(z – x)

(C) 

x y z x

y z x y

z x y z

+
+
+

=

2

2

2

(r) (x - y)(y - z)(z - x)

(D) 

x y z

x y z

yz zx xy

2 2 2 = (s) (x + y + z)(x - y)(y - z)(z - x)

5. Match the items of Column I with those in Column II.

Column I Column II

(A) The matrix 

0 0 0

0 1 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 is (p) Nilpotent matrix

(B) The matrix 

a h g

h b f

g f c

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 is (q) Diagonal matrix

(C) Matrix 

1 3 4

1 3 4

1 3 4

- -
-

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 is (r) Idempotent matrix

(D)  If

F( )

cos sin

sin cos ,a
a a
a a=

-é

ë

ê
ê
ê

ù

û

ú
ú
ú

0

0

0 0 1

then the matrix F
p
2

2

æ
èç

ö
ø÷

æ
èç

ö
ø÷

 is

(s) Symmetric matrix

Comprehension-Type Questions

1. Passage: Let A be a square matrix. Then 

(A) A is called idempotent matrix, if A A2 = .

(B)  A is called nilpotent matrix of index k, if Ak = O 
and Ak-1 ¹ O.

(C) A is called involutory matrix if A I2 = .

(D)  A is called periodic matrix with least periodic k, if 
A A A Ak k+ = ¹1 and .

Answer the following questions:

(i) The matrix 
0 1

1 0

-
-

é

ë
ê

ù

û
ú  is

 (A) idempotent (B) involutory

 (C) nilpotent (D) skew-symmetric

(ii) If A is an idempotent matrix, then I A-  is

 (A) idempotent

 (B) nilpotent

 (C) involutory

 (D) periodic matrix with least period 4

(iii) The matrix A =
- -

-
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 3 4

1 3 4

1 3 4

 is

 (A) idempotent matrix

 (B) involutory

 (C) nilpotent matrix of index 2

 (D) AA IT = .

2.  Passage: Let A be 3 ´ 3 matrix and B is adj A. Answer 
the following questions:

(i) If A =
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 1

1 2 0

3 1 4

, then A-1  is equal to

 (A) 
1

11

8 5 2

4 3 1

7 3 1

- -
- -
- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 (B) 
1

11

8 5 2

4 3 1

7 3 1

-
-

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 (C) 
-

- -
- -

- -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1

11

7 3 1

4 3 1

8 5 2

 (D) 
1

11

8 5 2

7 3 1

4 3 1

-
-

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(ii) If A =
- -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

4 5 2

5 4 2

2 2 8

,  then adj B is equal to
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 (A) 0 (B) I

 (C) 

- -
-

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

36 36 18

36 36 18

18 18 0

 (D) 

- -
-

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

36 36 18

36 36 18

18 18 0

(iii) If det A ¹ 0, then B-1  is

 (A) A (B) | |A A

 (C) A
A| |

 (D) A
A

-1

| |

3.  Passage: Let A X X X=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0

2 1 0

2 2 1

1 2 3and , ,  be column 

matrices such that 

AX AX AX1 2 3

1

0

0

2

3

0

2

3

1

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

, and

Let X be the 3 ´ 3 matrix whose first, second and third 
 columns are, respectively, X X X1 2 3, .and  Answer the 
following questions:

(i) The value of det(X ) is

 (A) 3 (B) –3 (C) 3/2 (D) 2

(ii) The sum of all the elements of X-1  is

 (A) –1 (B) 0 (C) 1 (D) 3

(iii) The matrix [ ]3 2 0

3

2

0

1 3´

é

ë

ê
ê
ê

ù

û

ú
ú
ú

X  is

 (A) [ ]5 1 1´  (B) 
5

2 1 1

é
ëê

ù
ûú ´

 (C) [ ]4 1 1´  (D) 
3

2 1 1

é
ëê

ù
ûú ´

4. Passage: Let X1, X2 and X3 be column matrices such that

1 2 3

2 4 1

3 2 1

6

7

6

1 2 3

2 4 1

3 2 9

1

2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

X

X

,
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17

2

1 1 1

1 1 1

2 1 1

6

2

1

3

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

and X

A is the 3 ´ 3 matrix whose first, second and third 
rows are respectively X X X1 2 3

T T Tand, . Answer the 
following questions:

(i) det A is equal to

 (A) 2 (B) 0 (C) –8 (D) 8

(ii) Sum of all the elements of A is

 (A) an even number

 (B) a number of the form 4 3k +
 (C) a prime number

 (D) a perfect square of an integer

(iii) tr (adj A) is

 (A) even number

 (B) number of the form 3 2k +
 (C) perfect cube of an integer

 (D) a prime number

In each of the following, two statements, I and II, are 
given and one of the following four alternatives has to 
be chosen.

(A)  Both I and II are correct and II is a correct reason-
ing for I.

(B)  Both I and II are correct but II is not a correct reason-
ing for I.

(C)  I is true, but II is not true.

(D) I is not true, but II is true.

1.  Statement I: The determinant of the matrix 

0 1 2

1 0 3

2 3 0

- -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 

is zero.

Statement II: The determinant of a skew-symmetric 
matrix of odd order is zero.

2.  Statement I: The system of equations x + y + z = 4, 
2x – y + 2x = 5, x – 2y – z = –3 has unique solution.

Statement II: If A is a 3 ´ 3 matrix and B is a 3 ´ 1 
non-zero column matrix, then the equation AX B=  
has unique solution if A is non-singular.

3.  Statement I: The matrix 

1 0 0

0 0 1

0 1 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 is an idempotent 

matrix.

Statement II: If A is an idempotent matrix, then A A4 = .

Assertion–Reasoning Type Questions
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Integer Answer Type Questions

The answer to each of the questions in this section is a 
non-negative integer. The appropriate bubbles below the 
respective question numbers have to be darkened. For 
example, as shown in the figure, if the correct answer to 
the question number Y is 246, then the bubbles under Y 
labeled as 2, 4, 6 are to be darkened.

X Y Z

0 0 0 0

1 1 1 1

2 2 2

3 3 3 3

9 9 9 9

8 8 8 8

7 7 7 7

6 6 6

5 5 5 5

4 4 4

W

1.  If A =
- - -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 3

1 2 3

1 2 3

, then the least positive integer k 

such that Ak = 0  is .

2.  Let Z1, Z2, Z3, be non-zero complex numbers and 

|Z1| = a, |Z2| = b, |Z3| = c. If the matrix 

a b c

b c a

c a b

é

ë

ê
ê
ê

ù

û

ú
ú
ú
 is 

singular and D is the area of the triangle whose verti-
ces are at Z Z Z1 2 3, and and R is its circumradius, then 

4

32

D
R

 is equal to .

3.  Let S be the set of all 2 ´ 2 matrices whose elements 
are 0 or 1. Then the number of non-singular matrices 
belonging to S is .

4.  If A is 3 ´ 3 matrix and |A| = 2, then |adj(adj A)| is 
.

5.  If A B=
é

ë
ê

ù

û
ú =

-é

ë
ê

ù

û
ú

0 1

1 0
and

cos sin

sin cos
,

a a
a a

 then det (A + B) 

is .

   ANSWERS

Single Correct Choice Type Questions

 1. (D)
 2. (B)
 3. (C)
 4. (C)
 5. (A)
 6. (D)
 7. (D)
 8. (A)
 9. (D)
10. (D)
11. (C)
12. (B)
13. (A)

14. (B)
15. (C)
16. (A)
17. (A)
18. (B)
19. (B)
20. (D)
21. (C)
22. (D)
23. (A)
24. (A)
25. (C)

4.  Statement I: The inverse of the matrix in the above 
problem 3 is itself.

Statement II: The inverse of any idempotent matrix 
is itself.

5.  Statement I: If A and B are symmetric matrices 
of same order, then AB BA+  is symmetric and 
AB BA-  is skew-symmetric.

Statement II: If P and Q are matrices of same order, 
then ( )P Q P Q± = ±T T T  and if P, Q are compatible 
for multiplication, then ( ) .PQ Q PT T T=
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Multiple Correct Choice Type Questions

1. (B), (C)
2. (B), (D)
3. (B), (C)
4. (A), (B)
5. (B), (D)
6. (A), (B), (C)
7. (A), (B), (C), (D)
8. (A), (B), (C), (D)

 9. (A), (B), (C), (D)
10. (B), (D)
11. (A), (B), (C)
12. (A), (B), (C), (D)
13. (A), (B)
14. (A), (B), (C), (D)
15. (A), (D)

Comprehension-Type Question

1. (i) (B); (ii) (A); (iii) (C)
2. (i) (B); (ii) (A); (iii) (C)

 3. (i) (A); (ii) (B); (iii) (A)
 4. (i) (D); (ii) (C); (iii) (D)

Assertion–Reasoning Type Questions

1. (A)
2. (A)
3. (D)

 4. (C)
 5. (A)

Integer Answer Type Questions

1. 2
2. 3
3. 6

 4. 16
 5. 0

Matrix-Match Type Questions

1. (A) ® (p), (B) ® (p), (C) ® (r), (D) ® (r)
2. (A) ® (p),  (B) ® (q), (C) ® (p), (D) ® (q)
3. (A) ® (q),  (B) ® (s), (C) ® (p), (D) ® (r)

 4. (A) ® (r),  (B) ® (r), (C) ® (q), (D) ® (p)
 5. (A) ® (q),  (r) ,  (s) (B) ® (s), (C) ® (p), (D) ® (q), (s)





The partial fraction decom-
position or partial fraction 
expansion is used to reduce 
the degree of either the 
numerator or the denomi-
nator of a  rational function. 
The partial  fraction decom-
position may be seen as the 
inverse  procedure of the 
more elementary operation 
of addition of fractions, that 
produces a single rational 
fraction with a numerator 
and denominator usually of 
high degree.

Partial Fractions 9
Contents
9.1 Rational Fractions
9.2 Partial Fractions

 Worked-Out Problems
 Summary
 Exercises
 Answers
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It is well known that a polynomial in x is an expression of the form a0 + a1 x + 	 + an x
n, where a0, a1, ¼, an are real 

numbers or complex numbers. Polynomials are usually denoted by the symbols f (x), g(x), etc. The degree of a 
polynomial f (x) = a0 + a1 x + 	 + an x

n is defined to be n if an ¹ 0. The ai are called the coefficients of xi in f (x). A poly-
nomial f (x) is said to be the zero polynomial if each ai = 0. A zero polynomial can have any degree and every non-zero 
real (complex) number is considered to be a polynomial of degree zero. Zero polynomial is denoted by usual 0 (zero). 
If two polynomials f (x) and g(x) are equal, then we write f (x) = g(x). Two  polynomials are said to be equal if their 
corresponding coefficients are equal. We are familiar with adding and multiplying two polynomials. In this chapter, we 
confine to polynomials whose coefficients are all real numbers.

9.1 | Rational Fractions

DEFINITION 9.1  An expression of the form f (x) /g(x), where f (x) and g(x) are polynomials and g(x) ¹ 0, is 
called a rational fraction.

DEFINITION 9.2  A rational fraction f (x) /g(x) is called a proper fraction if either f (x) = 0 or degree of f (x) is less 
than degree of g(x). If deg f (x) ³ deg g(x), then f (x) /g(x) is called an improper fraction.

(1)  
1

1

2 3 4

3 2 3

2

1
0

1

12 2 2

+
+ +

+ +
+ + + +

x
x x

x
x x x x

, , , and  are

all proper fractions.

(2)  
1

3 2 4

1 2

2

3

2

1

1

2

2

2 8

7

+ +
+ +

+ +
+

+
+

x x
x x

x x
x

x
x

, , , and  are all 

improper fractions.

 Note that 3/2 is an improper fraction, since 3 and 2 are 
both polynomials of degree 0.

Examples

THEOREM 9.1

PROOF

Let f (x) /g(x) be a rational fraction. Then there exist unique polynomials q (x) and r(x) such that

f x
g x

q x
r x
g x

( )

( )
( )

( )

( )
= +

and r(x) /g(x) is a proper fraction.

Since f (x) /g(x) is a rational fraction, f (x) and g(x) are polynomials and g(x) ¹ 0. If f (x) /g(x) is a 
proper fraction, then we can take q(x) = 0 and r(x) = f(x). Suppose that f (x) /g(x) is an improper 
fraction. Then deg f (x) ³ deg g(x).

Let

and 

f x a a x a x a

g x b b x b x b

m
m

m

n
n

n

( ) ,

( ) ,

= + + + ¹

= + + + ¹

0 1

0 1

0

0

	

	

Then deg f (x) = m ³ n = deg g(x). We shall apply induction on m.
If m = 0, then n = 0 and f (x)/g(x) = a0 /b0, which is a real number. In this case, we can take 

q(x) = a0 /b0 and r(x) = 0. Let m > 0 and suppose that the theorem is true for all rational fractions 
h (x)/g(x) with deg (h(x)) < m. Then put

h x f x
a
b

x g xm

n

m n( ) ( ) ( )= - -

It can be easily seen that deg h (x) £ m - 1 < m and therefore, by the induction hypothesis, we can 
write

h x
g x

q x
r x
g x

( )

( )
( )

( )

( )
= +1
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for some polynomials q1(x) and r(x) such that r(x)/g(x) is a proper fraction. Now, consider

f x
g x

h x a b x g x
g x

a b x
h x
g x

a b

m n
m n

m n
m n

m n

( )

( )

( ) ( )

( )

( )

( )

= +

= +

=

- -

- -

-

1

1

11

1x q x
r x
g x

q x
r x
g x

m n- + +

= +

( )
( )

( )

( )
( )

( )

where q(x) = ambn
-1xm-n + q1(x) and r(x)/g(x) is a proper fraction. Therefore, we have proved that 

there exist polynomials q(x) and r(x) such that

f x
g x

q x
r x
g x

( )

( )
( )

( )

( )
= +

and r(x)/g(x) is a proper fraction.
To prove uniqueness of q(x) and r(x), suppose q¢(x) and r¢(x) are also polynomials such that

f x
g x

q x
r x
g x

( )

( )
( )

( )

( )
= ¢ + ¢

where r¢(x)/g(x) is a proper fraction. Then

q(x) g(x) + r(x) = f(x) = q¢(x) g(x) + r¢(x)

and hence

[q(x) - q¢(x)] g(x) = r¢(x) - r(x)

If r(x) - r¢(x) ¹ 0, then

deg [r¢(x) - r(x)] = deg [{q(x) - q¢(x)} g(x)] ³ deg g(x)

which is a contradiction, since deg r(x) < deg g(x) and deg r¢(x) < deg g(x). Therefore r¢(x) - r(x) = 0 
and hence [q(x) - q¢(x)] g(x) = 0, so that q(x) - q¢(x) = 0 (since g(x) ¹ 0). Thus

q(x) = q¢(x) and r(x) = r¢(x)

The unique polynomials q(x) and r(x) found above are called the quotient and the remainder, 
respectively, and the algorithm to find q(x) and r(x) is called the division algorithm for  polynomials. 
Note that q(x) and r(x) are unique polynomials satisfying the property

f (x) = q(x) g(x) + r(x)

such that r(x) = 0 or deg r(x) < deg g(x).
The reader might be familiar with the algorithm to find the quotient and remainder. If r(x) = 0 

in the above, then we say that g(x) divides f (x). Further, any polynomial f (x) of degree greater 
than one can be uniquely expressed as

f (x) = q(x)(x - a) + r

for some real number r, where a is a given real number, and therefore, we have r = f (a) so that

f (x) = q(x)(x - a) + f (a)

Also, x - a divides f (x) if and only if f (a) = 0; this is popularly known as the factorization 
theorem. ■
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(1) 
1

1
1

2

1

2+
+

= - + +
+

x
x

x
x

( ) (2) 
1

1

1

1

2+ +
+

= +
+

x x
x

x
x

Examples

COROLLARY 9.1 Let q(x), q¢(x), r(x), r¢(x), g(x) and g¢(x) be polynomials in x such that r(x)/g(x) and r¢(x)/g¢(x) are 
proper fractions and

q x
r x
g x

q x
r x
g x

( )
( )

( )
( )

( )

( )
+ = ¢ + ¢

¢

Then

q x q x
r x
g x

r x
g x

( ) ( )
( )

( )

( )

( )
= ¢ = ¢

¢
and

DEFINITION 9.3 Two polynomials f (x) and g(x) are said to be relatively prime (or prime to each other) if there 
is no polynomial of positive degree dividing both f (x) and g(x).

(1)  The polynomials 1 + x and 1 - x are relatively prime, 
since any common divisor of these must divide their 
sum, which is a polynomial of degree 0.

(2)  1 + 2x + x2 and 1 - x2 are not relatively prime since 
1 + x is a common divisor of these. 

Examples

We assume the following theorem whose proof is beyond the scope of this book.

THEOREM 9.2 Two polynomials f (x) and g (x) are relatively prime if and only if there exist polynomials p(x) and 
q(x) such that

f (x) p(x) + g(x) q(x) = 1

9.2 | Partial Fractions

In this section we discuss several methods of expressing a rational fraction as a sum of similar fractions; such a rational 
fraction is known as partial fraction. First, we have the following main result.

THEOREM 9.3 
(FUNDAMENTAL 

THEOREM)

PROOF

Let f (x), g(x) and h(x) be polynomials such that h(x) /f (x) g(x) is a proper fraction. Suppose 
that f (x) and g(x) are relatively prime. Then there exist proper fractions a(x)/f (x) and b(x)/g(x) 
such that

h x
f x g x

x
f x

x
g x

( )

( ) ( )

( )

( )

( )

( )
=

a b
+

Since f (x) and g(x) are relatively prime, there exist polynomials p(x) and q(x) such that

f (x) q(x) + g(x) p(x) = 1

Now,

h x
f x g x

h x f x q x g x p x
f x g x

h x p x
f x

( )

( ) ( )

( )[ ( ) ( ) ( ) ( )]

( ) ( )

( ) ( )

( )
=

+
= +

hh x q x
g x

( ) ( )

( )
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If h(x)p(x)/f (x) and h(x)q(x)/g(x) are not proper fractions, then by Theorem 9.1, we can write

h x p x
f x

t x
x

f x
h x q x

g x
s x

x
g x

( ) ( )

( )
( )

( )

( )

( ) ( )

( )
( )

( )

( )
= + = +

a b
and

for some polynomials t(x), s(x), a(x) and b(x) such that a(x)/f (x) and b(x)/g(x) are proper  fractions 
and, therefore, we have

h x
f x g x

h x p x
f x

h x q x
g x

s x t x
x

f x
( )

( ) ( )

( ) ( )

( )

( ) ( )

( )
( ) ( )

( )

( )
= + = + + +

a bb a b( )

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

x
g x

s x t x
x g x x f x

f x g x
= + +

+

Since deg a (x) < deg f (x) and deg b(x) < deg g(x), we get that deg [a(x)g(x) + b(x)f (x)] < deg [ f(x)
g(x)] which implies that [a (x)g(x) + b(x)f (x)]/ f(x) g(x)] is a proper fraction. Hence h(x)/f(x)g(x) 
and therefore

 
s x t x

h x
f x g x

x
f x

x
g x

( ) ( )
( )

( ) ( )

( )

( )

( )

( )
+ = = +0 and

a b
 ■

In the following theorems, we will prove that a proper fraction can be resolved into sum of its simplest partial 
 fractions, in various cases. First, we have the following.

DEFINITION 9.4  If a proper fraction is expressed as the sum of two or more proper fractions, then each of these 
is called a partial fraction of the given proper fraction. The process of finding partial fractions 
of a given proper fraction is known as resolving the proper fraction into partial fractions.

Example  9.1 

Find the partial fractions of 

(a) 
1

6 5 2- +x x

(b) 
2

12x -

Solution:

(a) The given fraction can be simplified as

1

6 5

1

3 2

1

3

1

22- +
=

- -
=

-
+

-
-x x x x x x( )( )

Therefore

1

3

1

2x x-
-
-

and

are called the partial fractions of the given fraction.

(b) The given fraction can be simplified as

2

1

1

1

1

12x x x-
=

-
+

-
+

Therefore

1

1

1

1x x-
-
+

and

are partial fractions of 2/(x2 - 1).

DEFINITION 9.5  A polynomial of positive degree is said to be irreducible if it cannot be expressed as a product 
of two or more polynomials of positive degree.

(1)  Any polynomial of degree 1 is irreducible (such 
polynomials are called linear polynomials).

(2) 1 + x + x2 is an irreducible polynomial.

Examples
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Example  9.2 

Show that the following polynomials are not irreducible.

(a) 1 + x + x2 + x3

(b) x3 - 6x2 + 11x - 6

Solution:

(a)  1 + x + x2 + x3 is not an irreducible polynomial, since 
(1 + x)(1 + x2) = 1 + x + x2 + x3.

(b)  x3 - 6x2 + 11x - 6 is not an irreducible polynomial, 
since x3 - 6x2 + 11x - 6 = (x - 3)(x - 2)(x - 1).

THEOREM 9.4

PROOF

Let f (x)/g(x) be a proper fraction and ax + b a non-repeated factor of g(x). Then f (x)/g(x) has a 
partial fraction of the form

A
ax b+

where A is a constant.

Since ax + b is a non-repeated factor of g(x), we can write

g(x) = (ax + b)h(x)

where ax + b and h(x) are relatively prime. Then by the fundamental theorem (Theorem 9.3), we 
can write

f x
g x

x
ax b

x
h x

( )

( )

( ) ( )

( )
=

+
+

a b

where a(x)/(ax + b) and b(x)/h(x) are proper fractions.
In particular, deg a(x) < deg (ax + b) = 1 and hence a(x) is a constant, say A. Therefore

A
ax b+

 is a partial fraction of 
f x
g x

( )

( ) ■

THEOREM 9.5

PROOF

If f (x)/g(x) is a proper fraction and ax2 + bx + c (a ¹ 0) is a non-repeated irreducible factor of g(x), 
then f (x)/g(x) has a partial fraction of the form

Ax B
ax bx c

+
+ +2

 

Same as in the above theorem. ■

In the following example, we demonstrate a method of finding partial fractions.

Example  9.3 

Resolve the following fraction into partial fractions:

3 2

3 2 1

x
x x

+
- +( )( )

Solution: Write

3 2

3 2 1 3 2 1

x
x x

A
x

B
x

+
- +

=
-

+
+( )( )

Then

3 2

3 2 1

2 1 3

3 2 1

x
x x

A x B x
x x

+
- +

=
+ + -
- +( )( )

( ) ( )

( )( )

Therefore

3x + 2 = A(2x + 1) + B(x - 3)
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By taking x = 3, we get

3 × 3 + 2 = A(2 × 3 + 1) + B(3 - 3)

 
A =

11

7

Similarly, by taking x = -1/2, we get B = -1/7. Therefore

3 2

3 2 1

11 7

3

1 7

2 1

11

7 3

1

7 2 1

x
x x x x x x

+
- +

=
-

+
-

+
=

-
-

+( )( )

/ /

( ) ( )

THEOREM 9.6

PROOF

Let f (x)/(ax + b)n be a proper fraction. Then, there exist constants A1, A2, ¼, An such that

f x
ax b

A
ax b

A
ax b

A

ax bn
n

n

( )

( ) ( ) ( )+
=

+
+

+
+ +

+
1 2

2
	

This is a repeated application of Theorem 9.1. Since f (x)/(ax + b)n is a proper fraction, deg f (x) < n.
First use Theorem 9.1 to write

 
f x

ax b
q x

r x
ax b

( )
( )

( )

+
= +

+1
1  (9.1)

where q1(x) and r1(x) are some polynomials and deg r1(x) < deg (ax + b) = 1. Therefore r1(x) is a 
constant. Put B1 =  r1(x). Again, we can write (using Theorem 9.1),

 
q x
ax b

q x
B

ax b
1

2
2( )

( )
+

= +
+

 (9.2)

where q2(x) is a polynomial and B2 is a constant. From Eqs. (9.1) and (9.2), we get that

f x
ax b

q x
ax b

r x

ax b
q x

B

ax b

B

ax b
( )

( )

( ) ( )

( )
( )

( )+
=

+
+

+
= +

+
+

+2

1 1

2 2

2 1

2

Again,

q x
ax b

q x
B

ax b
2

3

3( )

( )
( )

+
= +

+

for some polynomial q3(x) and a constant B3. Substituting this in the above, we get

f x
ax b

q x
B

ax b
B

ax b
B

ax b
( )

( )
( )

( ) ( )+
= +

+
+

+
+

+3 3

3 2

2

1

3

The process can be performed n times to get

f x
ax b

q x
B

ax b

B

ax b

B

ax bn n
n n

n

( )

( )
( )

( ) ( )+
= +

+
+

+
+ +

+
- 1

2

1	

where B1, B2, ¼, Bn are constants. Since deg f (x) < n, we get qn(x) = 0. Now, put Ai = Bn-i+1 to get

 
f x

ax b
A

ax b
A

ax b

A

ax bn
n

n

( )

( ) ( ) ( )+
=

+
+

+
+ +

+
1 2

2
	

■

Example  9.4 

Resolve the following fraction into partial fractions 

1

2

2

3

+ +
+
x x

x( )

Solution: By Theorem 9.6, we can write

 
1

2 2 2 2

2

3

1 2

2

3

3

+ +
+

=
+

+
+

+
+

x x
x

A
x

A
x

A

x( ) ( ) ( )
 (9.3)

We have to find the values of the constants A1, A2, and 
A3. From Eq. (9.3), we have
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 1 + x + x2 = A1(x + 2)2 + A2(x + 2) + A3 (9.4)

By substituting –2 for x, we get

 1 + (-2) + (-2)2 = 0 + 0 + A3

 A3 = 3

Taking x = 0 and x = 1 in Eq. (9.4), we get

-2 = 4A1 + 2A2 or 2A1 + A2  = -1

and 0 = 9A1 + 3A2 or 3A1 + A2  = 0

By solving these two, we get that A1 = 1 and A2 = -3 from 
Eq. (9.3), we have

1

2

1

2

3

2

3

2

2

3 2 3

+ +
+

=
+

-
+

+
+

x x
x x x x( ) ( ) ( ) ( )

Example  9.5 

Resolve the following into partial fractions:

1

1 2 1 2

2 3

2 2

+ + +
+ + - +

x x x
x x x x( )( )

Solution: First, note that (1 + x)(1 + x2) = 1 + x + x2 + x3. 
Therefore, the given fraction is

( )( )

( ) ( ) ( )( )

1 1

1 1

1

1 1

2

2 2

2

2

+ +
+ -

=
+

+ -
x x
x x

x
x x

Let

1

1 1 1 1 1

2

2

1 2 3

2

+
+ -

=
+

+
-

+
-

x
x x

A

x
A

x

A

x( )( ) ( )

Then

1 + x2 = A1(1 - x)2 + A2(1 + x)(1 - x) + A3(1 + x)

(a) Taking x = 0, A1 + A2 + A3 = 1
(b) Taking x = 1, 2A3 = 2 or A3 = 1
(c ) Taking x = -1, 4A1 = 2 or A1 = 1/2

Therefore

A A A2 1 31 1
1

2
1

1

2
= - - = - - = -

and so

1

1 2 1 2

1

2 1

1

2 1

1

1

2 3

2 2 2

+ + +
+ + - +

=
+

-
-

+
-

x x x
x x x x x x x( )( ) ( ) ( ) ( )

Example  9.6 

Resolve the following into partial fractions:

42 19

4 12

-
- +

x
x x( )( )

Solution: Let

42 19

4 1 1 42 2

-
- +

=
+
+

+
-

x
x x

Ax B
x

C
x( )( )

Therefore

 42 - 19x = (Ax + B)(x - 4) + C(x2 + 1) (9.5)

Put x = 4. Then C = -2. Equating coefficient of x2 on both 
sides of Eq. (9.5), we get

0 = A + C Þ A = 2

Equating the coefficient of x on both sides of Eq. (9.5), 
we get

-4A + B = -19 so that B = -11

Therefore

42 19

4 1

2 11

1

2

42 2

-
- +

=
-
+

-
-

x
x x

x
x x( )( )

   WORKED-OUT PROBLEMS

Single Correct Choice Type Questions
1. If

mx n
x a x b

A
x a

B
x b

+
- +

=
-

+
+( )( )

 then A + B is equal to

(A) m (B) n (C) m + n (D) mn

Solution: We have

mx + n = A(x + b) + B(x - a)
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Now

x a A
ma n
a b

x b B
mb n
a b

mb n
a b

= Þ =
+

+

= - Þ =
- +
- +

=
-

+( )

Adding we get

A B
m a b

a b
m+ =

+
+

=
( )

Answer: (A)

2. If

7 1

6 5 1 3 1 2 12

x
x x

A
x

B
x

-
- +

=
-

+
-

 then B – A equals

(A) 1 (B) 7 (C) 8 (D) 9

Solution: We have

7x - 1 = A(2x - 1) + B (3x - 1)

Now

x A A

x B B

= Þ - = -æ
èç

ö
ø÷

Þ = -

= Þ - = -æ
èç

ö
ø÷

Þ =

1

3

7

3
1

2

3
1 4

1

2

7

2
1

3

2
1 5

Therefore

B − A = 5 + 4 = 9

Answer: (D)

3. If

2 3 1

1 2 1 1 1 2

2

2

x x
x x

A
x

B
x

+ +
- -

=
-

+
-( )( )

 then A, B are, respectively,

(A) -3, 4 (B) -3, -4 (C) 3, 4 (D) 3, -4

Solution: Clearly

2 3 1

1 2 1 1

2 1 1

1 2 1 1

2x x
x x x

x x
x x x

+ +
- - +

=
+ +

- - +( )( )( )

( )( )

( )( )( )

 
=

+
- -

2 1

1 2 1

x
x x( )( )

Therefore

2x + 1 = A(1 - 2x) + B(1 - x)

Now

x A

x B

= Þ = -

= Þ =

1 3

1

2
4

 

 

Answer: (A)

4. Let

9

1 2 1 2 22 2( )( ) ( )x x
A

x
B

x
C

x+ -
=

+
+

-
+

-

 then the ordered triple (A, B, C) is

(A) (1, 3, -1)  (B) (1, -1, 3)

(C) (3, -1, 1)  (D) (1, 1, -3)

Solution: We have

9 = A(x - 2)2 + B(x + 1)(x - 2) + C(x + 1)

Now for

x = -1 Þ A = 1

x = 2 Þ C = 3

Now A + B = Coefficient of x2 = 0. Therefore B = -1 and so

A = 1, B = -1, C = 3

Answer: (B)

5. Suppose

3 8 10

1 1 1 1 1

3 2

4 2 3 4

x x
x

a
x

b
x

c
x

d
x

- +
-

=
-

+
-

+
-

+
-( ) ( ) ( ) ( )

 Then a + b + c + d is equal to

(A) 1 (B) 2 (C) 4 (D) –5

Solution: Put x - 1 = y. Therefore we have

3 1 8 1 10

3 3 3 1 8 2 1 10

3

3 2

4

3 2 2

4

3 2

( ) ( )

( ) ( )

y y
y

y y y y y
y

y y

+ - + +

=
+ + + - + + +

+ - 77 5 5 7 1 3

5

1

7

1

1

1

3

1

4 4 3 2

4 3 2

y
y y y y y

x x x x

+
= - + +

=
-

-
-

+
-

+
-( ) ( ) ( )

Answer: (B)

6. If

x
x x

A
x

B
x

2

2 2 2 2

4

1 2 3 1 2 3

+
+ +

=
+

+
+( )( )
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 then A - B is

(A) 6 (B) 8 (C) 9 (D) 11

Solution: Put y = x2 in the given expression. We get the 
fraction

 

y
y y

A
y

B
y

+
+ +

=
+

+
+

4

1 2 3 1 2 3( )( )

 y A y B y+ = + + +4 2 3 1( ) ( )

Solving we get

y A

y B

= - Þ =

=
-

Þ = -

1 3

3

2
5

 

Therefore A – B = 3 – (–5) = 8.
Note that the substitutions y = -1 and -3/2 are for 

the fraction in y, but not for the fraction in x.

Answer: (B)

7. Consider the series

1

1 1 1 1 1 12 2 3

2

3 4( )( ) ( )( ) ( )( )+ +
+

+ +
+

+ +
+

x x
x

x x
x

x x
	

 If x > 1, then sum to infinity of the series is

(A) 
1

1 2- x   (B) 
1

12x -

(C) 
1

1 2x x( )-
  (D) 

1

12x x( )-
Solution: Let

u
x

x x

x x x x

k

k

k k

k k

=
+ +

=
- +

-
+

é

ë
ê

ù

û
ú

-

+

+

1

1

1

1 1

1

1

1

1

1

1

( )( )

( )

Let sn be the sum to n terms of the series. Then

s u
x x x xn k

k

n

n= =
- +

-
+

é

ë
ê

ù

û
ú

=
+å

1
1

1

1

1

1

1

1( )

Therefore

Lt
n

ns x x®¥
=

-
1

12( )

Answer: (D)

8. When

x
x a x b x c

3

( )( )( )- - -

 is resolved into partial fractions, then

a
a b a c a d

3

( )( )( )- - -å

 where d is any real number not equal to a, b and c is

(A) 0  (B) 1

(C) a + b + c + d (D) 
1 1 1 1

a b c d
+ + +

Solution: We have

x
x a x b x c

A
x a

B
x b

C
x c

3

1
( )( )( )- - -

= +
-

+
-

+
-

x x a x b x c A x b x c

B x a x c C x a x b

3 = - - - + - -
+ - - + - -
( )( )( ) ( )( )

( )( ) ( )( )

Therefore

A
a

a b a c
B

b
b a b c

C
c

c a c b
=

- -
=

- -
=

- -

3 3 3

( )( )
,

( )( )
,

( )( )

which gives

x
x a x b x c

A
x a a b a c

B
x b b a b c

C
x

3

1
( )( )( ) ( )( )( )

( )( )( ) (

- - -
= +

- - -

+
- - -

+
- cc c a c b)( )( )- -

Put x = d on both sides. We get

a
a b a c a d

3

1
( )( )( )- - -

=å
Answer: (B)

9. When x4/[(x - a)(x - b)(x - c)] is resolved into  partial 
fractions and d is any real number different from a, b 
and c, then

a
a b a c a d

4

( )( )( )- - -
=å

(A) 1  (B) 0

(C) a + b + c + d (D) abc + abd + acd + bcd

Solution: We have

x
x a x b x c

x a b c
A

x a
B

x b

C
x c

4

( )( )( )
( )

- - -
= + + + +

-
+

-

+
-

Therefore as in the above, we have

a
a b a c a d

a b c d
4

( )( )( )- - -
= + + +å

Answer: (C)
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1. If

13 46

12 11 15 3 5 4 32

x
x x

A
x

B
x

+
- -

=
-

+
+

 then

(A) A = -5  ( B) B = 7
(C ) A = 7  (D) B = -5

Solution: We have

13x + 46 = A(4x + 3) + B(3x - 5)

Now

x A A

x B B

= Þ æ
èç

ö
ø÷

= Þ =

=
-

Þ
-æ

èç
ö
ø÷

= Þ = -

5

3

29

3

203

3
7

3

4

29

4

145

4
5

Answers: (C), (D)

2. If

2 1

1 1 1 12 2

x
x x

A
x

Bx C
x

+
- +

=
-

+
+
+( )( )

 then

(A) A =
3

2
  (B) B C= =

3

2

1

2
,

(C) A =
-3

2
  (D) B C=

-
=

3

2

1

2
,

Solution: From the given expression we have

2x + 1 = A(x2 + 1) + (Bx + C)(x - 1)

For x = 1 we get A = 3/2.

Also 0 = coefficienct of x2 = A + B. Therefore

B =
-3

2

For x = 0

A C C A- = Þ = - = - =1 1
3

2
1

1

2

Answers: (A), (D)

3. If

3 2

3 2 1 1 2 2

2

2 2 2 2

-
- +

=
-

+
-

+
-

+
-

x
x x

A
x

B
x

C
x

D
x( ) ( ) ( )

 then

(A) A + B = 3  (B) A + D = -3

(C) B + C = 3  (D) A + B + C + D = -4

Solution: Simplifying the given expression we get

3 2 1 2 2

2 1 1

2 2 2

2 2

- = - - + -

+ - - + -

x A x x B x

C x x D x

( )( ) ( )

( )( ) ( )

Now for

x = 1 Þ B = 1

 x = 2 Þ D = -5

 0 = coefficient of x3 = A + C (9.6)

x = 0 Þ 4A + 4B + 2C + D = 3

 Þ 4A + 4 + 2C -5 = 3

Therefore

 2A + C = 2 (9.7)

From Eqs. (9.6) and (9.7) we get A = 2, C = -2. Hence

3 2

1 2

2

1

1

1

2

2

5

2

2

2 2 2 2

-
- -

=
-

+
-

-
-

-
-

x
x x x x x x( ) ( ) ( ) ( )

Answers: (A), (B), (D)

4. If

( )

( )

x
x x

A
x

Bx C
x

+
+

= +
+
+

1

1 1

2

2 2

 then

(A) A = 1 (B) B = 1 (C) C = 2 (D) B = 0

Solution: Simplifying the given expression we get

(x + 1)2 = A(x2 + 1) + (Bx + C) x

Now

 x = 0 Þ A = 1

 2 = coefficient of x = C

 1 = coefficient of x2 = A + B = 1 + B Þ B = 0

Hence

( )

( )

x
x x x x

+
+

= +
+

1

1

1 2

1

2

2 2

Answers: (A), (C), (D)

5. If

3 4

1 1 1 1 12 2

x
x x

A
x

B
x

C
x

+
+ -

=
-

+
+

+
+( )( ) ( )

Multiple Correct Choice Type Questions

 Worked-Out Problems 469
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 then

(A) A =
7

4
  ( B) A + B = 0

(C ) C =
1

2
  (D) C =

-1

2

Solution:  We have

3 4

1 1

3 4

1 1 1 1 1

3 4

2 2 2

x
x x

x
x x

A
x

B
x

C
x

x A x

+
+ -

=
+

+ -
=

-
+

+
+

+

+ = +

( )( ) ( ) ( ) ( )

( 11 1 12 2) ( ) ( )+ - + -B x C x

Now

 
x A A= Þ = =1 7 4

7

4
or

 

x C C

x A B B

= - Þ - = = -

= = + Þ = -

1 2 1
1

2

0
7

4

2

or

coefficient of 

Answers: (A), (B), (D)

6. If

4

1 1 14 2 2 2

x
x x

A
x x

B
x x+ +

=
- +

+
+ +

 then

(A) A + B = 0  (B) AB = -4

(C) A = 2, B = -2 (D) 
A
B

= -1

Solution: We have

4

1

4

1 1

2
1

1

1

1

4 2 2 2

2 2

x
x x

x
x x x x

x x x x

+ +
=

- + + +

=
- +

-
+ +

é

ë
ê

ù

û
ú

( )( )

Therefore, we get A = 2, B = -2

Answers: (A), (B), (C), (D)

   SUMMARY

9.1 Polynomial: If a0, a1, a2, ¼, an are real or  complex 
 numbers, a0 ≠ 0 and n is a positive integer, thus an 
 expression of the form a0 x

n + a1 x
n−1 + a2 x n−2 + 	 + an 

is called polynomial of degree n.
  a0, a1, a2, ¼, an are called coefficients of the 

polynomial. If a0, a1, a2, ¼, an are real numbers, then 
the polynomial is called polynomial with real coef-
ficients and if a0, a1, a2, ¼, an are complex numbers, 
then it is called polynomial with complex coef-
ficients. Generally polynomials are denoted by 
f(x),  g(x),  h(x), etc.

9.2 Constant polynomial: Every non-zero number is 
considered as a polynomial of zero degree and it is 
called constant polynomial.

9.3 Zero (null) polynomial: A polynomial is called zero 
polynomial if all of its coefficients are zeros.

9.4 Degree of a zero polynomial: Any positive integer can 
be considered to be the degree of zero polynomial.

9.5 Division algorithm (or Euclid’s algorithm): If f (x) 
and g(x) are two polynomials and g(x) � 0, then there 
exist unique polynomials q(x) and r(x) such that 
f (x) = q(x) g(x) + r(x) where either r(x) º 0 (i.e., zero 
 polynomial) or degree of r(x) is less than the degree 
of g(x). If r(x) º 0, then g(x) is called factor of f(x).

9.6 Proper and improper fractions: Let f (x) and g(x) 
be two polynomials and g(x) � 0. Then f (x)/g(x) is 
called proper or improper fraction according as the 
degree of f(x) is less than or greater than the degree 
of g(x).

9.7 Relatively prime polynomials: Two polynomials are 
said to be relatively prime to each other (or coprime 
to each other) if they do not have a common factor 
of positive degree.

  Two polynomials f(x) and g(x) are relatively 
prime to each other if and only if there exist polyno-
mials p(x) and q(x) such that

f(x) p(x) + g(x) q(x) = 1

9.8 Fundamental theorem: Let f (x), g(x) and h(x) be 
polynomials such that h(x)/f (x) g(x) is a proper frac-
tion. If f (x) and g(x) are  relatively prime to each 
other, then there exist proper fractions  p (x)/f (x) 
and q (x)/g(x) such that

h x

f x g x

p x

f x

q x

g x
( )

( ) ( )
( )
( )

( )
( )= +

9.9 Partial fractions: If a proper fraction of two poly-
nomials is expressed as sum of two or more proper 
fractions, then each of these proper fractions  
is called partial fraction of the given proper 
fraction.



Exercises 471

9.10  Irreducible polynomial: A polynomial of  positive 
degree is said to be irreducible if it cannot be 
expressed as a product of two or more polynomials 
of positive degrees.

9.11  Cases of partial fractions: Let f (x)/g(x) be a 
proper  fraction [i.e., degree of f(x) is less than the 
degree of g(x)]. Then

(1)  If g(x) has a non-repeated linear factor ax + b, 
then A/ax + b is a partial fraction of f (x)/g(x) 
where A is a constant which can be determined.

(2)  If g(x) has a non-repeated irreducible quadratic 
factor ax2 + bx + c. Then

Ax B
ax bx c

+
+ +2

   is a partial fraction of f (x)/g(x) for some real 
constant A and B.

(3)  If g(x) has a repeated linear factor of the form 
(ax + b)n, then

A
ax b

A
ax b

A

ax b
n

n

1 2

2+ + +
,

( )
, ,

( )
¼

   where A1, A2, ¼, An are constants occur as partial 
fractions in f (x)/g(x).

(4)  If (ax2 + bx + c)k, where ax2 + bx + c is irreduc-
ible, is a repeated factor of g(x), then the frac-
tions of the form

A x B
ax bx c

A x B
ax bx c

A x B

ax bx c
k k

k

1 1

2

2 2

2 2 2

+
+ +

+
+ +

¼
+

+ +
,

( )
, ,

( )

  occur as partial fraction for f (x)/g(x).

EXERCISES

Single Correct Choice Type Questions
1. If

5 6

2 1 2 1

x
x x

A
x

B
x

+
+ -

=
+

+
-( )( )

 then A + B is equal to

(A) 4 (B) 3 (C) 5 (D) –5

2. If

x
x x

x
A

x
B

x

3

1 2
1

1 2( )( )
( )

- +
= - +

-
+

+

 then A + B is

(A) –3 (B) 3 (C) 5 (D) –5

3. If 

x
x

Ax B
x

Cx D
x

3

2 2 2 2 21 1 1( ) ( )+
=

+
+

+
+
+

 then A - C is

(A) 3

(B) 1

(C) an even prime number

(D) an odd prime number of the form 4n + 1

4. If

5 2

1

2

3 2

x
x x

A
x

Bx C
x

+
+

= +
+
+

 then the ordered triple (A, B, C) is

(A) (2, 3, 1)  (B) (1, 2, 3)

(C) (0, 2, 3)  (D) (2, 3, 0)

5. If

x
x x

A
x

2

2 2 2 2 2

5

2

1

2 2

+
+

=
+

+
+( ) ( )

 then

(A) A = 3  (B) 2A = 5

(C) 3A = 1  (D) A = -1

6. Let

x x
x x x

a
x

b
x x

c
x x x

2 5 1

1 2 3 1 2 1

1 2 3

+ +
+ + +

=
+

+
+ +

+
+ + +

( )( )( ) ( )( )

( )( )( )

   and P
a b

c
=

-
é

ë
ê

ù

û
ú1

 then P is

(A) idempotent matrix (B) involuntary matrix

(C) symmetric matrix (D) scalar matrix

7. If

3 2 1x
x a x b x a x b( )( )- -

=
-

+
-
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 then the relation between a and b is

(A) a = 2b  (B) b = 2a

(C) a = -2b  (D) b = -2a

8. If

x
x x x

a
x

b
x

c
x

2 1

2 2 1 3 1 4 2 12 2

+
+ - -

=
-

+
-

-
+( )( )( ) ( ) ( ) ( )

 and A

a b c

b c a

c a b

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

 then |A| is equal to

(A) –34  (B) 34

(C) –24  (D) –108

9. If

x
x x

f x
A

x
B

x

4

1 2 1 2( )( )
( )

- -
= +

-
+

-

 then

 (A) f (x) > 0 for all real x

 ( B) f (x) = 0 has distinct real roots

 (C ) f (x) = 0  has equal roots

 (D) Range of f (x) is �

10. If

3

6 3 6 3

x
x x

a
x

b
x

A
a b

b a( )( )- +
=

-
+

+
=

é

ë
ê

ù

û
úand

 then A-1 is equal to

 (A) 

2

3

1

3

1

3

2

3

-

-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 (B) 
2 1

1 2

-
-

é

ë
ê

ù

û
ú

 (C) 

-

-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1

3

2

3

2

3

1

3

 (D) 

1

3

2

3

2

3

1

3

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Multiple Correct Choice Type Questions

1. If

x
x x

A
x

Bx C
x

2

2 2

3

2 1 2 1

-
+ +

=
+

+
+
+( )( )

 then

(A) 5B = 4  (B) 5A = 1

(C) 5C = -8  (D) ABC = -32

2. Let

x
x x x

a
x

b
x

c
x

2 1

2 2 1 3 1 4 2 12 2

+
+ - -

=
-

+
-

-
+( )( )( ) ( ) ( ) ( )

 and Z1 = a + bi, Z2 = b + ci and Z3 = c + ai  where 

i = -1 . Then Z1, Z2, Z3 represent

(A) collinear points

( B) vertices of an equilateral triangle

(C ) vertices of an isosceles triangle

(D) vertices of a right-angled triangle

3. Let

x
x x

f x
A

x
B

x

4

2 3 2 1 2- +
= +

-
+

-
( )

 Then

(A) f (x) = 0 has irrational roots

(B) f (x) = 0 has no real roots

(C) f (x) + A + B = 0 has integer roots

(D) f (x) + A + B = 0 has no real roots

4. If

1

2 23 2 3x x
A
x

B
x

C
x

D
x( )+

= + + +
+

 then

(A) A + D = 0

( B) C + B = 0

(C )  the number of permutations of the values of A, B, 
C and –D is 12

(D) A B+ =
1

8
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ANSWERS

Single Correct Choice Type Questions
1. (C)
2. (B)
3. (C)
4. (D)
5. (A)

 6. (B)
 7. (C)
 8. (D)
 9. (A)
10. (A)

Multiple Correct Choice Type Questions

1. (A), (B), (C)
2. (C), (D)

 3. (B), (D)
 4. (A), (B), (C)





A

Addition

of complex numbers 106

of matrices 364–366

Adjoint 404 

Algebraic equations 136–138

Algebraic forms 128

Antilogarithmic function 89

ARGANDS 112

Argument of z 115–119

Arithmetic geometric progression 220

Arithmetic mean 215–216

Arithmetic progression 211–214

Arrow-diagram form 29

B

Bijection 43–44

inverse 44–45

Binary relation 30

Binomial coefficients 329–331

Binomial theorem 322

for positive integral index 322–328

for rational index 329–333

C

Cardinality 6

Cartesian product 25

Cayley–Hamilton theorem 410

Characteristic equation 410

Characteristic polynomial 410

Circular permutations 284–285

Class of sets 4

Coefficient matrix 413

Cofactor 399–404

Column matrix 362

Column transformation 385

Combination 286–288

Common difference 211

Common ratio 218

Complement of a set 12

Complex number 106

purely real and purely imaginary 110

real part and imaginary part 108–109

square root of 134

unimodular 114

Composition of relations 30

Conjugate 111

Consistent system 413, 415

Constant polynomial 465

Constant sequence 208

Convergent series 211

Crammer’s rule 413–414

Cube roots 132

of unity 134–135

D

De Moivre’s theorem 131–133

De Morgan laws 10–11

Degree of a polynomial 460

Derangement 294–295

Determinants 395–409

Diagonal matrix 363

Diagonal of a matrix 362

Difference of two sets 10

Directly similar triangle 120–122

Discriminant of an equation 137

Discriminant of quadratic expression 171

Disjoint sets 7

Distributive laws 8–9

Divergent series 211

Division algorithm for polynomials 461

Domain 28

E

Elementary row (column) matrix 386

Elementary operations 385

Elementary transformations 385

Empty set 3

Equal polynomials 460 

Equal sets 4

Equality of matrix 361

Equivalence class of relation 33–38

Equivalence relations 33

Equivalent matrix 387

Even extension 57

Even functions 53, 57

graphs 53

Exponential and logarithmic 

inequalities 92–93

Exponential equation 90

Exponential function 86–87

F

Factorization theorem 461

Family of sets 4

Finite sequence 208

Finite set 4

Fractional part of a function 46

Function 38

composition 39–40

domain 38 

even 53, 57

image 38–39

odd 53–57

Fundamental theorem 462–463

of algebra 138–139

G

Gauss–Jordan method 393–394, 415

Geometric mean 219

Geometric progression 217–218

Graph of a function 49

H

Harmonic mean 221–224

Harmonic progression 221

Homogenous system of linear 

equations 416–417

I

Idempotent matrix 411

Identity matrix 363–364, 372

Imaginary axis 112

Improper fraction 460

Inconsistent system 413, 415

Index set 4

Index 411

Infinite sequence 208

Infinite set 4

Injection 41

Integral part of a function 46

Intersection of sets 6

Inverse of a matrix 388, 393–394

Inverse of a relation 32

Invertible matrix 388

Involuntary matrix 412

Irreducible polynomial 463

L

Limit of a sequence 210

Linear permutations 279–281

Linear term 170

Logarithmic equation 90

Logarithmic function 88–89

Index
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M

Mathematical operation on complex 

numbers

addition 106

difference 106

multiplication 106

product 106

sum 106

subtraction 106

unity 107

zero 107

Matrix/matrices 360

addition of 364–366

columns 360

elements or entries 360

equality of 361

inverse of 388, 393–394

invertible 388

involuntary 412

multiplication of 368–369

order 360

polynomial 375

rows 360

similar 387

singular 405

skew-symmetric 379–382

Maximum value of quadratic 

equation  178

Minimum value of quadratic 

equation  178

Minor 398

Modulus of z 113–114

Multiplication of matrices 368–369

Multiplicative identity 372 

Multiplicative inverse 107–108

N

n factorial (factorial n) 278

Nilpotent matrix 411

Nonhomogenous system of linear 

equations 413

Non-singular matrix 388

O

Odd extension 57

Odd function 53, 57

graphs 54–56

Ordered pairs 25

Orthogonal matrix 383–384

P

Partial fraction 462–463

of proper fraction 463

Partition 34

Period of a matrix 412

Periodic function 48

Permutation 278–279

fundamental principle of 278–279

Plane or complex plane 112

Polar form 128

Polynomials 460

Power set 5

Progression 211

Proper fraction 460

Q

Quadratic equation 170

Quadratic expression 170

Quadratic term 170

Quotient 461

R

Range 28

Rank 282

Rational fraction 460

Real axis 112

Real-valued function 45, 56

Reflexive relation 33–34

Relation (s) 25–28

inverse of a 32

reflexive 33–34

representations of 29–30

Relatively prime polynomial 462

Remainder 461

Root of quadratic equation 170, 172, 

174–175

Roots of degree n 132–133

Roster form 29

Row matrix 362

Row transformation 385

S

Sarrus diagram 398

Scalar matrix 363

Scalar 366

Sequence of elements 208

Series 210 

Set (s) 2

class of 4

elements of a set 2

indexed family of 4

members of a set 2

Set builder form 3, 29

Similar matrix 387

Singular matrix 405

Skew-symmetric matrices 379–382

Solution of a system 413

Solution of quadratic equation 170

Square matrix 361

Square roots 132 

of a complex number 134

Standard binomial expansion 324

Standard form 170

Subset 5

Successive differences method 225–226

Surjection 42

Symmetric difference 12–13

Symmetric matrices 379–383

Symmetric relation 33–34

Symmetric set 53

System of homogenous linear 

equations  413

System of linear equations 412

Systems of logarithmic and exponential 

equations 91–92

T

Tabular form 30

Telescopic series 225

Transitive relation 33–34

Transpose of a matrix 404

Triangular matrix (ces) 364, 409

Trigonometric form 128

Trigonometric notation 128

Trivial solution of a system 417

U

Ultimately constant sequence 208

Unimodular complex number 114

Union of sets 7

Unit matrix 372

Universal set 12

V

Venn diagrams 13–19

Z

Zero matrix 362

Zero of quadratic expression 170

Zero polynomial 460
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